Parcel U | FOREST HILLS

Expanded Project Notification Form

August 1, 2014

URBANICA

August 1, 2014

SUBMITTED TO

One City Hall Square Boston, MA 02210

SUBMITTED BY

JP Parcel U, LLC c/o Urbanica, Inc 142 Berkeley Street, Suite 402 Boston, MA 02116

PREPARED BY

Mitchell L. Fischman Consulting, LLC 41 Brush Hill Road, Newton, MA 02461

Urbanica, Inc 142 Berkeley Street, Suite 402 Boston, MA 02116

IN ASSOCIATION WITH

Urbanica Design Urbanica Construction Ground, Inc Conservation Services Group Nitsch Engineering Howard/Stein-Hudson Associates, Inc Tech Environmental, Inc KMM Geotechnical Consultants, LLC IES Environmental Consultants, Inc Mackenzie & Associates, P.C.

PARCEL U FOREST HILLS

Expanded Project Notification Form

Boston Redevelopment Authority

August 1, 2014

Mr. Brian Golden, Acting Director Boston Redevelopment Authority One City Hall Square, 9th Floor Boston, MA 02201

Subject: Expanded Project Notification Form (EPNF) Parcel U, Hyde Park Avenue at Ukraine Way, Jamaica Plain

Dear Mr. Golden:

On behalf of JP Parcel U LLC (managed by Urbanica Inc), I am pleased to submit the enclosed Expanded Project Notification Form (EPNF) for the proposed development at Parcel U, Hyde Park Avenue. The Proponent intends to develop a new project with landscaping and open space that offers a mix of homeownership townhouses and rental apartment building which includes 24 Townhouses (48 condominium units +/-) and one block of 76 unit +/- of Multifamily Mixed-income rental apartments totaling approximately 190,000 square feet of gross floor area (inclusive of parking and utility areas), which in total will contain approximately 124 dwelling units +/-, a ground floor retail space and a community room ('Proposed Project") on Parcel "U", with approximately 126,070 s.f. +/- of land in the Jamaica Plain neighborhood, and bounded by Hyde Park Avenue, Ukraine Way, Toll Gate Cemetery, and the MBTA Commuter Rail tracks on a surplus parcel currently owned by the MBTA and on part of the remaining land after completion of the Southwest Corridor project ("Project Site").

The Proponent was selected by the Massachusetts Bay Transportation Authority [MBTA] through its real estate representative, Transit Realty Associates [TRA] from a two phase "Invitation to Bid" process that closed on November 15, 2012. Phase I was an eligibility prequalification round that included categories such as Experience and Qualification, Financial Capability, Diversity and M/WBE and Project Program Compatibility. Phase II was a review of financial bids whereby the highest offer was awarded the bid. JP Parcel U, LLC was highest qualified bidder and was designated by the MBTA as the designated developer of the Site.

The Proposed Project will also far exceed the requirements of the City's Inclusionary Development Policy by offering approximately 44 affordable units (approximately 55% of market rate units). The Proposed Project's program mix will include a mix of bedroom sizes from studios to three bedroom dwelling units.

As a Transit Oriented Development (T.O.D.) located only a five-minute walk from the Forest Hills MBTA Intermodal Transit Hub, and its close proximity to the Southwest Corridor – which contains a bike path running all the way to Back Bay – the Proposed Project will offer adequate bike storage and a lower automotive parking ratio in order to promote the use of alternative means of transportation. The overall project-wide parking ratio will be at 1: 0.73 dwelling unit to parking spaces.

URBANICA DESIGN + DEVELOPMENT

www.urbanicaboston.com

URBANICA DESIGN + DEVELOPMENT

The Project Site's Zoning Sub-district was amended on April 9, 2014 by the Boston Zoning Commission to "Multifamily Residential" following a petition by JP Parcel U, LLC. The Proposed Project still anticipates the need for zoning relief for the proposed use of retail and community space located at the ground floor of the rental apartment, as well as for a number of dimensional variances and parking variances. The Proposed Project will comply with the provisions of Boston Zoning Code Article 37: Green Buildings and with the City's Inclusionary Development Policy.

By closely adopting the comprehensive planning study of the 2008 Forest Hills Improvement Initiative, the Proposed Project aims to supply much needed additional housing for Jamaica Plain in close proximity to the Forest Hills MBTA Station while respecting the residential scale and unique feel of the Forest Hills area. The Proposed Project will also contribute towards meeting the City of Boston's goal of adding 30,000 new housing units by 2020.

Urbanica, Inc, in collaboration with The Community Builders, the Mixed Income Housing Partner for the multi-family rental apartments leads a team of professional designers, planners, engineers and consultants with extensive experience in the development of mixed-use projects. The team has already conducted a number of pre-review planning meetings with the BRA staff members, and has undertaken significant outreach with abutters and relevant neighborhood groups. The team also has worked closely with the neighborhood groups and BRA staff members leading to the approval of the zoning map amendment by the Boston Zoning Commission on April 9, 2014.

Urbanica, Inc., looks forward to continuing working with you, your staff, elected officials, community leaders, and neighborhood groups to create a 21st century T.O.D. project that will greatly benefit Jamaica Plain and the City of Boston. Thank you for all the assistance provided by you and your staff to date.

Sincerely,

Kamran Zahedi Principal of Urbanica, Inc Manager of JP Parcel U, LLC

www.urbanicaboston.com 142 Berkeley Street, No. 402 Boston, Massachusetts 02116

T 617.654.8900 F 617.654.8901

TABLE OF CONTENTS

Table of Contents

EXECUTIVE SUMMARY 1.0

1.1	Introdu	uction	1-1
1.2	Propos	ed Project	1-2
	1.2.1	Project Site and Surroundings	1-2
	1.2.2	Detailed Project Description	1-9
1.3	Summa	ary of Project Impacts and Mitigation	1-11
	1.3.1	Urban Design	1-11
	1.3.2	Sustainable Design	1-11
	1.3.3	Wind	1-11
	1.3.4	Shadow	1-12
	1.3.5	Daylight	1-12
	1.3.6	Solar Glare	1-12
	1.3.7	Air Quality Analysis	1-12
	1.3.8	Noise Analysis	1-13
	1.3.9	Stormwater Management and Water Quality	1-14
	1.3.10	Solid and Hazardous Waste	1-14
	1.3.11	Geotechnical/Groundwater Impacts Analysis	1-15
	1.3.12	Construction Impacts Analysis	1-15
	1.3.13	Historic Resources Component	1-16
	1.3.14	Infrastructure Systems Component	1-16
	1.3.15	Transportation Component	1-17

GENERAL INFORMATION 2.0

2.1	Applicant Information	
2.2	Project Proponent: URBANICA	
2.3	Mixed Income Housing Partner: The Community Builders	
2.4	Project Team	
2.5	Project Timeline	
2.6	Legal Information	
2.7	Public Benefits	
2.8	Regulatory Controls and Permits	
	2.8.1 Boston Zoning Code – Use Requirements	
	2.8.2 Boston Zoning Code – Dimensional Requirements	
2.9	Public Review Process and Agency Coordination	
2.10	Forest Hills Improvement Initiative	
2.11	Development Impact Payment ("DIP") Status	

URBAN DESIGN AND SUSTAINABILITY COMPONENT 3.0

3.1	Introduction	3-1
3.2	Massing	3-1
3.3	Building Design	3-2
3.4	Character and Materials	3-3

	3.5	Views	
	3.6	Landscape Design	
	3.7	Response to Accessibility Guidelines	
	3.8	Sustainable Design/Energy Conservation	
		3.8.1 Introduction	
		3.8.2 Summary of Proposed LEED Credits for Low Rise and Midrise	Buildings3-6
	3.9	Response to Climate Change Preparedness and Resiliency Checklist	for New
		Construction	
	3.10	Urban Design, Landscape and Sustainability Drawings	
4.0	ENVIR	RONMENTAL PROTECTION COMPONENT	
	4.1	Shadow Impacts Analysis	
		4.1.1 Introduction	
		4.1.2 Vernal Equinox (March 21)	
		4.1.3 Summer Solstice (June 21)	
		4.1.4 Autumnal Equinox (September 21)	
		4.1.5 Winter Solstice (December 21)	
		4.2.5 Summary	4-2
	4.2	Air Quality	
		4.2.1 Existing Air Quality	
		4.2.2 Impacts from Parking Garage Ventilation	
		4.2.3 Microscale CO Analysis for Selected Intersections	
	4.3	Noise Impacts	
		4.3.1 Common Measures of Community Noise	
		4.3.2 Noise Regulations	
		4.3.3 Pre-Construction Sound Level Measurements	
		4.3.4 Reference Data and Candidate Mitigation Measures	
		4.3.5 Calculated Future Sound Levels	
		4.3.6 Compliance with State and Local Noise Standards	
		4.3.7 Conclusions	
	4.4	Stormwater Management and Water Quality	
	4.5	Solid and Hazardous Waste Materials	
		4.5.1 Solid Waste and Matariala	
	4.0	4.5.2 Hazardous Waste and Materials	
	4.6	Geotechnical / Groundwater impacts Analysis	
	4.7	4.7.1 Construction Management Plan	
		4.7.1 Construction Management Plan	
		4.7.2 Proposed Construction Program	
		4.7.5 CONSTRUCTION Indiate Impacts and Mitigation	
		4.7.4 Construction environmental impacts and wittigation	
		4.7.5 KUUUIII CUIII OI	
		4.7.6 Utility Protection During Construction	

5.0 HISTORIC RESOURCES COMPONENT

5.1	Historic Resources on the Project Site and Property History	. 5-1
5.2	Historic Districts and Resources	. 5-1
5.3	Archaeological Resources	. 5-4

6.0 INFRASTRUCTURE SYSTEMS COMPONENT

6.1	Introd	luction	
6.2	Waste	ewater	
	6.2.1	Sewer Infrastructure	
	6.2.2	Wastewater Generation	
	6.2.3	Sewage Capacity & Impacts	
	6.2.5	Proposed Impacts	
	6.2.6	Water Infrastructure	
6.3	Water	r Supply	
	6.3.1	Water Consumption	
	6.3.2	Existing Water Capacity & Impacts	
	6.3.3	Proposed Project	
	6.2.1	Proposed Impacts	6-10
6.4	Storm	water	6-10
	6.4.1	Proposed Project	6-10
	6.2.2	Water Quality Impact	6-13
	6.4.3	DEP Stormwater Management Policy Standards	
6.5	Protec	ction Proposed During Construction	6-16
6.6	Conse	rvation of Resources	6-16
6.7	Electri	ical Service	
6.8	Teleco	ommunications Systems	

TRANSPORTATION COMPONENT 7.0

7.1	Introd	uction	7-1
	7.1.1	Purpose of the Transportation Component	7-1
	7.1.2	Project Description	7-1
	7.1.3	Study Area	7-3
	7.1.4	Study Methodology	7-3
7.2	Existin	g Transportation Conditions	7-4
	7.2.1	Existing Roadway Conditions	7-4
	7.2.2	Existing Intersection Conditions	7-5
	7.2.3	Existing Traffic Conditions	7-5
	7.2.4	Existing Traffic Operations	7-6
	7.2.5	Existing Parking and Curb Use	7-12
	7.2.6	Existing Public Transportation	7-14
	7.2.7	Car Sharing Services	7-17
	7.2.8	Existing Pedestrian and Bicycle Conditions	7-17
	7.2.9	Existing Bicycle Facilities	7-20

- Future Conditions..... 7.3
 - 7.3.1 No-Build Conditions
 - 7.3.2 Build Conditions.....
- 7.4 **Transportation Mitigation Meas**
- 7.5 **Transportation Demand Manage**
- 7.6 **Evaluation of Short-Term Constr**

COORDINATION WITH GOVERNMENTAL AGENCIES 8.0

- 8.1 Architectural Access Board Req
- 8.2 Massachusetts Environmental F
- 8.3 **Boston Civic Design Commission**

9.0 **PROJECT CERTIFICATION**

APPENDICES

Appendix A -	Letter of	Intent to	File PNF
--------------	-----------	-----------	----------

- Appendix B Air Quality Appendix
- Appendix C Noise Quality Appendix
- Appendix D Transportation Appendix
- Appendix E Response to BRA's Accessibility Checklist
- Appendix F Response to Climate Change Preparedness and Resiliency Checklist

sures	
ement	
ruction Impacts	

uirements	8-1
Policy Act	8-1
۱	8-1

9-1

List of Tables

Table 1-1A: Phase A: Homeownership Townhouses 1	-10
Table 1-1B: Phase B: Homeownership Townhouses 1	-1(
Table 1-1C: Phase C: Rental Apartments 1	-10
Table 2-2A: Parcel U Zoning Analysis Dimensional Requirements (Phase A – Condo Townhouses)	2-19
Table 2-2B: Parcel U Zoning Analysis Dimensional Requirements (Phase B - Condo Townhouses)	2-20
Table 2-2C: Parcel U Zoning Analysis Dimensional Requirements (Phase C - Rental Apartments)	2-21
Table 2-3: Preliminary List of Permits or Other Approvals Which May be Sought	2-22
Table 4.2-1: Massachusetts and National Ambient Air Quality Standards (NAAQS)	4-8
Table 4.2-2: Representative Existing Air Quality in the Project Area	4-9
Table 4.2-3: Peak-Hour Garage Traffic Volumes4	-1(
Table 4.2-4: Peak Preditcted Parking Garages Air Quality Impacts 4	-12
Table 4.2-5: Summary of Build Case Level of Service 4	-14
Table 4.3-1: Subjective Effects of Changes in Sound Pressure Levels 4	-15
Table 4.3-2: Common Indoor and Outdoor Sound Levels	-18
Table 4.3-3: Maximum Allowable Sound Pressure Levels (dB) City of Boston4	-19
Table 4.3-4: Nighttime Baseline Sound Level Measurements, May 14, 2014 4	-20
Table 4.3-5: Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue (Closest PL & Residence)	
– Location R14	-25
Table 4.3-6: Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue – Location R2	-26
Table 4.3-7: Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue – Location R3	-27
Table 4.3-8: Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue – Location R4	-28
Table 4.3-9: Estimated Future Sound Level Impacts – Walk Hill Street – Location R5	-29
Table 5.1: Historic Resources in the Vicinity of the Project Site	5-3
Table 6-1: Proposed Project Wastewater Generation	6-4
Table 6-2: Sewer Hydraulic Capacity Analysis	6-5
Table 7-1: Intersection Level of Service Criteria	7-9
Table 7-2: Existing Conditions (2014) Level of Service Summary, a.m. Peak Hour 7	′-1(
Table 7-3: Existing Conditions (2014) Level of Service Summary, p.m. Peak Hour 7	'-1 1
Table 7-4: Public Transportation	′-14
Table 7-5: No-Build Conditions (2019) Level of Service Summary, a.m. Peak Hour	'-27
Table 7-6: No-Build Conditions (2018) Level of Service Summary, p.m. Peak Hour 7	′-28
Table 7-7: Travel Mode Shares7	'-32
Table 7-8: Project Trip Generation	'-33
Table 7-9: Project Vehicle Trip Generation 7	′-34
Table 7-10: Build Conditions (2019) Level of Service Summary, a.m. Peak Hour7	'- 41
Table 7-11: Build Conditions (2019) Level of Service Summary, p.m. Peak Hour 7	'-42
Table 7-12: Project Transit Trips	′-44
Table 7-13: Project Pedestrian/Bicycle Trips	′-44

List of Figures

Figure 1-1: Project Locus	1-3
Figure 1-2: USGS Locus	1-4
Figure 1-3: Survey Plan	1-5
Figure 2-1: Portfolio of Selected Urbanica Projects	2-6
Figure 2-2: Portfolio of Selected TCB, Inc Projects	2-10
Figure 3-1: Site Context	3-17
Figure 3-2: Site Photos – Existing Conditions	3-19
Figure 3-4: Urban Block Plan	3-21
Figure 3-5: Project Site Plan	3-23
Figure 3-6: Project Parking Plan	3-25
Figure 3-7: Townhouse- 3 Stories Typical Plan	3-27
Figure 3-8: Townhouse-4 Stories Typical Plan	3-28
Figure 3-9: Apartment – Basement	3-29
Figure 3-10: Apartment- First Floor	3-30
Figure 3-11: Apartment- Second to Fourth Floor	3-31
Figure 3-12: Apartment- Fifth Floor	3-32
Figure 3-13: Aerial Perspective Front	3-33
Figure 3-14: Aerial Perspective Rear	3-35
Figure 3-15: Overall Elevations (Front and Rear)	3-37
Figure 3-16: Hyde Park Elevation	3-39
Figure 3-17: Rear Elevation	3-41
Figure 3-18: Side Elevations	
Figure 3-19: Typical Sections	3-45
Figure 3-20: Project Rendering –Hyde Park Avenue Street Level 1	3-47
Figure 3-21: Project Rendering –Hyde Park Avenue Street Level 2	3-48
Figure 3-22: Project Rendering – Ukraine Way intersection	3-51
Figure 3-23: Landscape Plan	3-53
Figure 3-24: Streetscape	3-55
Figure 3-25: Corner Plaza	
Figure 3-26: Forest Buffer Park	3-57
Figure 3-27: Meadow Park	3-58
Figure 3-28: Natural Playground Park	3-59
Figure 3-29: Pedestrian Access Stations	
Figure 3-30: LEED for Homes Checklist for Townhouses	3-61
Figure 3-31: LEED for Homes Checklist for Multi-Family Apartments	
Figure 4.2-1: Vernal Equinox- Shadow Study: March 21	4-3
Figure 4.2-2: Summer Solstice Equinox- Shadow Study: June 21	4-4
Figure 4.2-3: Autumnal Equinox –Shadow Study: September 21	4-5
Figure 4.2-4: Winter Solstice - Shadow Study: December 21	4-6
Figure 5-1: Historic Resources	5-2

Figure 6-1.0: Existing Sewer System	6-2
Figure 6-1.1: Existing Sewer System	6-3
Figure 6-2.0: Existing Water System	6-8
Figure 6-2.1: Existing Water System	6-9
Figure 7-1: Site Locus and Study Area Map	7-2
Figure 7-2: Existing Conditions (2014) Traffic Volumes, a.m. Peak Hour (7:00–8:00 a.m.)	7-7
Figure 7-3: Existing Conditions (2014) Traffic Volumes, p.m. Peak Hour (4:15–5:15 p.m.)	7-8
Figure 7-4: On-Street Parking	7-13
Figure 7-5: Public Transportation	7-16
Figure 7-6: Car Sharing Services	7-18
Figure 7-7: Existing Conditions (2013) Pedestrian Volumes, a.m. and p.m. Peak Hours	7-19
Figure 7-8: Existing Conditions (2013) Bicycle Volumes, a.m. and p.m. Peak Hours	7-21
Figure 7-9: No-Build Conditions (2019) Traffic Volumes, a.m. Peak Hour	7-24
Figure 7-10: No-Build Conditions (2019) Traffic Volumes, p.m. Peak Hour	7-25
Figure 7-11: Proposed Site Access Plan	7-30
Figure 7-12: Trip Distribution	7-35
Figure 7-13: Project-Generated Trips, a.m. Peak Hour	7-36
Figure 7-14: Project-Generated Trips, p.m. Peak Hour	7-37
Figure 7-15: Build Conditions (2019) Traffic Volumes, a.m. Peak Hour	7-38
Figure 7-16: Build Conditions (2019) Traffic Volumes, p.m. Peak Hour	7-39

EXECUTIVE

1.0 **EXECUTIVE SUMMARY**

Introduction 1.1

Urbanica, Inc., Manager of JP Parcel U , LLC (the "Proponent") is submitting, this Project Notification Form ("PNF") for the Parcel U Project in accordance with the Article 80B-1 Large Project Review requirements of the Boston Zoning Code ("Code"). The Project involves development in three phases of a new project with landscaping and open space that offers a mix of homeownership townhouses and rental apartment building which includes 24 Energy Efficient Townhouses (48 condominium units +/-) and one block of 76 units +/- of Multifamily Mixed-income rental apartments totaling approximately 190,000 square feet of gross floor area (inclusive of parking and utility support areas), which in total will contain approximately 124 dwelling units +/-, ground floor retail space and a community room ('Proposed Project or "Project")") on Parcel "U", with approximately 126,070 s.f. +/- of land in the Jamaica Plain neighborhood, and bounded by Hyde Park Avenue, Ukraine Way, Toll Gate Cemetery, and the MBTA Commuter Rail tracks on a surplus parcel currently owned by the MBTA and on part of the remaining land after completion of the Southwest Corridor project ("Project Site"). The Proponent is committed that the Proposed Project will far exceed the requirements of the City's Inclusionary Development Policy by offering approximately 44 affordable units (approximately 55 % of the total market rate units). The Proposed Project's program will include a mix of bedroom sizes from studios to three bedroom units.

Urbanica, Inc, in collaboration with The Community Builders, the Mixed Income Housing Partner for the mixed-Income rental apartments, will lead a team of professional designers, planners, engineers and consultants with extensive experience in the development of mixed-use projects. The team has already conducted a number of pre-review planning meetings with the BRA staff members, and has undertaken significant outreach with abutters and relevant neighborhood groups. The team also has worked closely with the neighborhood groups and BRA staff members leading to the unanimous approval of a zoning map amendment allowing for the type of development Urbanica is proposing.

The Proposed Project is expected to exceed the 50,000 square foot total build-out size requirement for a project in a Boston neighborhood, and, therefore, will require preparation of filing(s) under the Large Project Review regulations, pursuant to Article 80 of the Boston Zoning Code. Please see Figures 1-1, 1-2, and 1-3.

A Letter of Intent ("LOI") to file a Project Notification Form was filed with the Boston Redevelopment Authority for the proposed mixed use residential project on May 1, 2014 (See Appendix A).

The Proponent was selected by the Massachusetts Bay Transportation Authority [MBTA] through its real estate representative; Transit Realty Associates [TRA] from a two phase "Invitation to Bid" process that closed on November 15, 2012. The initial review was an eligibility pregualification round that included

categories such as Experience and Qualification, Financial Capability, Diversity and M/WBE and Project Program Compatibility. There was also a review of financial bids whereby the highest offer was awarded the bid. JP Parcel U, LLC, the Project Proponent, was highest qualified bidder and was selected by the MBTA as the designated developer of the Site.

As a Transit Oriented Development ("TOD"), located only a five-minute walk from the Forest Hills MBTA Intermodal Transit Hub, and its close proximity to the Southwest Corridor – which contains a bike path running all the way to Back Bay – the Proposed Project will offer adequate bike storage and a lower automobile parking ratio in order to promote the use of alternative means of transportation. There are also plans to provide a modest number of exterior curbside parking spaces along Hyde Park Avenue to support the ground floor uses of retail and community space. The overall project-wide parking ratio will be at 1: 0.73.

The Proposed Project anticipates the need for zoning relief for the proposed use of retail and community space located at the ground floor of the rental apartment, as well as for a number of dimensional variances and parking variances.

By closely adopting the recommendations of the 2008 Forest Hills Improvement Initiative comprehensive planning study, the Proposed Project aims to supply much needed additional housing for Jamaica Plain in close proximity to the Forest Hills MBTA Station while respecting the residential scale and unique feel of the Forest Hills area. The Proposed Project will also contribute towards meeting the City of Boston's goal of adding 30,000 new housing units by 2020.

Proposed Project 1.2

1.2.1 Project Site and Surroundings

Parcel "U", with approximately 126,070 s.f. +/- of land in the Jamaica Plain neighborhood, is bounded by Hyde Park Avenue, Ukraine Way, Toll Gate Cemetery, and the MBTA Commuter Rail tracks on a surplus parcel currently owned by the MBTA and on part of the remaining land after completion of the Southwest Corridor project.

The Project Site was formerly located within the "Open Space-Parkland" Zoning Sub-district of Article 55: Jamaica Plain Neighborhood District. The Zoning Sub-district was amended on April 9, 2014 by the Boston Zoning Commission to "Multifamily Residential" following a petition by JP Parcel U, LLC.

Figure 1-1. Project Locus

FOR PLANNING PURPOSES ONLY - ALL LOCATIONS APPROXIMATE

Figure 1-2. USGS Locus

Figure 1-2:USGS Locus MBTA Parcel U Boston, Massachussetts

Data Source: MassGIS Nitsch Project #9481.1

PARCEL U | FOREST HILLS

Figure 1-3. Survey Plan

PARCEL U | FOREST HILLS

1.2.2 Detailed Project Description

The Proposed Project involves new development in three phases with landscaping and open space that offers a mix of homeownership townhouses and rental apartment building which includes 24 Energy Efficient Townhouses (48 condominium units +/-) and one block of 76 units of Multifamily Mixed-income rental apartments totaling approximately 193,310 square feet of gross floor area (inclusive of parking and utility areas), which in total will contain approximately 124 dwelling units +/-, a ground floor retail space and a community room. (See Tables 1-1A, 1-**2A, 1-3A**.)

The new construction for the Phase A development program of 49,260 gsf includes 24 homeownership units in townhouse configuration. The Phase B new construction development program of 49,260 gsf to follow includes 24 homeownership units in townhouse configuration. After discussions with the BRA, 6 units in the two initial phases will be designated as affordable units.

The final Phase C new development program of 94,030 includes 76 rental units, 1,620 gsf of retail space, 1,040 gsf of community space and 42 basement level parking spaces are proposed in an apartment block configuration, with 38 units as affordable units.

The Site circulation plan is designed to create a safe and pleasant entry to the Proposed Project from Hyde Park Avenue through 2-driveway ramps. On-site parking will be located in the basement garages of the townhouses and the basement level of the apartment building.

There are three major open spaces within the three phases that will provide a variety of urban outdoor experiences. The green spaces include a buffer zone between Tollgate Cemetery and Phase A development, a pocket park at Walk Hill intersection and a public park adjacent to Phase C development. These open spaces are conceived for allowing view, light and air for the residents and pedestrians along Hyde Park Avenue.

By closely following the recommendations of the 2008 Forest Hills Improvement Initiative comprehensive planning study, as discussed, the Proposed Project aims to supply much needed additional housing for Jamaica Plain in close proximity to the Forest Hills MBTA Station while respecting the residential scale and unique feel of the Forest Hills area. The Proposed Project will also contribute towards meeting the City of Boston's goal of adding 30,000 new housing units by 2020.

Table 1-1A. Phase A: Homeownership Townhouses

Lot Area:

Gross Building Footprint Area:

Gross Square Feet:

F.A.R.:

No. of Floors:

Heights*:

Table 1-1B. Phase B: Homeownership Townhouses

Lot Area:
Gross Building Footprint Area:
Gross Square Feet:
F.A.R.:
No. of Floors:
Heights*:

Table 1-1C. Phase C: Rental Apartments

Lot Area:
Gross Building Footprint Area:
Gross Square Feet:
 F.A.R.:
 No. of Floors:
Height*:

*In accordance with Boston Zoning Code

50,528 sf +/-
17, 034 sf +/-
49,260 sf +/- (including basement) 37,206 sf +/- (excluding basement)
 0.74 +/-
3 and 4 floors with basement
42'-6" +/- and 55'-0" +/-

37,180 sf +/-
17,034 sf+/-
 49,260 sf +/- (including basement) 37,206 sf +/- (excluding basement)
 1.00 +/-
3 and 4 floors over basement
42'-6" +/- and 55'-0" +/-

38,362 sf +/-
15,500 sf +/-
94,790 sf +/- (including basement) 78,715 sf +/- (excluding basement)
 2.05 +/-
5 floors over a basement level
65'-0" +/-

Summary of Project Impacts and Mitigation 1.3

1.3.1 Urban Design

Parcel U (the "Project") is conceived as a continuation of the long term revitalization of the Jamaica Plain's Washington Street and Hyde Park Avenue. The Proposed Project will be among the first few larger MBTA parcels to be developed from a vacant non-productive site into a lively and urban residential community with some community and retail spaces. The Project aims to bridge the different scales of the surrounding context. The Project Site is located at the Southwest corner of the Forest Hills T Station, directly bounded by the MBTA commuter rail tracks, Hyde Park Avenue, Ukraine Way and the Tollgate Cemetery.

Occupying a challenging site that mediates between Hyde Park Avenue and the MBTA Commuter Rail and Amtrak lines, two busy traffic lines, the building's design is required to be robust and to be able to convey the dynamic qualities of the two through-fares. The Site is also located at transitional zone of finer grain residential scales and urban configurations along Washington Street and Hyde Park Avenue.

The development of this parcel owned by the Massachusetts Bay Transportation Authority will provide 124 residential units, in a variety of unit types ranging from studios, 1-bedroom, 2bedrooms and 3-bedrooms, in a couple types of urban typology: a townhouse type and a multifamily apartment building type. The Proponent has already made a number of presentations of the Proposed Project's conceptual design to the neighborhood and Boston Redevelopment Authority staff as it has continued to modify its schematic design plans.

1.3.2 Sustainable Design

The Proponent and the Project design team are committed to an integrated design approach and is using the LEED for Homes 2008 rating system and intends to meet certification as presented in Section 3.8 and in Figures 3-30 and 3-31 at the end of Section 3.0. This rating will meet or exceed Boston's Green Building standard. The LEED rating system tracks the sustainable features of the project by achieving points in following categories: Innovation and Design Process; Locations and Linkage; Sustainable Sites; Water Efficiency; Energy and Atmosphere; Material and Resources; Indoor Environmental Quality; Awareness and Education.

1.3.3 Wind

The heights of the structures in the three phases will not exceed a 65 feet. The Phase C: Rental Apartments will be the highest at 65 feet with the Phases A and B development heights not exceeding 55 feet. Wind conditions are expected to be similar to the existing conditions with the nearby 3-4 story buildings across Hyde Park Avenue; therefore, no new pedestrian level wind impacts are anticipated.

1.3.4 Shadow

Section 4-1 of this PNF provides a shadow analysis describing and graphically depicting the anticipated shadow impacts from the Proposed Project for the No Build and Build conditions.

The Project's shadow impacts are minimal and do not overcast existing buildings during the daytime hours. New shadow is generally limited to the streets surrounding the Site, with afternoon shadows reaching Ukraine Way, and late-afternoon/early-evening shadows on Hyde Park Ave. The Project's comparable height with its context and the downward slope of the Site help to keep shadows from extending much beyond Hyde Park Ave. and front yards of homes until evening hours. Overall, the Project's shadow impacts will generally be consistent with current patterns and will not adversely impact the Project Site and surroundings.

1.3.5 Daylight

Although the Proposed Project would cause an increase in daylight obstruction when compared to the existing conditions at the vacant site, the Proposed Project was designed to be of a similar massing to existing buildings along Hyde Park Avenue. The PNF Project would have reached a maximum of 65 feet in height, which is somewhat higher than the existing buildings along Hyde Park Avenue Street as well as the existing zoning, but any new obstruction is mitigated by the large width of Hyde Park Avenue, and the location of the site along the MBTA tracks at the rear of the lots. As a result, daylight obstruction values from the Proposed Project were expected to be consistent with and typical of the surrounding neighborhood.

1.3.6 Solar Glare

It is not expected that the Proposed Project will include the use of reflective glass or other reflective materials on the building facades that would result in adverse impacts from reflected solar glare.

1.3.7 Air Quality Analysis

Tech Environmental, Inc., the Project's air quality consultant, conducted analyses to evaluate the existing air quality in the Project area, predict the worst-case air quality impacts from the Project's parking garage, and evaluate the potential impacts of Project-generated traffic on the air quality at the most congested local intersections (See Section 4.4).

Recent representative air quality measurements from the Massachusetts Department of Environmental Protection (DEP) monitors reveal that the existing air quality in the Project area is in compliance with Massachusetts and National Ambient Air Quality Standards (NAAQS) for all of the criteria air pollutants.

The worst-case air quality impacts from the Proposed Project's parking garage will not have an adverse impact on air quality. The maximum one-hour and eight-hour ambient CO impacts from the parking garage, at all locations around the Project site, including background CO concentrations, are predicted to be safely in compliance with the NAAQS for CO.

A microscale air quality analysis was not performed for the Proposed Project due to its extremely small motor vehicle trip generation. The extremely small number of motor vehicle trips generated by the Project will not have a significant impact on the delays or the level of service at the local intersections. Therefore, the motor vehicle traffic generated by the project will not have a significant impact on air quality at any intersection in the Project area and a microscale air quality analysis is not necessary for this Project. The air quality in the Project area will remain safely in compliance with the NAAQS for CO after the Project is built.

1.3.8 Noise Analysis

Tech Environmental, Inc., the Project's noise consultant, conducted a noise study to determine whether the operation of the proposed Project will comply with the Massachusetts DEP Noise Policy and City of Boston Noise Regulations (See Section 4.5).

This acoustical analysis involved five steps: (1) establishment of pre-construction ambient sound levels in the vicinity of the Site; (2) identification of potential major noise sources; (3) development of noise source terms based on manufacturer specifications (where available) and similar project designs; (4) conservative predictions of maximum sound level impacts at sensitive locations using industry standard acoustic methodology; and (5) the incorporation of mitigation measures to ensure compliance with applicable City of Boston noise regulations, ordinances and guidelines and with the DEP Noise Policy.

Nighttime ambient baseline sound level (L_{90}) monitoring conducted at two locations deemed to be representative of the nearby residential areas, during the time period when human activity is at a minimum and any future noise would be most noticeable. The lowest nighttime L_{90} measured in the Project area was 49 dBA.

The potential significant sources of exterior sound from the Project have been identified as:

- Ductless Mini Splits Units with rooftop condensers on the 24 townhomes.
- VRV/VRF units or Multi zoned Minisplits with rooftop condensers on the apartment building.

The Parcel U project will not create a noise nuisance condition and will fully comply with the most stringent sound level limits set by the Massachusetts DEP Noise Policy, City of Boston Noise Regulations, and HUD's Residential Site Acceptability Standards.

1.3.9 Stormwater Management and Water Quality

The existing storm drain utility infrastructure surrounding the proposed Parcel U site appears to be of adequate capacity to service the needs of the project. Best management practices and sustainable design will be incorporated into the Project wherever practical and applicable.

Stormwater management systems will be designed to remove 80% of the average annual postconstruction load of Total Suspended Solids (TSS). Utility connections will be designed to minimize impacts to the surrounding area and all appropriate permits and approvals will be acquired prior to construction.

The proposed stormwater management systems will include water quality units and groundwater recharge systems. The Project will increase the amount of impervious area at the site compared to the existing condition. It is anticipated that the stormwater recharge systems will work to passively infiltrate runoff into the ground with a gravity recharge system. The underground recharge system, and any required site closed drainage systems, will be designed so that there will be no increase in the peak rate of stormwater discharge from the Project site in the developed condition compared to the existing condition. In addition, water quality units will be installed to reduce pollutants prior to discharging to the groundwater recharge systems.

All improvements and connections to BWSC infrastructure will be reviewed as part of the Commission's site plan review process. The process includes a comprehensive design review of the proposed service connections, assessment of project demands and system capacity.

1.3.10 Solid and Hazardous Waste

Solid Waste

During the preparation of the Site, debris, including asphalt, trash, and demolition debris will be removed from the Project Site. The Proponent will ensure that waste removal and disposal during construction and operation will be in conformance with the City and DEP's Regulations for Solid Waste.

Hazardous Waste

Based on a historical review and research of state and local files completed by IES Inc. in its Phase I Environmental Site Assessment for Parcel U (May 14, 2014), the project site is not listed on any EPA or DEP data bases, and there were no recognized environmental conditions (REC's), identified hazardous substances or petroleum products, on the Site. Nevertheless, due to the potential on-site and off-site threats of contamination, IES classifies the Site as a "Moderate/High Cleanup Risk" due to potential for groundwater contamination from adjoining properties and to historical use of the Site for storage and maintenance of railways cars.

The Proponent will provide Licensed Site Professional support services during property redevelopment activities to both maintain compliance with the MCP and to assist with planning and attaining site closure under the Massachusetts Contingency Plan (MCP).

1.3.11 Geotechnical/Groundwater Impacts Analysis

Based on a "Preliminary Groundwater Summary" completed by KMM Geotechnical Consultants, LLC on August 16, 2013, it is anticipated that there will be little or no impact to the groundwater table due to the Proposed Project. The foundations are expected to use a conventional spread footing foundation with very little subsurface work required with the below level garages, and no work below the water table. The subgrade conditions are generally considered suitable by the geotechnical consultant to support the proposed spread footing foundations. Based on eight test borings, many advanced to depths of 14 to 16 feet, indicated that fill was encountered in all test bores to depths of 9 to 12 feet. Soil character generally consisted of brown to dark brown, sand and gravel with little trace of silt. There was also trace amounts of rubble and urban fill, and boulders and stone from prior construction (which may have been residential) with some shallow concrete at one of the test borings. Groundwater was not encountered at the 10-16 feet exploration.

The proposed construction is not anticipated to have adverse effects on long-term groundwater levels because the lowest floor level in the fill areas is above the groundwater level. Roof drains and runoff from impermeable outdoor surfaces will be led to infiltration devices where there is sufficient capacity for percolation. In ledge areas, the drains will lead to detention cisterns of the required size and released gradually into storm drains. Construction mitigation measures will be incorporated into the Proposed Project to avoid any potential for ground movement and settlement.

Additional geotechnical exploration and engineering is expected to be completed as the project design progresses.

1.3.12 Construction Impacts Analysis

Section 4.7 presents impacts likely to result from the construction of the Parcel U Project and the steps that will be taken to avoid or minimize environmental and transportation-related impacts. Construction methodologies and scheduling will aim to minimize impacts on the surrounding environment. The Proponent will insure that the general contractors will be responsible for developing construction phasing and staging plans and for coordinating construction activities with all appropriate regulatory agencies. The Project's geotechnical consultant will also provide consulting services associated with foundation design recommendations, prepare geotechnical specifications, and review the construction contractor's proposed procedures.

The construction period for the Proposed Project is expected to extend for approximately 15 months for each of the three phases (A,B, and C), beginning in the 2nd Quarter 2015 and reaching completion in the 3rd Quarter 2018 for the Phase C (apartment rental) construction.

1.3.13 Historic Resources Component

The Project Site is not within, nor does it directly abut, any listed historic districts or resources. However, the Woodbourne Historic District is within one-quarter-mile radius of the Proposed Project.

The area surrounding the Project Site is a busy commercial district. Residential, retail and commercial uses characterize much of the area along Hyde Park Avenue and Washington Street. The nearby Arnold Arboretum is a United State National Landmark and 19 individual properties within one-quarter-mile radius of the Proposed Project are included in the National Register of Historic Properties (excluding properties within the Woodbourne Historic District).

It is not expected that the Project will cause adverse impacts on the historic or architectural elements of nearby historic resources outside the Project Site (see Section 5.0).

1.3.14 Infrastructure Systems Component

The Project's Civil and MEP Engineers will coordinate with the City agencies and private utility companies responsible for the area's utility systems as the design progresses. Utility connections will be designed to minimize impacts to the surrounding area and all appropriate permits and approvals will be acquired prior to construction.

Hyde Park Avenue contains a 12-inch sanitary sewer line, a dedicated 12-inch storm drain line, a high pressure 12-inch to 16-inch water main, a Massachusetts Water Resources Authority (MWRA) owned 24-inch water line, and various electric and telecommunication conduits.

There is a dedicated 24-inch storm drain line and a 36-inch sanitary sewer line within the site itself. The existing sewer system and water distribution and storm drain systems are shown in the figures in Section 6.0.

The Boston Water and Sewer Commission (BWSC) owns and operates the sanitary sewer, storm drain, and water distribution systems in the City of Boston, except as noted above. A BWSC approved Site Plan and General Service Application is required for the construction of proposed sewer, storm drain, and water connections to the main lines in Hyde Park Avenue. Proposed connections to the BWSC's sewer, storm drain, and water distribution systems will be designed in conformance with the BWSC's design standards, Sewer Use and Water Distribution System Regulations, and Requirements for Site Plans. The Proponent will submit the General Service Application and Site Plans to BWSC for review and approval prior to construction. The Site Plans will indicate the existing and proposed sewer lines, storm drain lines, and water mains within

the site and in the abutting public ways. The Site Plans will show any existing utilities to be abandoned, the locations of proposed connections, and the limit of work to be performed in the public ways. Abandoned services will be cut and capped at the main line according to BWSC standards.

The following items will be coordinated with the respective city agencies and utility companies:

- The Boston Fire Department reviews projects with respect to fire protection measures such as fire department connections, standpipes and hydrants.
- Energy and telecommunication system sizing and connections will be coordinated by the MEP Engineer with the respective utility providers.
- New utility connections are authorized by the City of Boston Public Works Department through the street opening permit process.

1.3.15 Transportation Component

Section 7.0 presents the comprehensive transportation study completed by HSH for the proposed Project in conformance with the BTD Transportation Access Plan Guidelines (2001). The study analyzes existing conditions within the Project study area, as well as conditions forecast to be in place under the five-year planning horizon of 2019.

The Project will provide a total of 90 parking spaces on-site, including 48 spaces for the 48 townhome units and 42 spaces for the 76 apartment units. The overall parking provision corresponds to a ratio of 0.73 parking spaces per unit, which is consistent with district-based parking goals developed by the Boston Transportation Department (BTD) for the Forest Hills area that call for a maximum of 0.75 to 1.25 spaces per residential unit.

Primary vehicular access to the site will be provided via a proposed driveway opposite Walk Hill Street along Hyde Park Avenue. This driveway is proposed to form the fourth leg of the signalized intersection. Secondary access will be provided by way of right-in entrance-only driveway in the northerly part of the site. The Project proposes to physically preclude left-turns into the northern driveway by extending the existing median on Hyde Park Avenue. Circulation throughout the site will be provided by way of an access driveway at the rear of the site that runs parallel to Hyde Park Avenue. All loading and service, including trash, recycling, and deliveries will occur on-site. In addition, adequate space has been provided on-site to accommodate residential move-in/move-out without impacting the public sidewalk, parking, or roadway. Primary pedestrian connectivity will be provided along Hyde Park Avenue.

The Proponent is committed to implementing a transportation demand management ("TDM") program that supports the City's efforts to reduce dependency on the automobile by encouraging alternatives to driving alone, especially during peak travel periods. Proposed measures include, but are not limited to, designating an on-site transportation coordinator,

secure covered bicycle parking, distribution of transit maps and schedules to residents, guests, and employees, and other measures.

The transportation analysis employed mode use data for the area surrounding the Project site based on 2000 U.S. Census data and BTD data for Area 6, and identifies the number of trips generated by the Project by mode. Due to the transit-oriented nature of the Project and nonauto alternatives such as ZipCar, and the Southwest Corridor, is anticipated. Many of the Project-generated trips will occur via transit, on foot, and by bicycle.

The overall Proposed Project is expected to generate only approximately 34 vehicle trips (8 in and 26 out) during the weekday morning peak hour and 45 vehicle trips (25 in and 20 out) during the weekday evening peak hour. This corresponds to an increase of less than one vehicle trip per minute on the adjacent roadway network during the peak periods.

Due to the low volume of vehicle trips generated by the Proposed Project, the overall LOS at the study area intersections will remain unchanged from No-Build Conditions. The Project proposes to add a fourth leg to the signalized intersection of Hyde Park Avenue/Walk Hill Street. This newly modified intersection will operate at an overall LOS C during both the a.m. and p.m. peak hours under the 2019 Build conditions, which is consistent with the 2019 No-Build operations. The intersection will also be provided an optimal traffic signal timing and phasing plan.

2.0 GENERAL INFORMATION

2.1 Applicant Information

The overall project development will be managed by Urbanica, Inc., representing JP Parcel U, LLC. Phase A and B (Townhouses) will be developed by Urbanica, Inc, and the Mixed Income Housing Partner for Phase C (Mixed Income Rental Apartments) will be The Community Builders, Inc.

2.2 Project Proponent: URBANICA

Urbanica, Inc is a design/development company specializing in the transformation of under-utilized buildings and sites into extraordinary living and working spaces in the metro-Boston area. Urbanica sees each project as a unique opportunity to enhance the social, economic and aesthetic conditions of the local environment. With its design-oriented focus, Urbanica believes that uncompromising progressive design is a critical component in this equation, "DIFFERENTIATION BY DESIGN".

Specifically, the work involves the reuse of a historic structures and challenging urban sites. Urbanica seeks to infuse these buildings and places with a new life and purpose. Urbanica has an outstanding track record of successfully completed projects in both public and private ventures.

Urbanica has successfully finished several publically awarded projects; a former police station in Somerville, the former Area D4 police station in Boston's South End, and the Engine 1 Fire Station in Belmont as well as most recently, the 1st LEED Platinum certified Energy Positive Townhouses in the City of Boston.

In the past decade, Urbanica has also completed two Boston Redevelopment Authority (BRA) sponsored projects: a loft building conversion in the South End and the conversion of a warehouse into the Harborside Inn on State Street in Boston.

Each of Urbanica's projects is uniquely developed through collaborations between designers, engineers, consultants, investors, financial institutions, legal advisors, real estate professionals and local leaders; each is brilliantly executed to the highest degree of quality and each resulted in highly desirable products for end users to live in and enjoy.

MISSION AND VISION

Public/Private Partnership: Urbanica specializes in converting city-owned properties and land parcels that are historically significant, underutilized or socio-economically strategic. By collaborating with all stakeholders - governmental agencies, zoning, planning and historical commissions, local neighborhood communities and business groups - Urbanica is able to create and complete transformative projects in emerging neighborhoods and challenging sites.

Parcel U - PNF

1

GENERAL INFORMATION

Vertically Integrated: By having a talented in-house development/design/construction team, Urbanica creates projects of multiple scales and complexities. The company does not believe in disciplinary boundaries. Each of the team members has a diverse range of skills and talents. The vertically-integrated approach also allows the company to take control of the entire process, ensuring top quality from concept to final execution.

Design-Oriented Development: Urbanica believes in using "Design" as a tool to improve our daily lives. The developments are distinguished by their design-oriented focus. Urbanica attempts to challenge the status quo of development and attempt to deliver a unique designer lifestyle.

Modern Contextual: Rather than taking an avant-garde approach, Urbanica is interested in working with the existing urban fabric and enhancing the culture of the community. The company strongly advocates for designs that are sensitively adapted to our contemporary milieu.

Social Entrepreneurship: The company believes in adding value to society and in sharing a common vision with the local community. The whole of the development is greater than the sum of its parts; the well-being of surrounding community is crucial for Urbanica's success as entrepreneurs in the built environment.

SCOPE OF SERVICES

Development: Urbanica identifies the potential in less-than-obvious places. The company has 30 years of experience in transforming these underutilized buildings and sites into icons of contemporary spaces. The projects range from single family homes to mixed-use high-rises.

Design Management: Urbanica adds value to the developments by combining astute design sensibilities. Partnering with cutting edge local and international designers, we create new interventions that are contextually sensitive yet innovative. We believe good design is essential not only financially but also for the well-being of society.

Investment: The Company initiates projects with solid financial investors, respected local business partners and governmental agencies, to help create wealth and growth in the local economy.

Construction Management: Urbanica manages a team of top-notch subcontractors and vendors who help translate our visions into reality using the latest technology and sustainable methods.

Brand And Marketing: Urbanica believes in the total package - creating a brand image that is consistent with the developer's vision and design intent through marketing using effective and visually striking campaigns.

KAMRAN ZAHEDI

The Principal of Urbanica is Kamran Zahedi. Over the past twenty five years, Mr. Zahedi has designed, developed and built many projects in metropolitan Boston. More recently, he has focused his efforts on RFPs of city-owned historic buildings and converting them into new residential uses.

To each venture, Mr. Zahedi brings a passion for urban form, progressive design, and a respect for the existing context. Graduating from MIT in 1980 with a degree in Architecture and Civil Engineering, Kamran made Boston as his home base and began his entrepreneurial ventures at a young age.

He traveled up north to work on renovating old mills in New Hampshire. For the past 30 years, by happenstance and by strategy, he has worked on more than a dozen renovations and new-built projects of various scale; each unique with its historical contexts and challenges.

Driven by a passion for reimagining a new future for urban living, a penchant for progressive design and a respect for existing context, Kamran has created a niche for transforming and revitalizing living, working and playing spaces in Boston and inspires his team to bring something entirely new to the table.

Today, Urbanica has grown from a company of one into a vertically integrated design-oriented development firm with a focus on private and public partnerships. With great energy, Kamran continues to search for new ideas and inspirations in creating great spaces.

EDUCATION

B.S. in Architecture and Civil Engineering from MIT, 1980 Certification, Center for Real Estate, MIT, 1991 Licensed Construction Supervisor, Boston, MA

EXPERIENCE

President of Urbanica, 2002 - Present President of Urbanica Construction., 1996 - Present Manager of Urbanica Design, LLC, 2001 - Present President of Built Form Development, Design and Construction, 1981-96 General partner for various real estate partnerships since 1985 Former Faculty at the Boston Architectural Center, 1986

Selected Urbanica development projects include the following:

MELNEA HOTEL + RESIDENCES, Dudley Square, Boston, MA (Permitting Stage)

Melnea Hotel + Residences is a mixed use development for Parcel 9 at Melnea Cass Boulevard and Washington Street in Boston, MA. This exciting project will serve as an iconic gateway for the Roxbury and Dudley Square areas, connecting to the South End and the greater metropolitan Boston region. The project consists of ground floor commercial, 50 units of mixed income housing and over 100 units of parking underground. The anchor of the project will be a 145-room hotel. The project will bring a source of permanent job generation for the neighborhood as well as a buzz of urban activities.

50 SYMPHONY ROAD, Fenway, Boston, MA (Permitting Stage)

Urbanica, Inc and Urbanica Design are acting as development and design consultants on this interesting project at the Fenway neighborhood. The goal is to replicate the highly successful modern-contextual design formula of 691 Residences. The new construction will consist of 20 residential units on five levels and a basement parking level. The proposed project is inspired by the bow-front townhouses in the Symphony Road area. The bow, square or angular bay windows in the existing building stock defines the street edge. By smartly using contextual cues and rhythms, the design of 50 Symphony Road aims to be a subtle contemporary interpretation of a classical bow-front building.

74 HIGHLAND STREET EHOMES, Roxbury, Boston, MA (Construction start 2014)

The project is a public-private partnership between Urbanica and Boston Housing Authority. It is part of a series of energy efficient townhouses to be built in the Fort Hill/Highland Park neighborhood. The building consists of 7 units of townhouses. These units will be three bedroom units. Sited on a currently vacant parcel in a vibrant corner in the urban Roxbury neighborhood, the project will infill to the current neighborhood fabric. The project will follow best practices learned from the E+ prototype by offering energy efficient design.

226-232 HIGHLAND STREET E+ TOWNHOUSES, Roxbury, Boston, MA (Completed 2013)

The project was conceived as a replicable prototype of efficient and sustainable residential construction for the city of Boston. The building consists of four three bedroom townhouses, approximately 2,000 sf each. Sited on a currently vacant parcel in a vibrant urban neighborhood, the proposal will fill and densify the current neighborhood fabric. The building form and orientation serve to maximize natural daylight and solar gain for the photovoltaic array that will generate more electricity than is needed. Our approach includes two major strategies for energy reduction: first, a super insulated envelope minimizes heat transfer without relying on mechanical conditioning techniques; second, a feedback mechanism provides information and prompts to users in the house regarding their energy-related activity.

691 RESIDENCES, 691 Massachusetts Avenue, South End, Boston, MA (Completed 2011)

six9one Residences is one of the last new-built developments in South End, Boston, with approximately 45,000 sq ft of space including the basement garage. There are 40 residential units, ranging from 550 sf to 1,800 sf with unit types including studio, one bedroom and two bedrooms residences. There are also 30 deeded parking spaces available. Ground floor units are proposed as Small Office Home Office or "SoHo" units, taking advantage of the easy street access. These six ground floor units are intended to attract professionals with a home office, or artists who would like to house a small gallery.

D4 SOUTH END, 7 Warren Avenue, Boston, MA (Completed 2006)

This project involved the conversion of former D-4 police station into a new luxury condominium building with twenty five units. The existing shell was restored to its former state with only minor modifications on the principal elevations. The rear elevation consists of a new two-story block which taken together with the existing building envelope, forms a courtyard. The new courtyard is covered with a glass roof and conform to green building concepts. This project was awarded to Urbanica in response to an RFP sponsored by the BRA in 2003. Urbanica was selected over some of the most prominent developers in the city largely based on their growing reputation as "one of the top design/development companies in Boston."

URBANICA 50 SOMERVILLE, 50 Bow Street, Somerville, MA (Completed 2005)

This project was awarded to Urbanica in response to an RFP in 2003. Urbanica was selected by the City of Somerville, in large part because of their experience in restoring and renovating historic buildings. The project is a renovation of a former police station into a fourteen unit residential building. Part of the work included rebuilding the mansard roof that was lost to a fire decades ago. The scope of exterior work also involved restoring the fine detail and character of the historic building. In contrast to the traditional exterior, the interior is characterized by open, light filled modern spaces. Here, a rich palette of natural materials such as mahogany wood and honed stone finishes was used to create the units interiors.

ENGINE 1 BELMONT, 445 Trapelo Road, Belmont (Completed 2005)

This project involved the conversion of the former fire station at Waverly Square, Belmont into six townhouse residences. Five of the condominiums is housed in the main building while the sixth residence is a new 1600sf addition. The new structure is comprised of a two-story townhouse built on top of the existing foundation of one wing of the former fire station. Its primary building materials are perforated copper panel and an aluminum curtain wall system. The interplay between existing and new addition brings a level of contemporary sophistication to the Waverly Square neighborhood.

Figure 2-1. Portfolio of Selected Urbanica Projects

Figure 2-1. Portfolio of Selected Urbanica Projects

Melnea Hotel and Residences Roxbury, Boston, MA

50 Symphony Road, Fenway, Boston, MA

74 Highland/1-13 Dorr Street eHomes Roxbury, Boston, MA

D4 Condominiums South End, Boston, MA

691 Residences South End, Boston, MA

226-232 Highland St EPlus Homes Roxbury, Boston, MA

Engine 1 Residences Belmont, MA

Urbanica 50 Somerville, MA

Mixed Income Housing Partner: The Community Builders 2.3

The Community Builders (TCB) was founded in 1964 as South End Community Development with a focus on preserving and rehabilitating homes in Boston's South End to provide quality, affordable housing. From there, TCB has grown over 50 years to complete 26,000 units of housing in over 330 developments in 15 states with over \$2.5 billion in project financing assembled from a wide variety of public and private sources. TCB is committed to the long-term success of our developments and our residents; we currently own and operate 10,000 units of mixed income housing. TCB's staff currently consists of 500 talented and experienced professionals located in 15 cities across the Mid-Atlantic, Northeast, and Midwest, including our regional hubs in Boston, Chicago and Washington, DC.

Development: TCB's development mission is to work with communities to develop and implement their visions for providing quality, diverse, stable neighborhoods. TCB has a proven track record of completing complex, community-driven projects on budget and on time. TCB's housing developments vary in scale and complexity from small rehabilitation projects to large master-planned communities. TCB works with a diverse group of partners including public housing authorities, resident groups, faith-based organizations, community development corporations, social service providers and universities. TCB builds or renovates all kinds of housing - family rental housing, senior and special needs housing, single room occupancy apartments, and home ownership opportunities for first-time homebuyers. TCB uses a wide variety of public and private financing sources - tax exempt bonds, conventional private debt financing, syndication of Low Income Housing Tax Credits, and a wide array of government grants and loans provided by local, state, and federal sources. TCB's ownership role enables it to be a long-term participant in the integration of housing and support services with resident participation.

In addition to TCB's extensive track record in residential housing development, it has also developed mixed-use projects that include offices, retail, restaurants, health centers, preschools, youth programs and community centers.

TCB has a tremendous track record of accomplishment in Massachusetts, including successful development projects for our own portfolio as well as consulting services to neighborhood and resident organizations. Since its founding in 1964, TCB has participated in the development of over 12,000 housing units in the Commonwealth, many of which are located in City of Boston, including such early signature projects as Tent City and Langham Court in the South End and more recent mixed-income, mixed-use developments such as the 240-unit mixed-income, mixed-use Charlesview in Allston-Brighton and the 103-unit 225 Centre Street in Jackson Square.

Property Management: TCB's property management department's mission is to fulfill our longterm commitment to our residents and neighborhoods. TCB does this by providing exceptional physical, fiscal and social oversight of our properties. TCB understands the need to create a strong sense of community at each property and also to fully integrate each property into the greater neighborhood and community as a whole. This requires not only sound "bricks and mortar" management to ensure the fiscal viability of the properties but also the delivery and facilitation of services to our residents that enable them to maximize their potential and succeed both socially and financially. TCB is a long-term stakeholder in the communities we serve. This sets TCB aside from other typical property management entities. TCB has a proven track record and experience operating successful communities for over four decades.

Legal Capacity: TCB's legal department has unparalleled experience in permitting, structuring and negotiating complex real estate transactions involving multiple financing sources. TCB's inhouse attorneys typically provide core services relating to the primary structuring and closing of complex transactions, including structuring and negotiating financing, title and real estate conveyance, zoning analysis and obtaining zoning relief, review of environmental matters, organization of ownership entities including nonprofit corporations and limited partnerships, and organizing closings on complex financings involving multiple private and public funding sources.

Asset Management: The complex financing structures and regulatory requirements inherent in affordable housing obligate owners to understand and respond to the needs of multiple funders, while making sure that properties live up to affordability commitments. TCB has a dedicated asset management team engaged in ongoing, proactive tracking of operating performance indicators and financial indicators, helping sustain the long-term economic and physical viability of each property in our affordable housing portfolio.

Construction Management: TCB has been managing housing development and construction for almost 50 years, and our extensive experience in this area of the industry enables us to provide services during all phases of development, from master planning through post construction. TCB's construction management department provides in-house support to projects owned by either TCB or an affiliate. TCB Construction Management's scope of work includes preparation of RFP's and RFQ's for procurement of professional services and general contractors. The 2013 construction pipeline included 8 active sites with a value of \$178M. TCB consistently completes projects on time and within budget.

Figure 2-2. Portfolio of Selected TCB, Inc Projects

Figure 2-2. Portfolio of Selected TCB, Inc Projects

The Community Builders, Inc.

Charlesview Residences - Allston, MA

"This is a wonderful development for the residents of Charlesview, the Allston Brighton neighborhood, and the City of Boston. It will provide beautiful new homes for families, revitalize and enliven a section of our City and add much-needed jobs."

Boston Mayor Thomas M. Menino

Reaional Hubs

BOSTON

95 Berkeley Street Suite 500 Boston, MA 02116 P: 617-695-9595

WASHINGTON, DC 1602 L Street, NW Suite 401

Washington, DC 20036 P: 202-552-2500

CHICAGO 135 South LaSalle Street Suite 3350 Chicago, IL 60603 P: 312-577-5555

www.tcbinc.org

CHARLESVIEW RESIDENCES

The Community Builders, Inc. (TCB), on behalf of its development partner, Charlesview, Inc, has negotiated a land swap along with financial resources to effectuate the relocation and reconstruction of Charlesview Apartments. Charlesview Apartments, located in Allston, Massachusetts, is a 213 unit low- and moderate-income housing development created through Urban Renewal in 1970, supported by a 200-unit Section 8 Project Based Assistance Contract. The property is physically obsolete and in need of redevelopment. Charlesview Apartments is owned by Charlesview, Inc., an interdenominational faith-based, 501(c)(3) nonprofit organization having Charlesview Apartments as a single asset.

The relocation portion of the replacement strategy includes increasing the existing housing program to 240 family rental units, including a range of unit types from one-bedroom flats to four-bedroom townhouses, accommodating a variety of family types and sizes. The redevelopment site is less than a half mile from its current location, on an eight-acre portion of the site of the Brighton Mills Shopping Center.

The design incorporates the traditional neighborhood street grid and building types to seamlessly blend into the surrounding community. The overall redevelopment program includes significant infrastructure and open space. The program includes approximately 25,000 gsf of space for commercial and community uses, new streets and parks, and underground parking for 243 cars. One-hundred units of homeownership housing will be built on adjacent parcels as part of the future mixed-tenure community.

The financial packaging includes Tax Exempt Bond/4% LIHTC financing that will generate \$27 million in LIHTC equity, a replacement cost contribution from Harvard University, approximately \$45 million in debt leveraged from the portion of the Section 8 Contract to the new site and \$2 million in soft gap financing from the State.

Charlesview Residences at a Glance

• The relocation and reconstruction of Charlesview Apartments, a 213 unit low- and moderate-income housing development, into a new 340-unit mixed-income, mixed-use community.

• TCB Role: Co-Developer

• Financial Participants: MassHousing, US Department of HUD, AEGON USA Realty Advisors, Harvard University, Life Initiative, Massachusetts DHCD, CEDAC

Total Development Cost: \$143 million

The Community Builders, Inc.

225 Centre Street - Boston, MA

Forty years ago, an ill-fated highway expansion project bulldozed homes and businesses in Jamaica Plain's Jackson Square, disrupting what had been a closely knit neighborhood and leaving much of it as vacant or underutilized land. In 1995, a consortium of community groups, including the Jamaica Plain Neighborhood Development Corporation, Urban Edge and the Hyde Square Task Force, began planning the comprehensive redevelopment of Jackson Square. Working closely with city and state officials and a private developer, Mitchell Properties, the team created a master plan that includes over 400 units of housing, 60,000 square feet of retail space, 13,000 square feet of office space and 50,000 square feet of community facilities. 225 Centre Street is the first phase of this new \$250 million redevelopment effort.

A joint venture between The Community Builders, Inc. and Mitchell Properties, 225 Centre Street has received tremendous support from city, state and local officials and community stakeholders. The project will use \$2.3 million in state issued low-income housing tax credits, \$2 million in Department of Housing & Community Development (DHCD) program subsidies and another \$503,988 in federal low-income housing tax credits.

The new mixed-use/mixed-income building will feature 103 rental units, including 35 affordable units, over 16,000 square feet of commercial/retail space, an underground parking structure and dramatic landscape improvements. Ten of the affordable rental units will be reserved for extremely low-income families. Overall project costs are estimated at approximately \$50 million and construction is expected to start in April 2011.

225 Centre Street is a transit-oriented development and located immediately adjacent to the Jackson Square MBTA station. The site is less than 2.5 miles from downtown Boston, ½ mile from Northeastern University and the Longwood medical area. Roxbury Community College is located just two blocks from the site.

• The first phase of an ambitious 14-building, \$250 million redevelopment effort in the Jackson Square community of Boston's Jamaica Plain neighborhood.

• TCB Role: Co-Developer with Mitchell Properties

• Total Development Cost: \$52 million

WASHINGTON, DC 1602 L Street, NW

Reaional Hubs

BOSTON

Suite 500

95 Berkeley Street

Boston, MA 02116

P: 617-695-9595

Suite 401 Washington, DC 20036 P: 202-552-2500

CHICAGO 135 South LaSalle Street Suite 3350 Chicago, IL 60603 P: 312-577-5555

www.tcbinc.org

225 CENTRE STREET

225 Centre Street at a Glance

The Community Builders, Inc.

East Liberty Place North - Pittsburgh, PA

"Who would ever have thought that a group of low-income residents would give this much input and be heard. Promises were made, and promises are being kept."

Alethea Sims, President, Coalition of Organized Residents (COR)

Regional Hubs

BOSTON 95 Berkeley Street Suite 500 Boston, MA 02116 P: 617-695-9595

WASHINGTON, DC

1602 L Street, NW Suite 401 Washington, DC 20036 P: 202-552-2500

CHICAGO 135 South LaSalle Street Suite 3350 Chicago, IL 60603 P: 312-577-5555

www.tcbinc.org

EAST LIBERTY PLACE NORTH

East Liberty Place North, located on the 5800 block of Penn Avenue in Pittsburgh, is the redevelopment of the north parcel of the former East Mall Apartments site on Penn Avenue in the East Liberty neighborhood, a neighborhood that is coming back to life after thirty years of decline and stagnation. This new, 54-unit mixed-income, mixed use, elevator building features three floors of environmentally-friendly apartments above an 11,000 s.f. ground-floor commercial space, management offices, and community activity areas. The residential and commercial components are structured as separate condominiums.

The community features attractive, spacious, and well-appointed apartments that meet or exceed local market-rate offerings. Building systems integrate green technologies such as ENERGY STAR rated appliances and lighting fixtures, high-efficiency heat-pumps, and a focus on air quality in the decisions on materials and finishes and ventilating where possible. The building achieved LEED Gold certification and is the region's first LEED for HOMES multifamily certified project and TCB's first LEED certified project.

The Community Builders, Inc. (TCB) is the property's management agent and was the designated developer by the Urban Redevelopment Authority of Pittsburgh (URA). TCB will also develop the site across Penn Avenue to the south. The property is near TCB's other transformative neighborhood properties: New Pennley Place, Pennley Commons, and Penn Manor. The design for East Liberty Place North emerged from a charrette process and was informed by advice from former residents, community organizations, City leaders, and other stakeholders. The building is in scale with East Liberty and the Penn Avenue streetscape and was designed to support additional redevelopment around it. The U-shaped, approximately 75,000 square foot building has contemporary craftsman styling with a masonry and metal-accented façade. East Liberty Place North is the western gateway to East Liberty's downtown district and provides a strong residential anchor and new street level commercial/retail opportunities.

East Liberty Place North continues the significant local commitment to replace three blighted, HUD-subsidized properties (the "Federal American" properties) with new mixed-income developments. It provides 54 new one- and two-bedroom apartments with 38 units reserved for low-income households, 11 units reserved for households with incomes between 60% and 80% AMI, and five market-rate units with no income restrictions. Former Federal American tenants have admissions priority.

East Liberty Place North at a Glance

• 54 new environmentally-friendly family rental homes above 11,000 s.f. of ground-floor commercial space.

• TCB Role: Developer, Owner, and Management Agent

• Financial Participants: PA Housing Finance Agency, Urban Redevelopment Authority of Pittsburgh (with funding via US Department of HUD), Dollar Bank, The Federal Home Loan Bank – Pittsburgh via Citizens Bank, The Pittsburgh and The Home Depot Foundations, and equity from AEGON USA Realty Advisors

 Total Development Cost: \$12 million Residential Condo: \$10 million Commercial Condo: \$2 million

Project Team 2.4

Property Owner	ſ
Developer/ Proponent	ן 1 1 1 1
	5
Mixed Income Housing Partner	ר פַ וּ וּ
	J
Article 80 Permitting Consultant	ו 2 ר ר
Legal Counsel	ן 1 1 1 1 1

Parcel U - PNF

Massachusetts Bay Transportation Authority ("MBTA")

Urbanica, Inc (Manager of JP Parcel U, LLC) 142 Berkeley Street, Suite 402 Boston, MA 02116 T. 617.654.8900

Kamran Zahedi, kzahedi@urbanicaboston.com Shawn Pang, shawn@urbanicaboston.com

The Community Builders, Inc

95 Berkeley Street, Suite 500 Boston, MA 02116 T: 857.221.8672

Eliza Datta, edatta@TCBINC.ORG James Madden, jmadden@TCBINC.ORG

Mitchell L. Fischman Consulting LLC ("MLF Consulting") 41 Brush Hill Road Newton, MA 02461

T:781.760.1726

Mitchell Fischman, mitchfischman@gmail.com

Mackenzie & Associates, P.C.

183 State Street, Suite 6 Boston, MA 02109 T: 781.408.1425

Joseph Feaster, jfeaster@mckenzielawpc.com

Architect	Urbanica Design 142 Berkeley Street, Suite 402 Boston, MA 02116 T: 617.654.8900 Stephen Chung, AIA, <u>stephen@urbanicaboston.com</u> Shawn Pang, <u>shawn@urbanicaboston.com</u>	
Landscape Architect	Ground, Inc 6 Carlton Street, Somerville, MA 02143 T: 617.718.0889 Shauna Gillies-Smith, <u>sgs@groundinc.com</u> Olivera Berce, <u>oberce@groundinc.com</u>	
LEED/Sustainable Consultant	Conservation Services Group 50 Washington Street, Suite 3000 Westborough, MA 01581 T: 508.365.3204 Michael Schofield, <u>mike.schofield@csgrp.com</u>	
Transportation Planner/ Engineer	Howard/Stein-Hudson Associates, Inc. 38 Chauncy Street, 9 th Floor Boston, MA 02111 T: 617.482.7080 Fax: 617- 482-7417 Joe SanClemente P.E., <u>iscanclemente@hshassoc.com</u>	
Civil Engineer/Surveyor	Nitsch Engineering 2 Center Plaza, Suite 430 Boston, MA 02108 T:617.338.0063 William Maher, P.E., LSIT, <u>WMaher@nitscheng.com</u>	

Geotechnical Engineer	к 7 Н Т
Environmental/Hazardous Waste Engineer	IE 7 L' T S'
Construction Manager	U 1 B T K Ju
Noise and Air Consultant	T H 3 V T

(MM Geotechnical Consultants, LLC

7 Marshall Road Hampstead, NH 03841 Г: 603.489.5556

Kevin Martin, P.E., <u>kevinmartinpe@aol.com</u>

ES Environmental Consultants, Inc

7 Kimball Lane, Building A ynnfield, MA 01940 T: 617.623.8880

Steve Iorio, <u>siorio@iesinc.com</u>

Urbanica Construction

L42 Berkeley Street, Suite 402 Boston, MA 02116 T: 617.654.8900

Kamran Zahedi, <u>kzahedi@urbanicaboston.com</u> lustin Kreger, justin@urbanicaboston.com

Tech Environmental, Inc.

Hobbs Brook Office Park 303 Wyman Street, Suite 295 Waltham, MA 02451 Геl: 781-890-2220 x30

Mark C. Wallace, QEP, <u>MWallace@techenv.com</u>

Project Timeline* 2.5

Construction Commencement	 Phase A – Anticipated for Spring 2015 Phase B – Anticipated for Spring 2016 or earlier Phase C – Anticipated for Spring 2017
Construction Completion	 Phase A – Anticipated for Summer 2016 Phase B – Anticipated for Summer 2017 Phase C – Anticipated for Fall 2018
Status of Project Design	Schematic Design

*The timeline is subject to change due to timing of permits, approvals and grant application cycles.

Legal Information 2.6

Legal Judgments or Actions Pending Concerning the Proposed Project:

None.

History of Tax Arrears on Property Owned in Boston by the Applicant:

There is no current or past history of tax arrears on property owned by the Applicant.

Nature and Extent of Any and All Public Easements:

The Site is bounded by utility easements for sewer, electric, telephone and gas.

Public Benefits 2.7

The development of Parcel U includes housing creation, urban design improvements, job opportunities and additional tax revenues. By replacing an underutilized and challenging surplus parcel of land, the Proposed Project will substantially contribute to improving the pedestrian and neighborhood vitality, as well as the urban design and architectural character of the area. The Proposed Project will provide the following substantial benefits to the City and its residents:

- Redevelop an underutilized and surplus parcel of land leftover from the Southwest Corridor Improvement Initiatives into a vibrant transit oriented and energy efficient residential development that is consistent with the Forest Hills Improvement Initiative;
- Introduce 44 affordable housing units for rental and purchase;
- Parcel U PNF

- society;
- activity:
- revitalization;
- Certifiable status;
- opportunities;
- by 2020;
- introduction of at least one pocket park open to public use;
- Linden street trees and other streetscape amenities;
- construction and transit oriented development;
- Project will create construction jobs over the length of the project;
- effect for neighboring retail and commercial spaces; and
- Project will increased annual property tax revenues for the City of Boston

2.8 **Regulatory Controls and Permits**

The Proposed Project is located within the Multifamily Residential Sub-district (MFR) of the Jamaica Plain Neighborhood District (Article 55) as defined by the Boston Zoning Code. The Proposed Project will require variances, dimensional relief and potential conditional use permits from the City of Boston Board of Appeal for certain use, dimensional, parking, and other violations.

 Introduce a number of residential types into the neighborhood, both rental and purchase, ranging from studio to 3 bedroom units to meet housing demands from all sectors of

 Revitalize an underutilized urban area by promoting efficient land use, promoting energy efficiency and promoting alternative modes of transportation and promoting pedestrian

Introduce high-quality architecture to trigger a transformative effect on neighborhood

Add neighborhood scale retail space and community space to activate the public realm;

Support the City's goal for a sustainable future through the development of an energy efficient and environmentally friendly building that will strive to achieve a e LEED Silver

Provide approximately 124 new units of housing in close proximity to public transit

Contribute towards meeting the City of Boston's goal of adding 30,000 new housing units

Provide new site landscaping treatments with streetscape improvements and the

Pedestrian landscape and experience will be enhanced with preservation of the existing

Development serves as an example of sustainable and environmentally responsible

New resident introduction stimulates the local economy by creating a spillover economic

2.8.1 Boston Zoning Code – Use Requirements

The Proposed Project includes a number of principal uses including residential townhouses, residential multi-family apartments, a ground floor retail space and a community room. The Project also has accessory parking at the basement level.

Pursuant to the Article 55, Table A of the Boston Zoning Code, townhouse residential use with accessory parking and multi-family apartment dwelling use with accessory parking are "Allowed". Ground floor retail use is "Forbidden", and the Community Space use is "Conditional" within the MFR sub-district. Therefore, the Project requires Conditional Use permits for the retail Space and community space.

2.8.2 Boston Zoning Code – Dimensional Requirements

Tables 1-2A through 1-2C below summarizes the dimensional requirements in the Jamaica Plain Neighborhood District, as set forth in Table E of Article 55 of the Boston Zoning Code, and compares the requirements to the dimensions for the Proposed Project. A breakdown of the dimensional variances required for each phases is included in Tables 1-2A through 1-2C.

For a project that is subject to Large Project Review, required off-street parking spaces and off-street loading facilities are expected to be determined as a part of the Large Project Review in accordance with the provisions of Article 80 of the Boston Zoning Code. Design elements of the Project will also be reviewed pursuant to Large Project Review.

Table 2-2A.	Parcel U Zoning	Analysis Dimensional	Requirements	(Phase A – C	Condo Townhouses)
-------------	-----------------	----------------------	--------------	--------------	-------------------

Dimensiona	al Element	Multifamily Residential (Rowhouse/Townhouse)	Phase A ¹	Variance(s) Required?
Lot Area N	Лinimum	3,000 sf/ for up to 4 units per building	72,000 sf required 50,528 sf provided	Yes
Additional	Lot Area	3,000 sf/ for up 4 units per additional building	72,000 sf required 50,528 sf provided	Yes
Lot Wid	th Min	30′	21'-0" +/-	Yes
Lot Front	age Min	30′	21'-0" +/-	Yes
Floor Area F	Ratio Max	1.0	0.74 +/-	No
Building Heigh	nt Maximum	3 story, 35'	3 story, 42'-6" +/- 4 story, 55'-0" +/-	Yes
Minimum Usab (Square Fee	le Open Space t Per D.U.)	200 sf per dwelling unit	Approx. 1100 sf +/- per dwelling unit	No
Minimum F	ront Yard	15′	18'-3" +/-	No
Minimum	Side Yard	10'	9'-8" +/-	Yes
Minimum I	Rear Yard	20'	29'-2" +/-	No
Maximum by acce	Rear Yard Sssory	25%	N/A	N/A
	Retail	2 per 1,000 sf	N/A	N/A
	Community	1 per 1,000 sf	N/A	N/A
Parking	Residential	1-3 units: 1.0 per dwelling 4-9 units: 1.25 per dwelling 10+ units: 1.5 per dwelling	1 per dwelling unit (24 dwelling units total)	Yes

1. The dimensions described in this above table may change as the Proposed Project undergoes design review with the BRA.

N/A = Not Available or Not Applicable

Table 2-2B. Parcel U Zoning Analysis Dimensional Requirements (Phase B - Condo Townhouses)

Multifamily Residential Variance(s) Phase B¹ **Dimensional Element** (Rowhouse/Townhouse) **Required?** 3,000 sf/ for up to 4 units 72,000 sf required Yes Lot Area Minimum per building 37,180 sf provided 3,000 sf/ for up 4 units 72,000 sf required Yes **Additional Lot Area** per additional building 37,180 sf provided 30' 21'-0" +/-Lot Width Min Yes 30' 21'-0" +/-Lot Frontage Min Yes Floor Area Ratio Max 1.0 1.00 +/-No 3 story, 42'-6" +/-**Building Height Maximum** 3 story, 35' Yes 4 story, 55'-0" +/-Minimum Usable Open Space Approx. 790 sf+/-(Square Feet Per D.U.) 200 sf No per dwelling unit **Minimum Front Yard** 15' 17'8" +/-No 10' **Minimum Side Yard** 2'-2" +/-Yes 20' 22'-0" +/-**Minimum Rear Yard** No Maximum Rear Yard 25% N/A N/A by accessory N/A Retail 2 per 1,000 sf N/A 1 per 1,000 sf N/A N/A Community Parking 1-3 units: 1 per dwelling 1 per dwelling Residential 4-9 units: 1.25 per dwelling Yes (24 units total) 10+ units: 1.5 per dwelling

Dimensional Element		Multifamily Residential (Other Use)	Phase C ¹	Variance(s) Required?
Lot Area Minimum		4,000 sf for first 3 units	77,000 sf required 38,362 sf provided	Yes
Additional Lot Area		1,000 sf for each additional unit	77,000 sf required 38,362 sf provided	Yes
Lot Width Min		40'	234' +/-	No
Lot Frontage Min		40'	234' +/-	No
Floor Area Ratio Max		1.0	2.05	Yes
Building Height Maximum		3 story, 35'	5 story over basement, 65'-0" +/-	Yes
Minimum Usable Open Space (Square Feet Per D.U.)		150 sf	Approx. 200 +/- per dwelling unit	No
Minimum Front Yard		15'	9'-2" +/-	Yes
Minimum Side Yard		10'	13'-2" +/- minimum	No
Minimum Rear Yard		20'	20'	No
Maximum Rear Yard by accessory		25%	N/A	N/A
Parking	Retail	2 per 1,000 sf	8 curbside for 1,620 sf of retail	No
	Community	1 per 1,000 sf	8 curbside for 1,040 sf of community	No
	Residential	1-3 units: 1.0 per dwelling 4-9 units: 1.25 per dwelling 10+ units: 1.5 per dwelling	0.55 per dwelling (42 parking spaces for 76 dwelling units)	Yes

1. The dimensions described in this above table may change as the Proposed Project undergoes design review with the BRA.

N/A = Not Available or Not Applicable

Parcel U - PNF

BRA.

N/A = Not Available or Not Applicable

Table 2-2C. Parcel U Zoning Analysis Dimensional Requirements (Phase C - Rental Apartments)

1 The dimensions described in this above table may change as the Proposed Project undergoes design review with the

Table 2-3. Preliminary List of Permits or Other Approvals Which May be Sought

Federal Agencies				
U.S. Environmental Protection Agency	Notice of Intent for EPA Construction Activities General Discharge Permit with associated SWPPP, If Required			
State Agencies				
Massachusetts Bay Transportation Authority	Disposition and Sale of Land			
MA Department of Environmental Protection, Division of Water Pollution Control	Sewer Connection Self Certification			
MA Executive Office of Transportation and Construction	Chapter 40, Section 40A Clearance			
MA Department of Environmental Protection, Division of Air Quality Control	Fossil Fuel Permit, If Required			
Local Agencies				
Boston Redevelopment Authority	Article 80 Review and Execution of Related Agreements; Recommendation to the Boston Zoning Board of Appeal			
Boston Transportation Department	Transportation Access Plan Agreement; Construction Management Plan			
Boston Department of Public Works Public Improvements Commission	Street/Sidewalk Repair Plan; Curb-Cut Permit; Street/Sidewalk Occupancy Permit; Earth Retention System Plan			
Boston Zoning Board of Appeal	Possible Variances, Conditional Use Permits and other Dimensional Relief			
Boston Public Safety Commission Committee on Licenses	Permit for Storage of Fuel in (Emergency Storage) Tanks, If Required			
Boston Fire Department	Approval of Fire Safety Equipment			
Boston Water and Sewer Commission	Approval for Sewer and Water and Connections; Construction Site Dewatering; and Storm Drainage			
Boston Department of Inspectional Services	Building Permits; Certificates of Occupancy; Other Construction-Related Permits			

*This is a preliminary list based on project information currently available. It is possible that not all of these permits or actions will be required, or that additional permits may be needed.

Public Review Process and Agency Coordination 2.9

As part of the Article 80 review process, the Proponent is committed to maintaining an open dialogue with all interested parties. The public will have the opportunity to review this EPNF, which has been distributed to interested parties, the Impact Advisory Group and public agencies by the BRA and the Proponent and is available upon request.

The Proponent has met with, or intends to meet with, a broad range of elected officials; government agencies, and neighborhood association groups to solicit feedback and input on the Proposed Project. Preliminary plans for the Proposed Project have been presented at a series of community meetings to help refine the design and approach. The Proponent has been working closely with the Jamaica Plain Neighborhood Council and neighborhood groups on the Proposed Project.

The listing of community outreach meetings that have been held over the last several months follows:

- 1. January 20, 2014, 6.30-7.30pm Group and Weld Hill Street Watch Group
- 2. January 23, 2014, 7.00-9.00pm
- 3. January 29, 2014, 6.30-7.30pm Association and West Roxbury Courthouse Neighborhood Association
- 4. February 4, 2014, 6.30-8.30pm
- 5. February 5, 2014, 7.00-9.00pm
- 6. March 19, 2014, 7.00-9.00pm **Council - Zoning Committee**

The Proponent has also discussed the Proposed Project with representatives of the BRA prior to filing this Project Notification Form in order to identify issues/concerns as well as design requirements related to the Proposed Project. This has included a pre-filing meeting on June 2, 2014 and a follow-up urban design and transportation review meeting on July 7, 2014.

Informational Session with Woodbourne Neighborhood Association, Woodlawn Street

Informational Session with Asticou/Martinwood/South (AMS) Neighborhood Association

Informational Session with Wenham Neighborhood Association, Yale Terrace Neighborhood

Informational Session with JP Neighborhood Council - Housing and Development Committee

Informational Session with JP Neighborhood Council- Zoning Committee

Informational Session and Zoning Map Amendment Presentation to JP Neighborhood

In accordance with Article 80 requirements, an Impact Advisory Committee ("IAG") has been formed and neighborhood meeting will be scheduled to review the PNF and receive community comments on the Project during the PNF public review period.

The Proponent will continue to meet with public agencies, neighborhood representatives, local business organizations, abutting property owners, and other interested parties, and will follow the requirements of Article 80 pertaining to the public review process.

2.10 Forest Hills Improvement Initiative

In 2008, the BRA undertook the Forest Hills Improvement Initiative (the "Initiative") to engage the stakeholders of Jamaica Plain in a community-based approach to improving the Forest Hills Station area and planning for the sale and development of several MBTA-owned parcels as well as other publicly-owned parcels around the Station. The BRA worked in partnership with the MBTA, the Forest Hills Task Force, and area stakeholders throughout the process.

The Proposed Project's Site is one of the MBTA parcels targeted for redevelopment in the Initiative's community process, known as Parcel U. Use and Design Guidelines released for parcels in this district outlined a list of core principles to guide development, including the following:

- Improved Traffic Patterns,
- Vibrant Mixed Use District,
- Community Orientation,
- Green/Sustainable Development, and
- Green Space Assets

The development at Parcel U closely follows the recommendations of the Forest Hills Improvement Initiative by offering a 21st century energy efficient, transit-oriented development located in proximity of an abundance of transit options and local amenities. The development creates ample housing opportunities with a variety of unit types and ownerships structure.

The development is designed to provide a healthy and energy-efficient environment for residents and to meet the LEED Silver-Certifiable level, promoting the Initiative's sustainability principle. The townhomes are planned to be energy-efficient powered with renewable energy sources

The Proposed Project will have multiple open spaces with varying degrees of privacy for residents and guests and will be within a short walk from regional scale green spaces, including the Southwest Corridor Park, Arnold Arboretum, Franklin Park and the Forest Hills Cemetery.

2.11 Development Impact Payment ("DIP") Status

Based on current schematic design plans, it is <u>not</u> anticipated that Development Impact Payments ("DIP"), in accordance with Article 80B-7 of the Code, will be required as the Proposed Project's eligible DIP uses will be below the 100,000 gsf threshold where DIP is required.

URBAN DESIGN

URBAN DESIGN AND SUSTAINABILITY COMPONENT 3.0

Introduction 3.1

Parcel U (the "Project") is a major part of the long term revitalization of the Jamaica Plain's Washington Street and Hyde Park Avenue. The Proposed Project will be among the first large Massachusetts Bay Transportation Authority (MBTA) parcels to be developed along this corridor. The Project Site is located at the Southwest corner of the Forest Hills T Station, directly bounded by the MBTA commuter rail tracks, Hyde Park Avenue, Ukraine Way and the Tollgate Cemetery.

The long and narrow project site is situated between Hyde Park Avenue and the MBTA Commuter Rail and Amtrak lines. The neighborhood can be described as a transitional zone between fine grain, smaller residential scales and larger, more contiguous mixed-use commercial along Washington Street and residential buildings along Hyde Park Avenue. The currently vacant non-productive site will be transformed into a lively, urban residential community with active street-level uses such as three "pocket parks", a retail space, and a community room.

The proposed development will provide 124 residential units, in a variety of unit types ranging from studios, 1-bedroom, 2-bedrooms and 3-bedrooms, in a few urban residential typologies: two townhouse variants and a larger multi-family apartment building.

3.2 Massing

The building massing strategy is informed by the multiple scales and the different edge conditions of the surrounding neighborhood context. Along Hyde Park Avenue across from the Project Site, the existing buildings are primarily residential and possess a varied character. There is an assortment of different house shapes and sizes, different roof lines and colors which are interspersed between small green open spaces. Further down Hyde Park Avenue, in the business district near the Forest Hills Station, the character of the building massing changes. Here, there is a mix of residential and commercial uses such as retail and office and overall the buildings are linked together, and the urban fabric reads as a more continuous "urban wall. The building scale of this nearby area is larger and denser in comparison to the residential neighborhood closer to the project site.

The Proposed Project attempts to bridge the two very different contexts of the residential neighborhood and the nearby business district. To this end, the Proposed Project's building height changes along its length, from three stories to the south, to four stories and finally to a five story block. Similarly, the building massing also changes along the Proposed Project's length. Towards the south, the proposal is made up of small clusters of blocks; towards the middle more of the blocks are linked together and read as only slightly larger; and at the corner, multiple blocks are linked together to form a more continuous building mass.

The spaces between the blocks are designed as different kinds of "green" spaces. Not wanting to create a visual barrier or relentless street wall along the project site, these spaces allow for views through the site and beyond. On three occasions, these green spaces are public "pocket" parks. In other cases, the space is narrower but still allows for access to the rear of the project site for residents via a handicapped accessible ramp and stairs.

Building Design 3.3

The residential massing of the Project will be divided into 3 different housing types:

- Phase A 3 and 4 stories townhouses with underground parking
- Phase B 3 and 4 stories townhouses with underground parking
- Phase C 5-story multifamily apartments with ground floor retail, community space and underground parking

Towards the southeast edge the site, the townhouses respond with building massing that is similar to the residential buildings along Hyde Park Avenue. Phase A and Phase B will each have a mix of 3 and 4 stories townhouses. The height and massing these townhouse units will correspond to the scale of the residential building across the street along Hyde Park Avenue.

For approximately two-thirds of the Site, the Proposed Project will have a distinctly residential character with a fine-grained building blocks made up of both pitched and flat roofs. In order to enrich the pedestrian experience and along the length of this part of the site, the townhouses will have angled bays, undulating walls and balconies. And on the ground floor, there will be low picket fences with entry gateways, and front gardens filled with plantings and small trees. In between, the different clusters of townhouses, there will be open green spaces that allow views through the site and beyond. Similarly, to alleviate the perception of a continuous and high street wall, the top floor of the four-story townhouses will be set back from the building edge to create roof decks.

Though planned as a unified development, the clustering of townhouse units—in pairs, triplets and quad arrangements-reinforces the notion of the accumulation and the build-up of scale and mass that happens in an urban environment over a long period of time. At the same time, the varied rooflines will also further simulate an urban environment that has been developed through time.

As one progresses to the northwest side of Hyde Park Avenue, the last third of the site will be occupied by a larger, five-story apartment building with ground floor retail and community space located at the corner of Hyde Park Avenue and Ukraine Way. At this location, the apartment building's massing negotiates between the small-scale townhouses along Hyde Park Avenue and the larger urban context along Washington Street as well as the future large developments that will happen at the other MBTA redeveloped sites. The corner in particular, provides the opportunity for an "anchor" building- i.e. to make a prominent entry point into the new development. As such, the apartment building will be taller than the townhouses, and rendered in a more commercial material palette such as brick and masonry

and ground-floor storefront glass. The corner specifically, will be marked with a multi-story glass bay window and signage for the ground floor retail space.

Character and Materials 3.4

The Proposed Project strives to be a contextually sensitively, site responsive designed development. The Project's design is intended to feel as if it "belongs" in this place and at this particular time. The site context provides many of the clues for the character and material palette for the proposed structures.. While not literally copying what is there, the Project draws inspiration from the local context by reinterpreting traditional forms, massing, and details and designing them in a contemporary way. Given that the local neighborhood has been built up over time and by different builders and homeowners, the current fabric is rich and varied. Impressed by this heterogeneous character, the Project attempts to recreate some of this texture. To this end, there is a range of different materials, colors and details that are used across the three different building typologies.

The three-story townhouses are wood frame structure with different colored wood and fiber cement siding with a batten trim detail. On the ground floor, a stained wood lattice is applied over paneling and invites ivy to grow on its surfaces. The pitched gable roof is made of standing seam metal. On the south ridge there will be a solar array. The windows are vertically-oriented "punches" of varying widths. The three story townhouses have angled bays and balconies that allow residents to look up and down the street from the insides of their homes. The resultant "bends" in the plan, create visual interest for the pedestrians and commuters along the street.

The four-story townhouses are wood frame structure with different colored clapboard and fiber cement siding. The middle "slot" of the townhouse will be fiber cement paneling with an applied wood trellis over top. The ground floor walls will be stained wood paneling with batten trim detailing. The fourth floor, which will be set back from the front edge, will be white fiber cement paneling. The windows are vertically-oriented "punches" of varying widths

The multi-family apartment building will be expressed as two blocks separated by a glass linkage. In the first block, to the building will be a wood frame structure with a metal panel roof, fiber cement paneling in the middle floors and a larger unit masonry base. The second block, located at the corner, is conceived as the "anchor" to the development. This block will have a metal penthouse floor, masonry on the middle floors, and a glass storefront system at its base.

3.5 Views

The intended Site is unique from the perspective that it is visible from all four sides. Careful attention has been paid to the urban design and planning by providing a level of porosity in the long street block for views, light and air.

Three major buffer zones are allocated to provide visual relief and different spatial experiences:

- The contemplative buffer zone between the development and the Tollgate Cemetery;;
- The intersection of Walk Hill Avenue aims to offer the pedestrians and commuters with a view corridor towards the famed Arnold Arboretum; and
- A community oriented park next to Phase C apartment building

3.6 Landscape Design

The proposed landscape plan for Parcel U addresses different needs of the residents and the surrounding community through multiple layers of public and private landscape elements.

The Hyde Park Avenue streetscape in front of the proposed townhouses maintains the existing public right of way along the street. Adjacent to the sidewalk is a planting band that preserves the existing row of mature street trees. Paths to the entries and yards of the residences, as well as connections to three pocket parks, are located between the trees. Low decorative fencing is set several feet back of the trees, defining the threshold between the public way and the yards of the residences.

In front of the apartment (multi-family) buildings, the proposed on street parking spaces are in the location of the existing sidewalk. In this instance, the sidewalk is required to shift into the private realm, behind the existing row of trees. Pathways from the parking to the sidewalk connect the parking spaces to the pedestrian walkway.

At the corner of Hyde Park Avenue and Ukraine Way, there is a small plaza area with potential for outdoor seating set within the private property that could create a social space for residents and locals. The mature trees along Ukraine Way are also retained, set within a wide planting band in front of the building.

In the private sphere, the landscape offers outdoor yards, planted vertical connections as well as three distinct pocket parks, all held together with planting and landscape elements that stretch across the site. These planted bands enhance perceptual connectivity while allowing for diverse programming.

The three pocket parks feature different landscape communities - each with its own distinct character and suggestive of a different program. The proposed parks are open to the residents and are visually accessible to the public, adding interest and energy to the Parcel U stretch of Hyde Park Avenue. Visually open fencing and gates at the street end of the parks, provides separation from the public way, creating safe and intimate experiences within the parks, while providing interest and visual accessibility from the street.

At the eastern edge of the parcel a proposed woodland pocket park creates an evergreen buffer between the residents and the adjacent cemetery. The planting idea for this park is that of evergreens and flowering trees paired with a lushly planted understory to provide a natural screen. Seating areas give residents a quiet and reflective space that captures the feel of a small forest.

The middle pocket park is based on the concept of a meadow landscape, with a central gathering space and gently undulating fields around it. The meadows are available for lounging and recreation; while ample other seating opportunities create social spaces for residents. Multiple trees and plantings provide shade and soften sound and visuals from the street.

The third pocket park is inspired by a forest clearing and is imagined as a natural playground. Trees, grasses and other plantings create a generous buffer around the park, and possible landforms in the center give the park structure. Rock features could become areas for lounging or playing, and would tie the site back to the area's underlying bedrock foundations, enhancing the natural expression of the park. Other natural elements, such as boulders, logs or puddles could also become play opportunities, defining the park as a recreational respite.

In order to connect the back (rear) lane to Hyde Park Avenue there are sloping vertical connections in each phase of the project. Each phase features both a ramp and a stair with a small seating area at the bottom. These passages as well as the other sloped gardens between the buildings would be planted with a hardy palette that may contain edible plants.

Throughout all of the spaces, the proposed Parcel U landscape seeks to craft multiple options for both community and resident experiences. A variety of interesting and well scaled spaces extend across the site, while the consistent street tree planting and material palette maintains the cohesive identity of the project.

Response to Accessibility Guidelines 3.7

The proponent will coordinate with the Commission for Persons with Disabilities towards reducing barriers affecting persons with disabilities within the development. The development will meet all ADA standards and Massachusetts Architectural Access Board 521 CMR standards. See Appendix E for details.

Sustainable Design/Energy Conservation 3.8

3.8.1 Introduction

The Proponent and the Project design team are committed to an integrated design approach using the LEED for Homes 2008 rating system and intends to meet certification as presented in Figures 3-30 and 3-31 at the end of this section. This rating will meet or exceed Boston's Green Building standard and is currently reaching 71 points (Silver) in the low-rise and 50 points (Certified) with 9 maybe points in the Midrise (maybe points are italicized) in the description below.

3.8.2 Summary of Proposed LEED Credits for Low Rise and Midrise Buildings

Below is a credit by credit summary of the preliminary checklist prerequisites and credits for the low rise and midrise buildings of the Project. These are preliminary LEED Homes credits and may be adjusted as the project goes forward. Currently the Homes size adjustment for the lowrise is neutral and for the midrise reduces the achievement levels by 8.5 points

Low Rise Units Checklist Items

ID 1.1 Preliminary Rating: (Prerequisite)

- which credits were reasonable to be pursued at that point in design.
- Silver was determined to be a reasonable goal.

ID1.2 Integrated project team: (1 point)

agenda, and list of attendees will be collected.

ID 1.3 Professional Credentialed with Respect to LEED for Homes: (1 point)

ID 2.1 Durability planning: (Prerequisite)

beginning of construction.

ID 2.2 Durability Management: (Prerequisite)

included.

ID 3.1 Innovation 1: (1 point)

250 rides per day within ½ mile.

CSG led the project team through the LEED for Homes process June 2, 2014 and determined

• This point was determined to be reasonable to achieve as the scale of this project will require the minimum of three experts to be attending meetings regularly. Copies of meeting minutes,

• A central member of the development team is credentialed as a LEED AP Homes Professional.

 The durability evaluation form and durability inspection checklist will be created as design elements are finalized. This is a customized checklist for the project that is required prior to the

• The builder will use the durability inspection checklist throughout the construction as both an inspection tool and a project meeting item to be reviewed weekly, to ensure those measures are

• LL05-02 Exemplary Performance: proximity to transit. This is awarded to projects that have over

LL 3.2 Infill: (2 points)

• The project is bordered on two sides by public roads, Ukraine Way and Hyde Park Avenue. To the rear the project is bordered by the Amtrak rail and to the southeast by an auto sales entity. 75% or more of the perimeter borders previously developed land.

LL 4 Existing Infrastructure: (1 point)

• The lot is within ½ mile of existing water and sewer service lines.

LL 5.1 – 5.3 Community Resources/Public Transit: (3 points)

 Proximity to Orange Line Forest Hill terminal as well as the Forest Hill bus hub provides ample transportation to meet the three points for this item as well as the Exemplary Performance point.

LL 6 Access to Open Space: (1 point)

 From the center of the project to Ukraine Way and across Washington St is the Bussey Brook section of the Arnold Arboretum (greater than ³/₄ acre within ¹/₄ mile).

SS 1.1 Erosion Controls during Construction: (Prerequisite)

• Project team will develop erosion control plan prior to start of construction

SS 1.2 Minimize Disturbed Area of Site: (1 point)

 Calculations of density allow for D to be met, 48 units in the low-rise section, with 1.94 acres is over 24 units per acre, surpassing the requirement of 7 units per acre.

SS 2.1 No invasive plants: (Prerequisite)

 The landscape architect will provide list of plants to be installed and will cross reference a list of invasive plants for the area to ensure no invasive plants are used. (http://www.newfs.org/docs/docs/MIPAG040105.pdf)

SS 2.3 Limit Conventional Turf: (1 point)

• The project is going to limit the overall designed softscape area to no more than 60% conventional turf.

SS 2.4 Drought Tolerant Plants: (1 point)

- The landscape architect will select drought tolerant plants (45% or more) for the landscaping plan. Lists of plants and their quantities of each plant and the percentage of drought tolerance will be calculated.
- Provided reference list showing what are drought tolerant plants in our region using University of Massachusetts Extension Service.

SS 4.2 Permanent Erosion Controls: (1 point)

 The landscaping plan will reflect the goal of replanting disturbed areas following the LEED algorithm of one tree, Four 5 gallon shrubs, or Fifty square feet of native groundcover per five hundred square feet of disturbed area.

SS 4.3 Management of Runoff from Roof: (2 points)

• Permanent storm water controls will manage runoff from roof in 1" rain fall events.

Parcel U- PNF

SS 5 Pest Control Alternatives: (2 points)

practices.

SS 6.1 – 6.3 Compact Development: (4 points)

requirement of 20 or greater units per acre.

WE 3.1 and 3.2 Indoor water use: (5 points)

selected will be under 1.3 gallons per flush

EA 1.1 Optimize Energy Performance: (Prerequisite)

align very closely.

EA 1.2 Exceptional Energy Performance: (18.5 points)

the checklist a conservative assumption of a HERS of 60 is used.

EA 7.2 Pipe Insulation: (1 point)

• All domestic hot water piping shall have R4 pipe insulation installed.

EA 11.1 – Refrigerant Charge Test: (Prerequisite)

EA 11.2 Appropriate HVAC Refrigerants: (1 point)

• R410A refrigerant is anticipated to be used.

MR 1.1 Framing Order Waste Factor: (Prerequisite)

purchased will be made. Order must not exceed calculation by more than 10%.

MR 1.5 Off-Site Fabrication: (4 points)

Panelized construction will be used in this project.

MR 2.1 FSC Certified Tropical Woods: (Prerequisite)

- manufacture for each wood product
- No tropical wood will be installed

• All exterior wood will be kept 12" or more above the soil, external cracks, joints, etc. will be sealed with caulking and permanent pest-proof screens will be installed. No wood-to-concrete connections will exist all planting will be located so a mature plant will be at least 24" from the homes. All foundations will solid concrete. The project will be eligible for using four of the five

48 Units on 1.94 acres of lot calculates to 24.7 units per acre. This meets the Very High Density

Shower heads with 1.75 or less GPM, lavatory faucets will use 1.5 or less GPM and the toilets

• The Energy Star 2.0 requirements will be met. Stretch Code and Energy Star 2.0 requirements

• The project intends to achieve a worst case HERS rating of 50 or less, utilizing similar envelope and mechanical construction details to the Urbanica project for E+ building on Highland St. In

All refrigerant lines for air conditioning will be charge tested per manufacturer's standards.

A calculation of the wood necessary to frame the building and orders of the amount of wood

Suppliers will be sent a notice of preference for FSC products and a request for the country of

MR 2.2 Environmentally Preferable Products (0.5 point each 2 points total)

- The project will install 100% hard flooring
- The project will use cabinets made of FSC wood
- The project will use PEX as water supply piping
- The project will use local aggregate in all concrete

MR 3.1 Construction Waste Management Planning: (Prerequisite)

- The project will investigate any recycling opportunities in the area
- Document the waste diverted from the landfill •

MR 3.2 Construction Waste Reduction: (1.5 points)

• With stringent recycling protocols, the project will limit the total amounts of waste that will go to the land fill and that were diverted to 50% of the construction waste stream

EQ 2.1 Basic Combustion Venting Measures: (Prerequisite)

 The requirements are included in the design as requirements for basic code compliance in our area.

EQ 2.2 Enhanced Combustion Venting Measures: (2 points)

• There will be no fireplaces in any of the units

EQ 4.1 Basic Outdoor Air Ventilation: (Prerequisite)

Continuous ventilation will be provided to each unit to meet the ASHRAE 62.2 – 2007 ventilation requirement.

EQ 4.2 Enhanced Outdoor Ventilation: (2 points)

• The ventilation in each unit will be provided by a heat recovery ventilation (hrv) device.

EQ 4.3 Third Party Performance Testing: (1 point)

• The ventilation system in each unit will be tested by a third party to document the performance as meeting the ASHRAEA 62.2 -2007 standard.

EQ 5.1 Basic Local Exhaust: (Prerequisite)

Bath fans will be rated for 80 CFM and kitchen area exhaust fans for greater than 100 CFM to outdoors.

EQ 5.2 Enhanced Local Exhaust: (1 point)

• The Panasonic fans will run continuously and boost with occupancy sensors.

EQ 5.3 Third Party Performance Testing (1 point)

The exhaust fans in each unit will be tested by a third party to document the performance as meeting the ASHRAEA 62.2 air flow requirement.

EQ 6.1 Room by Room Load Calculations: (Prerequisite)

Room by room load calculations will be provided by the HVAC engineer or responsible party • stating the calculations were performed according to ACCA Manual J and D.

EQ 6.2 Return Air Flow/Room by Room Controls: (1 point)

• Each head of the minisplits HVAC system will have individual controls.

EQ 6.3 Third Party Performance Test: (2 points)

• Each unit will have at least two separate HVAC zones.

EQ 7.1 – 7.3 Air Filtering: (Prerequisite)

EQ 8.1 Indoor Contaminant Control During Construction: (1 point)

contaminate.

EQ 9.1 Radon–Resistant Construction in High Risk Areas: (Zone 1) (Prerequisite) • The project is located in EPA Zone 3/ low risk and is not required to install a radon resistant

construction.

EQ 9.2 Radon Resistant Construction in Moderate Risk Areas: (1 point)

Radon resistant construction techniques are planned.

EQ 10.1 No HVAC in Garage: (Prerequisite)

• There will be no HVAC equipment located in the garage.

EQ 10.2 Minimize Pollutants from Garage: (2 points)

- All penetrations, cracks at base of walls, as well as joist bays will be sealed.
- At conditioned spaces, all doors shall be weather-stripped.
- CO detectors shall be installed at stairwell leading from garage to living space.

AE 1.1 Education of the Homeowner: (Prerequisite)

- A home owner's manual will be created and provided to all occupants. • A one hour walk through will be conducted with the occupants in group trainings.

AE 1.3 Public Awareness: (1 point)

- homes.
- about this project.

AE 2 Education of the Building Manager: (1 point)

- An operations and training manual will be created and provided to building manager. • A one hour walk through will be conducted with the building manager.

Non ducted mini split heat pumps are exempt from any filter MERV level requirement.

Ductwork (including exhaust) will be sealed throughout construction so that debris doesn't

The developer will create a website about the site, containing features and benefits of LEED

• The developer will work with regional publications to ensure a newspaper article is published

• The contractor's project sign will include LEED signage at the exterior of the building site.

Midrise Units Checklist Items

ID 1.1 Preliminary Rating: (Prerequisite)

- CSG led the project team through the LEED for Homes process June 2, 2014 and determined which credits were reasonable to be pursued at that point in design.
- Silver was determined to be a reasonable goal.

ID1.2 Energy Expertise for Mid-Rise: (Prerequisite)

• This point was determined to be reasonable to achieve as the MEP engineer bring the experience of over a dozen highly efficient LEED certified projects and will be completing the ASHRAE model on this building.

ID 1.3 Professional Credentialed with Respect to LEED for Homes: (1 point)

A central member of the development team is credentialed as a LEED AP Homes Professional.

ID 2.1 Durability planning: (Prerequisite)

• The durability evaluation form and durability inspection checklist will be created as design elements are finalized. This is a customized checklist for the project that is required prior to the beginning of construction.

ID 2.2 Durability Management: (Prerequisite)

 The builder will use the durability inspection checklist throughout the construction as both an inspection tool and a project meeting item to be reviewed weekly, to ensure those measures are included.

ID 3.1 Innovation 1: (1 point)

 SS 07-02 Exemplary Performance: proximity to transit. This is awarded to projects that have over 125 rides per day within ½ mile.

LL 3.2 Infill: (2 points)

• The project is bordered on two sides by public roads, Ukraine Way and Hyde Park Avenue. To the rear the project is bordered by the Amtrak rail and to the southeast by an auto sales entity. 75% or more of the perimeter borders previously developed land.

LL 4 Existing Infrastructure: (1 point)

• The lot is within ½ mile of existing water and sewer service lines.

LL 5.1 – 5.3 Community Resources/Public Transit: (3 points)

 Proximity to Orange Line Forest Hill terminal as well as the Forest Hill bus hub provides ample transportation to meet the three points for this item as well as the Exemplary Performance point.

LL 6 Access to Open Space: (1 point)

section of the Arnold Arboretum (greater than ³/₄ acre within ¹/₄ mile).

SS 1.1 Erosion Controls during Construction: (Prerequisite)

Project team will develop erosion control plan prior to start of construction.

SS 1.2 Minimize Disturbed Area of Site: (1 point)

units per acre, surpassing the requirement of 40 units per acre.

SS 2.1 No invasive plants: (Prerequisite)

invasive plants for the area to ensure no invasive plants are used. (http://www.newfs.org/docs/docs/MIPAG040105.pdf)

SS 2.3 Limit Conventional Turf: (1 point)

conventional turf.

SS 2.4 Drought Tolerant Plants: (1 point)

- will be calculated.
- of Massachusetts Extension Service.

SS 3.2 Reduce Local Heat Island Effects: (1 point)

SS 4.2 Permanent Erosion Controls: (1 point)

hundred square feet of disturbed area.

SS 4.3 Storm Water Quality Control for Mid-Rise: (2 points)

Storm ware management plan designed in accordance with local program.

SS 5 Pest Control Alternatives: (2 points)

practices.

From the center of the project to Ukraine Way and across Washington St is the Bussey Brook

• Calculations of density allow for D to be met, 76 units in the midrise section, with .91 acres is 80

• The landscape architect will provide list of plants to be installed and will cross reference a list of

• The project is going to limit the overall designed softscape area to no more than 79%

• The landscape architect will select drought tolerant plants (90% or more) for the landscaping plan. Lists of plants and their quantities of each plant and the percentage of drought tolerance

Provided reference list showing what are drought tolerant plants in our region using University

The roof will be installed with high albedo material on 75% or more of the roof area.

• The landscaping plan will reflect the goal of replanting disturbed areas following the LEED algorithm of One tree, Four 5 gallon shrubs, or Fifty square feet of native groundcover per five

• All exterior wood will be kept 12" or more above the soil, external cracks, joints, etc. will be sealed with caulking and permanent pest-proof screens will be installed. No wood-to-concrete connections will exist all planting will be located so a mature plant will be at least 24" from the homes. All foundations will solid concrete. The project will be eligible for using four of the five
SS 6.1 – 6.3 Compact Development: (4 points)

• 76 Units on .91 acres of lot calculates to 84 units per acre. This meets the Very High Density requirement of 80 or greater units per acre.

SS7.1 Public Transit Mid-Rise: (2 points)

• The number of transit rises available within ½ mile of the mid-rise is in excess of the credit stipulated 60 rides per day.

SS 7.2 Bicycle Storage for Mid-Rise: (1 point)

The building will have storage for greater than 15% of the buildings occupants.

WE 3.1 and 3.2 Indoor water use: (5 points)

 Shower heads with 1.75 or less GPM, lavatory faucets will use 1.5 or less GPM and the toilets selected will be under 1.3 gallons per flush.

WE 3.3 Water Efficient Appliances for Mid-Rise: (2 maybe points)

The project will be using highly efficient clothes washers as well as dishwashers in the units.

EA 1.1 Minimum Energy Performance for Mid-Rise: (Prerequisite)

 The project will meet the 15% or greater reduction in energy use according to the ASHRAE model with the EPPA simulation guidelines.

EA 1.2 Testing and Verification for Mid-Rise: (Prerequisite)

 The project intends to comply with Option 2, performing Commissioning on the buildings fundamental systems.

EA 1.3 Optimize Energy Performance for Mid-Rise: (7 points)

• The project intends to reach at least a 20% better than reference in the ASHRAE with EPA simulation modeling.

EA 7.2 Pipe Insulation: (1 point)

• All domestic hot water piping shall have R4 pipe insulation installed.

EA 11.1 – Refrigerant Charge Test: (Prerequisite)

All refrigerant lines for air conditioning will be charge tested per manufacturer's standards.

EA 11.2 Appropriate HVAC Refrigerants: (1 point)

• R410A refrigerant is anticipated to be used.

MR 1.1 Framing Order Waste Factor: (Prerequisite)

 A calculation of the wood necessary to frame the building and orders of the amount of wood purchased will be made. Order must not exceed calculation by more than 10%.

MR 1.5 Off-Site Fabrication: (4 maybe points)

• Panelized construction will be used in this project.

MR 2.1 FSC Certified Tropical Woods: (Prerequisite)

- manufacture for each wood product.
- No tropical wood will be installed.

MR 2.2 Environmentally Preferable Products (.5 point each 1.5 points total)

- The project will install 100% hard flooring.
- The project will use cabinets made of FSC wood.
- The project will use local aggregate in all concrete.

MR 3.1 Construction Waste Management Planning: (Prerequisite)

- The project will investigate any recycling opportunities in the area.
- Document the waste diverted from the landfill.

MR 3.2 Construction Waste Reduction: (1.5 points)

to the land fill and that were diverted to 50% of the construction waste stream

EQ 2.1 Basic Combustion Venting Measures: (Prerequisite)

area. There will be no fireplaces in any of the units.

EQ 4.1 Basic Outdoor Air Ventilation: (Prerequisite)

requirement.

EQ 4.2 Enhanced Outdoor Ventilation: (2 maybe points)

EQ 4.3 Third Party Performance Testing: (1 maybe point)

as meeting the ASHRAEA 62.2 -2007 standard.

EQ 5.1 Basic Local Exhaust: (Prerequisite)

outdoors.

EQ 5.2 Enhanced Local Exhaust: (1 point)

• The Panasonic fans will run continuously and boost with occupancy sensors.

EQ 5.3 Third Party Performance Testing (1 point)

meeting the ASHRAEA 62.2 air flow requirement.

EQ 6.1 Room by Room Load Calculations: (Prerequisite)

stating the calculations were performed according to ACCA Manual J and D.

Suppliers will be sent a notice of preference for FSC products and a request for the country of

With stringent recycling protocols, the project will limit the total amounts of waste that will go

The requirements are included in the design as requirements for basic code compliance in our

Continuous ventilation will be provided to each unit to meet the ASHRAE 62.2 – 2007 ventilation

The ventilation in each unit will be provided by a heat recovery ventilation (hrv) device.

• The ventilation system in each unit will be tested by a third party to document the performance

• Bath fans will be rated for 80 CFM and kitchen area exhaust fans for greater than 100 CFM to

• The exhaust fans in each unit will be tested by a third party to document the performance as

• Room by room load calculations will be provided by the HVAC engineer or responsible party

EQ 7.1 – 7.3 Air Filtering: (Prerequisite)	3.10 Urba	an Design, Landscape and Sustainabil
• Non ducted fair cons are exempt from any filter werviever requirement.	Urban design	drawings and renderings and LEED C
EQ 8.1 Indoor Contaminant Control During Construction: (1 point)	Orban design	i drawings and renderings, and LEED C
 Ductwork (including exhaust) will be sealed throughout construction so that debris doesn't 	Figure 3-1:	Site Context
contaminate.	Figure 3-2:	Site Photos – Existing Conditions
	Figure 3-3:	Site Photos – Existing Conditions
EQ 9.1 Radon–Resistant Construction in High Risk Areas: (Zone 1) (Prerequisite)	Figure 3-4:	Urban Block Plan
• The project is located in EPA Zone 3/ low risk and is not required to install a radon resistant	Figure 3-5:	Project Site Plan
construction.	Figure 3-6:	Project Parking Plan
	Figure 3-7:	Townhouse- 3 Stories Typical Plan
EQ 9.2 Radon Resistant Construction in Moderate Risk Areas: (1 point)	Figure 3-8:	Townhouse- 4 Stories Typical Plan
Radon resistant construction techniques are planned.	Figure 3-9:	Apartment – Basement
	Figure 3 -10:	Apartment- First Floor
EQ 10.1 No HVAC in Garage: (Prereguisite)	Figure 3 -11:	Apartment- Second to Fourth Floo
• There will be no HVAC equipment located in the garage.	Figure 3 -12:	Apartment- Fifth Floor
	Figure 3 -13:	Aerial Perspective Front
EQ 10.2 Minimize Pollutants from Garage: (2 points)	Figure 3 -14:	Aerial perspective Rear
• All penetrations, cracks at base of walls, as well as joist bays will be sealed.	Figure 3 -15:	Overall Elevations (Front and Rear)
• At conditioned spaces, all doors shall be weather-stripped.	Figure 3 -16:	Hyde Park Elevation
• CO detectors shall be installed at stairwell leading from garage to living space.	Figure 3 -17:	Rear Elevation
	Figure 3 -18:	Side Elevations
AE 1.1 Education of the Homeowner: (Prerequisite)	Figure 3 -19:	Typical Sections
• A home owner's manual will be created and provided to all occupants.	Figure 3 -20:	Project Rendering –Hyde Park Ave
 A one hour walk through will be conducted with the occupants in group trainings. 	Figure 3 -21:	Project Rendering –Hyde Park Ave
	Figure 3 -22:	Project Rendering – Ukraine Way i
AE 1.3 Public Awareness: (1 point)	Figure 3 -23:	Landscape Plan
 The developer will create a website about the site, containing features and benefits of LEED 	Figure 3 -24:	Streetscape
homes.	Figure 3 -25:	Corner Plaza
The developer will work with regional publications to ensure a newspaper article is published	Figure 3 -26:	Forest Buffer Park
about this project	Figure 3 -27:	Meadow Park
 The contractor's project sign will include LEED signage at the exterior of the building site 	Figure 3 -28:	Natural Playground Park
The contractor s project sign win include LEED signage at the exterior of the balance site.	Figure 3 -29:	Pedestrian Access Stations
AE 2 Education of the Building Manager: (1 point)	Figure 3-30:	LEED for Homes Checklist for Towr
An operations and training manual will be created and provided to building manager	Figure 3-31:	LEED for Homes Checklist for Mult
 A one hour walk through will be conducted with the building manager. 		

Response to Climate Change Preparedness and Resiliency Checklist for New Construction 3.9

The proponent will endeavor to prepare the development for building resiliency and preparedness to meet adverse impacts from future climate change conditions. See Appendix F for the Proponent's detailed response.

lity Drawings

Checklists depicting the Project include:

nue Street Level 1 nue Street Level 2 intersection

nhouses i-Family Apartments Figure 3-1: Site Context

PARCEL U

Figure 3-2: Site Photos – Existing Conditions

View of Existing Housing Stock Across Intersection of Hyde Park Avenue and Ukraine Way

View of Intersection of Hyde Park Avenue and Walk Hill Street

View of Existing Houses and Street Trees Along Hyde Park Avenue (Mid Section of Parcel U)

View of Site Across Intersection of Hyde Park Avenue and Ukraine Way

Figure 3-4: Urban Block Plan

Figure 3-5: Project Site Plan

Figure 3-6: Project Parking Plan

Figure 3-7: Townhouse- 3 Stories Typical Plan

Figure 3-8: Townhouse-4 Stories Typical Plan

First Floor

Second Floor

Basement

First Floor

Third Floor

Fourth Floor

Third Floor

Second Floor

Figure 3-9: Apartment – Basement

Figure 3-10: Apartment- First Floor

Figure 3-11: Apartment- Second to Fourth Floor

Figure 3-12: Apartment- Fifth Floor

Figure 3-13: Aerial Perspective Front

Figure 3-14: Aerial Perspective Rear

Figure 3-15: Overall Elevations (Front and Rear)

Overall Project Front Elevation Along Hyde Park Avenue

Overall Project Rear Elevation Along MBTA Tracks

Figure 3-16: Hyde Park Elevation

Phase A: Front Elevation Along Hyde Park Avenue

Phase B: Front Elevation Along Hyde Park Avenue

Phase C: Front Elevation Along Hyde Park Avenue

Figure 3-17: Rear Elevation

Phase A: Rear Elevation Along MBTA Tracks

Phase B: Rear Elevation Along MBTA Tracks

Phase C: Rear Elevation Along MBTA Tracks

50

Figure 3-18: Side Elevations

Three Story Townhouse: Typical Side Elevation

Five Story Apartment: Side Elevation (Ukraine Way Side)

Four Story Townhouse: Typical Side Elevation

Five Story Apartment: Side Elevation (Pocket Park Side)

Figure 3-19: Typical Sections

Three Story Townhouse: Short Section

Five Story Apartment: Section Across Circulation Core

Four Story Townhouse: Short Section

Five Story Apartment: Section Across Circulation Core

Figure 3-20: Project Rendering –Hyde Park Avenue Street Level 1

Southwest View ot the Three Story Townhouses (Looking towards Tollgate Cemetery)

Figure 3-21: Project Rendering –Hyde Park Avenue Street Level 2

Northeast View ot the Four Story Townhouses (Near Walk Hill and Hyde Park Avenue Intersection)

Figure 3-22: Project Rendering – Ukraine Way intersection

Southwest View ot the Five Story Apartment Building (Near Ukraine Way and Hyde Park Avenue Intersection)

Figure 3-23: Landscape Plan

Figure 3-24: Streetscape

Figure 3-25: Corner Plaza

OUTDOOR CAFE

Figure 3-26: Forest Buffer Park

Figure 3-27: Meadow Park

PLAN

WOODLAND UNDERSTORY

PLAN

Figure 3-28: Natural Playground Park

Figure 3-29: Pedestrian Access Stations

NATURAL PLAYGROUND

RAMP SECTION

Figure 3-30: LEED for Homes Checklist for Townhouses

Figure 3-30: LEED for Homes Checklist for Townhouses

LEED for Homes Simplified Project Checklist (continued)

STA BUILDING			LEED for Hor	nes Simplified Proje	ct Che	cklist	
	for Homes		Builder Name:	Urbanica			
LEED			Project Team Leader (if different):	Shawn Pang. Urbanica			
			Home Address (Street/City/State):	Hvde Park Ave. Jamaica Plain	. MA		
				.,	,		
Project Description:				Adjusted Certification	Thresholds	5	
Building type: Mu	lti-family		Project type: Multi-family L	e Certified: 44.5		Gold: 74.5	
# of units: 48		Av	a. Home Size Adjustment: -0.5	Silver: 59.5	Pla	tinum: 89.5	
					-		
Project Poin	t Total		Fina	I Credit Category Total P	oints		
Prelim: 68	.5 + 5 maybe pts		Final: 28 ID	: 0 SS: 4	EA: 22	2.5 EQ.	
Certification	Level		14	:0 WE:0	MR: 1.	5 AF:	
Prelim: Sil	ver		Final: Not Certified	Minimum Point Thresholds	Not Met fo	or Final Rating	
date	last updated :				Max	Project Poin	ts
las	t updated by :		(ID) (No Minimum Dainte D	e eu vise all	Points	Preliminary	Final
1. Integrated Project	Planning	1.1	Preliminary Rating	equiled)	Prereg	Y	T/Pts
n megratea riojeor	lannig	1.2	Integrated Project Team		1	1 0	0
		1.3	Professional Credentialed with Respect t	o LEED for Homes	1	1 0	0
		1.4 1.5	Design Charrette Building Orientation for Solar Design		1	0 0	0
2. Durability Manager	ment	2.1	Durability Planning		Prereq	Y U	- V
Process		2.2	Durability Management		Prereq	Ý	
		2.3	Third-Party Durability Management Verifi	cation	3	0 0	0
3.Innovative or Regio	onal 🛛 🖎	3.1	Innovation #1		1	1 0	0
Design	24	3.2	Innovation #2		1	0 0	0
	8	3.4	Innovation #4		1	0 0	0
				Sub-Total for ID Category:	11	3 0	0
Location and	Linkages (LL)		(No Minimum Points R	equired) OR	Max	Y/Pts Maybe No	Y/Pts
1. LEED ND		1	LEED for Neighborhood Development	LL2-6	10	0 0	0
2. Site Selection	×	2	Site Selection		2	0 0	0
3. Preferred Location	S	3.1	Edge Development	LL 3.2	1	0 0	0
		3.2	Infill Proviously Doveloped		2	2 0	0
4 Infrastructure		4	Existing Infrastructure		1	1 0	0
5. Community Resou	rces/	5.1	Basic Community Resources / Transit	LL 5.2. 5.3	1	0 0	0
Transit		5.2	Extensive Community Resources / Trans	it LL 5.3	2	0 0	0
		5.3	Outstanding Community Resources / Tra	nsit	3	3 0	0
6. Access to Open Sp	bace	6	Access to Open Space		1	1 0	0
	(2.2)	_		Sub-Total for LL Category:	10	7 0	0
Sustainable S	lites (SS)	1 1	(Minimum of 5 SS Poin	ts Required) OR	Max	Y/Pts Maybe No	Y/Pts
n. one olewaruship		1.2	Minimize Disturbed Area of Site		1	1 0	0
2. Landscaping	×	2.1	No Invasive Plants		Prereq	Y	
	24	2.2	Basic Landscape Design	SS 2.5	2	0 0	0
	≥ ∽	2.3 2.4	Limit Conventional Turf	SS 2.5 SS 2.5	3	1 0	0
	e B	2.5	Reduce Overall Irrigation Demand by at I	_east 20%	6	0 0	0
3. Local Heat Island E	Effects 🖎	3	Reduce Local Heat Island Effects		1	0 0	0
4. Surface Water	×	4.1	Permeable Lot		4	0 0	0
Management		4.2	Permanent Erosion Controls		1	1 0	0
5 Nontoxic Pest Con	trol	4.3 F	Pest Control Alternatives		2	2 0	0
6. Compact Develop	nent	э 6.1	Moderate Density	SS 6.2. 6.3	2	0 0	0
		6.2	High Density	SS 6.3	3	0 0	0
		6.3	Very High Density		4	4 0	4
				Sub-Total for SS Category:	22	12 0	4

					Max	Pro	oject Poi	nts
					Points	Preli	iminary	Final
Water Efficiency (WE)			(Minimum of 3 WE Points Required)	OR	Max	Y/Pts I	Maybe No	o Y/Pts
1. Water Reuse		1.1	Rainwater Harvesting System	WE 1.3	4	0	0	0
		1.2	Graywater Reuse System	WE 1.3	1	0	0	0
		1.3	Use of Municipal Recycled Water System		3	0	0	0
2. Irrigation System	24	2.1	High Efficiency Irrigation System	WE 2.3	3	0	0	0
	~	2.2	I nird Party inspection Reduce Overall Irrigation Demond by at Least 45%	WE 2.3	1	0	0	0
	~	2.3			4	0	0	0
3. Indoor Water Use		3.1	High-Efficiency Fixtures and Fittings		3	1	0	0
		3.2	Very High Efficiency Fixtures and Fittings		6	4	0	0
			Sub-Total	for WE Category:	15	5	0	0
Energy and Atmosphere	(E/	4)	(Minimum of 0 EA Points Required)	OR	Max	Y/Pts M	Maybe No	o Y/Pts
1. Optimize Energy Performance		1.1	Performance of ENERGY STAR for Homes		Prereq			
		1.2	Exceptional Energy Performance		34	22.5	0	22.5
7. Water Heating	24	7.1	Efficient Hot Water Distribution		2	0	0	0
		7.2	Pipe Insulation		1	1	0	0
11. Residential Refrigerant		11.1	Refrigerant Charge Test		Prereq	Y		
Management		11.2	Appropriate HVAC Refrigerants		1	1	0	0
			Sub-Total	for FA Category	38	24.5	0	22.5
Materials and Pasouroos	. (MD)	(Minimum of 2 MR Bointo Boquirod)		Max	V/Dto	Maylea Ne	
Material Efficient Froming	, (11	Framing Order Waste Easter Limit	UK	Brorog	V	waybe NO	, i/Fis
i. waterial-Encient Framing		1.1	Detailed Framing Documents	MD 1 5	rieled 1	T C	0	0
		1.2	Detailed Cut List and Lumber Order	MR 1.5	1	0	0	0
		1.3	Framing Efficiencies	MR 1.5	3	0	0	0
		1.5	Off-site Fabrication	MIX 1.5	4	0	1	0
2. Environmentally Proferable	~	0.4	ESC Contified Transical Wood		Drorog	V	4	0
2. Environmentally Preferable	~	2.1	Foc Certified Hopical Wood		Pieleq	Y 4 E	0	
	<u>a</u> k	2.2			0	7.5	0	0
3. Waste Management		3.1	Construction Waste Management Planning		Prereq	Y	0	4.5
		3.2	Construction waste Reduction		3	1.5	0	1.5
			Sub-Total	for MR Category:	16	3	4	1.5
Indoor Environmental Q	uali	ty (E	Q) (Minimum of 6 EQ Points Required)	OR	Max	Y/Pts M	Maybe No	o Y/Pts
1. ENERGY STAR with IAP		1	ENERGY STAR with Indoor Air Package		13	0	0	0
2. Combustion Venting		2.1	Basic Combustion Venting Measures	EQ 1	Prereq	Y		
-		2.2	Enhanced Combustion Venting Measures	EQ 1	2	2	0	0
3. Moisture Control		3	Moisture Load Control	EQ 1	1	0	0	0
4. Outdoor Air Ventilation	>	41	Basic Outdoor Air Ventilation	FQ 1	Prereg	V	-	<u> </u>
	~	4.2	Enhanced Outdoor Air Ventilation		2	2	0	0
		4.3	Third-Party Performance Testing	EQ 1	1	0	1	0
5 Local Exhaust	~	51	Basic Local Exhaust	EQ 1	Prereg	v	· · · · ·	Ť
o. Eooal Exhaust		5.2	Enhanced Local Exhaust		1	1	0	0
		5.3	Third-Party Performance Testing		1	1	0	0
6 Distribution of Space	~	6.1	Room-by-Room Load Calculations	EO 1	Prereg	· ·	0	Ť
Heating and Cooling	C.S.	6.2	Return Air Flow / Room by Room Controls	EQ 1	1	1	0	0
ficuling and ocoming		6.3	Third-Party Performance Test / Multiple Zones	EQ 1	2	2	0	0
7 Air Filtoring		71	Good Filters	EQ 1	Prereg	_ 	•	
7. All I litering		7.2	Better Filters	EQ 7.3	1	0	0	0
		7.3	Best Filters		2	0	0	0
8. Contaminant Control	>	8.1	Indoor Contaminant Control during Construction	F0 1	1	1	0	0
e. containing of one of	<u>ح</u>	8.2	Indoor Contaminant Control		2	0	0	0
	×	8.3	Preoccupancy Flush	EQ 1	1	0	0	0
9. Radon Protection	>	9.1	Radon-Resistant Construction in High-Risk Areas	F0 1	Prerea	N/A	-	
	×	9.2	Radon-Resistant Construction in Moderate-Risk Areas	FQ 1	1	0	0	0
10 Garage Pollutant Protection	~	10.1	No HVAC in Garage	EQ 1	Prerog	V	0	0
ro. Garage i onutant Frotection		10.1	Minimize Pollutants from Garage	FO 1 10 4	2	2	0	0
		10.2	Exhaust Fan in Garage	FQ 1 10.4	1	0	0	0
		10.4	Detached Garage or No Garage	EQ 1	3	0	0	0
			Cub Total	for EO Catagon"	21	12	1	0
						12	1	0
Awareness and Educatio	on (AE)	(Minimum of 0 AE Points Required)		Max	Y/Pts 1	waybe No	o Y/Pts
1. Education of the	24	1.1	Basic Operations Training		Prereq	Y		
Homeowner or Tenant	24.	1.2	Enhanced Training		1	0	0	0
		1.3	Public Awareness		1	1	0	0
2. Education of Building		-	Education of Duilding Managers		4		0	
Manager	28.	2	Education of Building Manager			1	0	0
			Sub-Total	for AE Category.	3	2	0	0
			Sub-10tal	cutogoly.	-	-	*	-

Figure 3-30: LEED for Homes Checklist for Townhouses

Figure 3-31: LEED for Homes Checklist for Multi-Family Apartments

LEED for Homes Simplified Project Checklist Addendum: Prescriptive Approach for Energy and Atmosphere (EA) Credits

				Max	Pr	roject Poir	nts
Points cannot be earned in both the	Prescriptiv	e (below) and the Performance Approach (pg 2)	of the EA section.	Points	Prei	liminary	Final
Energy and Atmosphere	e (EA)	(No Minimum Points Require	ed) OR	Max	Y/Pts	Maybe No	Y/Pts
2. Insulation	2.1	Basic Insulation		Prereq			1
	2.2	Enhanced Insulation		2	0	0	0
3. Air Infiltration	3.1	Reduced Envelope Leakage		Prereq			1
	3.2	Greatly Reduced Envelope Leakage		2	0	0	0
	3.3	Minimal Envelope Leakage	EA 3.2	3	0	0	0
4. Windows	4.1	Good Windows		Prereq			1
	4.2	Enhanced Windows		2	0	0	0
	4.3	Exceptional Windows	EA 4.2	3	0	0	0
5. Heating and Cooling	5.1	Reduced Distribution Losses		Prereq			1
Distribution System	5.2	Greatly Reduced Distribution Losses		2	0	0	0
	5.3	Minimal Distribution Losses	EA 5.2	3	0	0	0
6. Space Heating and Cooling	놀. 6.1	Good HVAC Design and Installation		Prereq			1
Equipment	6.2	High-Efficiency HVAC		2	0	0	0
	6.3	Very High Efficiency HVAC	EA 6.2	4	0	0	0
7. Water Heating	≥⊾ 7.1	Efficient Hot Water Distribution		2	0	0	0
	7.2	Pipe Insulation		1	0	0	0
	7.3	Efficient Domestic Hot Water Equipment		3	0	0	0
8. Lighting	8.1	ENERGY STAR Lights		Prereq			
	8.2	Improved Lighting		2	0	0	0
	8.3	Advanced Lighting Package	EA 8.2	3	0	0	0
9. Appliances	9.1	High-Efficiency Appliances		2	0	0	0
	9.2	Water-Efficient Clothes Washer		1	0	0	0
10. Renewable Energy	<u>کھ</u> 10	Renewable Energy System		10	0	0	0
11. Residential Refrigerant	11.1	Refrigerant Charge Test		Prereq			
Management	11.2	Appropriate HVAC Refrigerants		1	0	0	0
			Sub-Total for EA Category:	38	24.5	0	22.5

Project Team Leader (if different): Shawn Pang, Urbanica Home Address (Street/City/State): Hyde Park Are, Jamaica Pain, MA Opict Description: Adjusted Certification Thresholds Building type: Mid-Hae multi-family # of some 5 Certific 20.5 Cortific 20.5 Gott Project Point Total Final: C2.5 ID: 0 SS: 4 EA: 7 EQ: 0 Certific 20.5 Switt 91.5 Final: Credit Category Total Points Project Point Total Final: Credit Category Total Points Final: Credit Category Total Points Final: Credit Category Total Points Integrated Project Planning Final: Credit Category Total Points Final: Credit Category Total Points Final: Credit Category Total Points Integrated Project Planning Final: Credit Category Total Points Final: Credit Category Total Points Final: Credit Category Total Points Integrated Project Planning Final: Credit Category Total Points Final: Credit Category Total Points Final: Credit Category Total Points Trades Taraing tor MID-Rise Project Points Final: Credit Category Total Points <th></th> <th>for Homes</th> <th></th> <th>Builder Name: Ur</th> <th>banica</th> <th></th> <th></th> <th></th> <th></th>		for Homes		Builder Name: Ur	banica				
Home Address (Breed/CityBitate): Hyde Park Ave, Jamaica Plain, MA oject Description: Adjusted Certification Thresholds Building type: Mid-fae multi-family = of stories: 5 Certific: 36.5 Gold: 66.5 # otnex 76 Avg. Home Size Adjustment: 4.5 Silver: 51.5 Plasman: 81.5 Project Point Total Final: 12.5 Di 0 SS: 4 EA: 7 EC: 0 Certification Level Final: 12.5 Di 0 SS: 4 EA: 7 EC: 0 Prelim: Certified Final: Not Certified Max Threat-Project Points Final: Not Certified Max Project Points Introduction and Design Process (D) No Minimum Points Required Max Project Points Final Introduction and Design Process (D) No Minimum Points Required Max Project Points Final Introduction and Design Process (D) No Minimum Points Required Max Project Points Final Introduction and Design Process (D) No Minimum Points Required No 0 0 0 0 0	Case			Project Team Leader (if different): Sh	awn Pang, Urba	anica			
Adjusted Certification Thresholds Building type: Mid-Ise multi-family # of stories: 5 Certified: 36.5 Gold: 66.5 Building type: Mid-Ise multi-family # of stories: 5 Certified: 36.5 Gold: 66.5 Building type: Mid: Total Final Certified: Store 5 Plantmark 81.5 Plantmark 81.5 Plantmark 81.5 Plantmark Plantma				Home Address (Street/City/State): Hy	vde Park Ave, Ja	maica Plain,	МА		
Open Exerciption: Ideated Certification Threabourds Buikding type: Mid-rise multi-family if of stories S Certification if of stories S Certification if of stories S									
Building yp: Mid-lise multi-family of a forms: 5 Centile: 36.5 Centile: 36.5 Centile: 36.5 s d unit: 76 Ays, Hone Size Adjustmen: 4.5. Silve: 51.5 Centile: 81.5 Project Point Total Prelim: 50 + 9 maybo pts Final: 12.5 I.0:0 Silve: 51.7 EC: 0 Certification Lavel Prelim: Certified Final: 12.5 I.0:0 Silve: 40.7 EC: 0 Mark: 12.5 I.0:0 Silve: 40.7 EC: 0 All: 0 Mic: 15	oject Description:				Adjusted C	ertification T	hresholds		
# of units 78 Avg. Home Size Adjustment: -4.5 Site: 51.5 Platium: 81.5 Project Point Total Prelim: 50 + 9 maybe prs Final: 12.5 ID: 0 SS: 4 EA: 7 EO: 0 Cottification Level Final: 12.5 ID: 0 SS: 4 EA: 7 EO: 0 Prelim: 50 + 9 maybe prs Final: 12.5 ID: 0 SS: 4 EA: 7 EO: 0 Prelim: Cortified Final: Not Certified Mainum Points Required Mainum Points Required Final: Not Certified Introvision and Design Process (ID): No Mainum Points Required Not	Building type:	Mid-rise multi-fai	nily	# of stories: 5	Certified:	36.5		Gold: 66.5	
Project Point Total Prelim: 59 + 9 maybe pts Final: 12.5 ID: 0 SS: 4 EA: 7 EO: 0 Certification Level Prelim: Certified Final: 12.5 ID: 0 SS: 4 EA: 7 EO: 0 Integrated Project Points Final: Not Certified Integrated Project Points Final: Not Certified Integrated Project Points Project Point	# of units: 76		Av	g. Home Size Adjustment: -8.5	Silver:	51.5	Plat	inum: 81.5	
Project Point Total Prelim: 50 + 9 maybe pts Final 12.5 ID: 0 SS: 4 EA: 7 EQ: 0 Certification Level Prelim: Cortified Final 12.5 ID: 0 SS: 4 EA: 7 EQ: 0 Certification Level Prelim: Cortified Final 12.5 ID: 0 WE: 0 MR: 1.5 AE: 0 Cortification Level Prelim: Cortified Final 12.5 ID: 0 WE: 0 MR: 1.5 AE: 0 Cortification Level Prelim: Cortified Final 12.5 ID: 0 WE: 0 MR: 1.5 AE: 0 Innovation and Design Process (ID) Thirding Ralling No Minimum Points Required) Max Wire Machines To Preliming Ralling Thirding Ralling Thi									
Prelim: C4-9 maybe pts Final: 12.5 ID: 0 SS: 4 EA: 7 EQ: 0 Certification Level Li: 0 WE: 0 Minimum Points Required Max Frederina Realizing	Project Poin	t Total		Final Cr	edit Catego	y Total Po	oints		
Cortification Level Prelim: Cartified LL: 0 WE: 0 MR: 1.5 AE: 0 Interact Cartified Final: NOT Certified Maintum Points Thresholds Not May faited Maintum Points Required Maintum Points Required Project Points Integrated Project Planning 11 Proliminary Raing Maintum Points Required Proves V V Maintum Points Required Maintum Points Required Not	Prelim: 50	+ 9 maybe pts		Final: 12.5 ID: 0	SS:		EA: 7		EQ: 0
Preim: Certified Max bits updated by : Project Points Professional Design Process (ID) (IN Minimum Points Required) Max Professional (Inforetation and Design Process) Professional (ID) Profession (ID) Profession (ID) Professi	Certification	Level		LL: 0	WE:		MR: 1.5		AE: 0
date last updated : Isst updated by : Max Project Points Preliminary Rating Project Points Preliminary Rating Integrated Project Planning 1.1 Preliminary Rating Professional Codentialed with Respect to LEED for Homes 1 1 0 0 0 Integrated Project Planning 1.1 Preliminary Rating First Mode Net 1 0	Prelim: Ce	ertified		Final: Not Certified					
date list updated by: Prediminary Endl Prediminary Endl Integrated Project Planning 11 Preliminary Rating Prevent	data	lest on detect of	-				Max	Breiset	Deinte
Innovation and Design Process (ID) (No Minimum Points Required) Max VPEs Max VPEs Integrated Project Planning 1.1 Prefering of the second credential with Respect to LEED for Homes 1 I	date	iast updated : st updated by :					Pts	Project	ry Final
Integrated Project Planning 1: Preliminary Rating Prevent Model	Innovation ar	nd Design Proc	ess	(ID) (No Minimum Points Require	ed)		Max	Y/Pts Maybe	No Y/Pts
1.2 Energy Expertise for MID-Rise 1 7 0 1.4 Design Charrete 1 0 0 0 1.4 Design Charrete 1 0 0 0 0 1.4 Durability Grientation for Solar Design 1 0<	Integrated Project	Planning	1.1	Preliminary Rating			Prereq	Y	
14 Design Charterite 1 0			1.2 1.3	Energy Expertise for MID-RISE Professional Credentialed with Respect to LEI	ED for Homes		Prereq 1	Y 1 0	0
1-5 Building Orientation for Solar Design 1 0 0 0 Durability Management 21 Durability Management Prese Y - Process 23 Third-Party Durability Management Verification 3 0 0 Innovation #1 23 Third-Party Durability Management Verification 3 0 0 Design 3.1 Innovation #1 1 1 0 0 0 3.3 Innovation #1 1 1 0 0 0 0 3.3 Innovation #3 1 0			1.4	Design Charrette			1	0 0	0
Interface Trades Trading for MD-RISE 1 0 0 0 Durability Management 2 Durability Management Presq Y Importance 20 Durability Management 2 Durability Management Verification 3 0 0 0 Design S 31 Innovation #1 1 1 0 0 0 Station Participant S 1 1 0 0 0 0 Station Participant Station Participant 1 0			1.5	Building Orientation for Solar Design			1	0 0	0
Durability Management 2.1 Durability Management Prices V Image Prices Process 2.2 Third-Party Durability Management 3 0			1.6	Trades Training for MID-RISE			1	0 0	0
1 20 0	Durability Manage	ment	2.1	Durability Planning			Prereq	Y	
Innovative or Regional s 3.1 Innovation #2 1 1 1 1 0 0 0 3.3 Innovation #2 3.3 Innovation #2 1 0 </td <td>FIDCESS</td> <td></td> <td>2.2</td> <td>Third-Party Durability Management Verification</td> <td>n</td> <td></td> <td>3</td> <td>0 0</td> <td>0</td>	FIDCESS		2.2	Third-Party Durability Management Verification	n		3	0 0	0
Design x 32 Innovation #2 Innovation #2 x 33 Innovation #2 Innovation #2 Innovation #2 x 34 Innovation #2 Sub-Total for ID Category: 11 2 0 0 Location and Linkages (LL) (No Minimum Points Required) OR Max YPRs Naybe No YPRs LEED ND 1 LEED for Neighborhood Development LL2-6 10 0 0 0 0 Site Selection x 2 Site Selection 2 2 0	Innovative or Regio	onal 🔉	3.1	Innovation #1			1	1 0	0
** 3.3 Innovation #3 1 0 0 0 Sub-Total for ID Category: 11 0 0 0 Location and Linkages (LL) (No Minimum Points Required) OR Max VPbs Maybe No VPbs LEED ND 1 LEED for Neighborhood Development LL2-6 10 0 0 0 Site Selection 2 2 0 0 0 0 0 0 Site Selection 3.1 Edge Development LL3.1 2 2 0 0 0 Transit 5.2 Existing Infrastructure 1 1 0 <	Design	2	3.2	Innovation #2			1	0 0	0
Solution Sub-Total for ID Category: 11 0 0 0 Sub-Total for ID Category: 11 0 0 0 LEED IO 1 LEED for Neighborhood Development LL2-6 10 0 0 0 Site Selection 2 2 0 0 0 0 0 0 0 3.3 Brownfield Redevelopment LL3.1 1 0 0 0 0 0 107astructure 4 Existing Infrastructure 1 1 0		24	3.3	Innovation #3			1	0 0	0
Sub-Total for I/D Category: 11 2 0 0 Location and Linkages (LL) (No Minimum Points Required) OR VPRs Maybe No VPRs LEED ND 1 LEED for Neighborhood Development LL2-6 10 0 0 0 Site Selection * 2 Site Selection 2 0		8	3.4	Innovation #4	0 / T / //	10.0.1	1	0 0	0
Location and Linkages L1 (in Minimum Ponts Required) OR Max VPte Maybe No VPte LEED N0 1 LEED N0 1 LEED N0 0<					Sub-Total for	ID Category:	11	2 0	0
LLC NO 1 LLC No 0 <th0< th=""> 0</th0<>	Location and	LINKAGES (LL) 1	(No Minimum Points Requir	ed)	UR	Max 10	Y/Pts Maybe	No Y/Pts
One Octoor of the Construction Construct	Site Selection	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	Site Selection		LL2-0	2	0 0	0
1 1 1 2 0 0 3.3 Brownfield Redevelopment for MID-RISE 1 0 0 0 Infrastructure 4 Existing Infrastructure 1 1 0 0 0 Community Resources/ 5.1 Basic Community Resources for MID-RISE 1 0 0 0 Transit 5.2 Extensive Community Resources for MID-RISE LL 5.1, 5.3 2 0 0 0 Access to Open Space 6 Access to Open Space 1 1 0 0 0 Site Stewardship 1.1 Erosion Controls During Construction 1 1 0 0 0 Site Stewardship 1.1 Erosion Controls During Construction Prerequisite 1 0 0 0 Landscaping 2.1 No Invasive Plants S2.5 1 0	Preferred Location	<u>ي</u>	3.1	Edge Development			1	0 0	0
3.3 Brownfield Redevelopment for MID-RISE 1 0 0 Infrastructure 4 Existing Infrastructure 1 1 0 0 Community Resources / Stating Community Resources for MID-RISE 1 0 0 0 Transit 5.2 Extensive Community Resources for MID-RISE LL 5.1, 5.3 2 0 0 0 Access to Open Space 6 Access to Open Space 1 7 0 0 Access to Open Space 6 Access to Open Space 1 7 0 0 Sustainable Sites (SS) (Minimum of 5 SS Points Required) OR Max V/Pts <maybe< td=""> V/Pts Site Stewardship 1.1 Erosion Controls During Construction Prerequisite 1 1 0 0 1.2 Minimize Disturbed Area of Site for MID-RISE 1 1 0<td>Treferred Location</td><td>13</td><td>3.2</td><td>Infill</td><td></td><td>LL 3.1</td><td>2</td><td>2 0</td><td>0</td></maybe<>	Treferred Location	13	3.2	Infill		LL 3.1	2	2 0	0
Infrastructure 4 Existing Infrastructure 1 1 0 0 Community Resources/ Transit 5.1 Basic Community Resources for MID-RISE Extensive Community Resources for MID-RISE 1 0 0 0 5.3 Outstanding Community Resources for MID-RISE LL 5.1, 5.2 3 0			3.3	Brownfield Redevelopment for MID-RISE			1	0 0	0
Community Resources / Transit 5.1 Basic Community Resources for MID-RISE 1 0 0 0 3 0 <td< td=""><td>Infrastructure</td><td></td><td>4</td><td>Existing Infrastructure</td><td></td><td></td><td>1</td><td>1 0</td><td>0</td></td<>	Infrastructure		4	Existing Infrastructure			1	1 0	0
Transit 5.2 Extensive Community Resources for MID-RISE LL 5.1, 5.2 3 0 0 Access to Open Space 6 Access to Open Space 1 1 0 0 Access to Open Space 6 Access to Open Space 1 1 0 0 Sub-Total for LL Category: 10 7 0 0 Substainable Sites (SS) (Minimum of 5 SS Points Required) OR Max ViPts Maybe No ViPts Site Stewardship 1.1 Erosion Controls During Construction Prerequisite 1 1 0 0 12 Minimize Disturbed Area of Site for MID-RISE SS 2.5 1 1 0 0 0 2.2 Basic Landscape Design SS 2.5 1 1 0	Community Resou	irces/	5.1	Basic Community Resources for MID-RISE	_		1	0 0	0
Access to Open Space 6 Access to Open Space 1 1 0 0 Sub-Total for LL Category: 10 7 0 0 Sustainable Sites (SS) (Minimum of 5 SS Points Required) OR Max ViPts Maybe No ViPts Site Stewardship 1.1 Erosin Controls During Construction Prerequisite 1 1 0 0 Landscaping 2.1 No Invasive Plants Prerequisite 1 1 0 0 2.2 Basic Landscape Design SS 2.5 1 0 0 0 0 2.3 Limit Conventional Turf for MID-RISE SS 2.5 1 0 0 0 0 2.4 Drought Tolerant Plants for MID-RISE SS 2.5 1 0	Transit		5.2	Extensive Community Resources for MID-RIS		LL 5.1, 5.3	2	0 0	0
Sub-Total for LL Category: 10 7 0 0 Addition Controls During Construction Prerequisite 1 10 0	Access to Open S	nace	6	Access to Open Space		LL 0.1, 0.L	1	1 0	0
Sustainable Sites (SS) (Minimum of 5 SS Points Required) OR Max V/Pts Maybe No V/Pts Site Stewardship 1.1 Erosion Controls During Construction Prerequisite 1 1 0 0 Landscaping 2.1 No Invasive Plants Prerequisite 1 0 0 0 2.2 Basic Landscape Design SS 2.5 1 0 0 0 0 2.3 Limit Conventional Turf for MID-RISE SS 2.5 1 0 <		5400	0		Sub-Total for	L Category	10	7 0	
Site Stewardship 1.1 Erosion Controls During Construction Prerequisite 1 1 0 0 12 Minimize Disturbed Area of Site for MID-RISE 1 1 0 0 0 Landscaping 2.1 No Invasive Plants Prerequisite 1 0 0 0 2.2 Basic Landscape Design SS 2.5 1 0 0 0 0 2.3 Limit Conventional Turf for MID-RISE SS 2.5 1 0 <td>Sustainable S</td> <td>Sites (SS)</td> <td></td> <td>(Minimum of 5 SS Points Re</td> <td>equired)</td> <td>OR</td> <td>Max</td> <td>Y/Pts_Maybe</td> <td>No Y/Pts</td>	Sustainable S	Sites (SS)		(Minimum of 5 SS Points Re	equired)	OR	Max	Y/Pts_Maybe	No Y/Pts
1.2 Minimize Disturbed Area of Site for MID-RISE 1 1 0 0 Landscaping 2.1 No Invasive Plants Prerequisite 1 0 0 2.2 Basic Landscape Design SS 2.5 1 0 0 0 2.3 Limit Conventional Turf for MID-RISE SS 2.5 1 0 0 0 2.4 Drought Tolerant Plants for MID-RISE SS 2.5 1 1 0 0 0 2.5 Reduce Overall Irrigation Demand by at Least 20% for MID-RISE 3 0 0 0 0 2.5 Reduce Roof Heat Island Effects for MID-RISE 1 0 0 0 0 3.2 Reduce Roof Heat Island Effects for MID-RISE 1 1 0 0 0 Surface Water 4.1 Permeable Lot for MID-RISE 2 0 0 0 Management 4.2 Permanent Erosion Controls 1 1 0 0 Stormwater Quality Control for MID-RISE 2 0 0 0 0 0 0 0 0 0 </td <td>Site Stewardship</td> <td></td> <td>1.1</td> <td>Erosion Controls During Construction</td> <td>oquirou)</td> <td>ON</td> <td>Prerequisite</td> <td>in to maybe</td> <td></td>	Site Stewardship		1.1	Erosion Controls During Construction	oquirou)	ON	Prerequisite	in to maybe	
Landscaping 2.1 No Invasive Plants Prerequisite Pre	·		1.2	Minimize Disturbed Area of Site for MID-RISE			1	1 0	0
** 2.2 Basic Landscape Design SS 2.5 1 0 0 0 ** 2.3 Limit Conventional Turf for MID-RISE SS 2.5 2 1 0 0 ** 2.4 Drought Tolerant Plants for MID-RISE SS 2.5 2 1 0 0 ** 2.5 Reduce Overall Irrigation Demand by at Least 20% for MID-RISE 3 0 0 0 Local Heat Island Effects * 3.1 Reduce Site Heat Island Effects for MID-RISE 1 1 0 0 0 Surface Water * 4.1 Permeable Lot for MID-RISE 1 1 0 0 0 Management * 4.2 Permanent Erosion Controls 1 1 0 0 0 * 4.3 Stormwater Quality Control for MID-RISE 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 2 0 0 6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 0 6.3	Landscaping	Z	2.1	No Invasive Plants			Prerequisite		
Solution Solution <td< td=""><td></td><td>24</td><td>2.2</td><td>Basic Landscape Design</td><td></td><td>SS 2.5</td><td>1</td><td>0 0</td><td>0</td></td<>		24	2.2	Basic Landscape Design		SS 2.5	1	0 0	0
>> 2.5 Reduce Overall Irrigation Demand by at Least 20% for MID-RISE 3 0 0 0 Local Heat Island Effects >> 3.1 Reduce Overall Irrigation Demand by at Least 20% for MID-RISE 1 0 0 0 0 Surface Water >> 3.2 Reduce Roof Heat Island Effects for MID-RISE 1 1 0 0 0 Surface Water >> 4.1 Permeable Lot for MID-RISE 2 0 0 0 Management 4.2 Permanent Frosion Controls 1 1 0 0 0 Stormwater Quality Control for MID-RISE 2 2 0 0 0 Nontoxic Pest Control 5 Pest Control Alternatives 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 0 0 0 0 0 6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<		24	2.3	Drought Tolerant Plants for MID-RISE		55 2.5 SS 2.5	2 1	1 0	0
Local Heat Island Effects > 3.1 Reduce Site Heat Island Effects for MID-RISE 1 0 0 0 Surface Water > 4.1 Permeable Lot for MID-RISE 1 1 0 0 0 Management 4.2 Permanent Erosion Controls 1 1 0 0 0 Stormwater Quality Control for MID-RISE 2 0 0 0 0 Nontoxic Pest Control 5 Pest Control Alternatives 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 0 0 0 6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.2 4 4 4 4 7.1 Public Transit for MID-RISE 1 1 0 0 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 0 0 <td< td=""><td></td><td>8</td><td>2.5</td><td>Reduce Overall Irrigation Demand by at Least</td><td>t 20% for MID-RI</td><td>SE</td><td>3</td><td>0 0</td><td>0</td></td<>		8	2.5	Reduce Overall Irrigation Demand by at Least	t 20% for MID-RI	SE	3	0 0	0
32 Reduce Roof Heat Island Effects for MID-RISE 1 1 0 0 Surface Water 4.1 Permaeble Lot for MID-RISE 2 0 0 0 Management 4.2 Permanent Erosion Controls 1 1 0 0 *4.3 Stormwater Quality Control for MID-RISE 2 2 0 0 Nontoxic Pest Control 5 Pest Control Alternatives 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 0 0 0 6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.3 4 4 0 4 Alternative Transportation 7.1 Public Transit for MID-RISE 2 2 0 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 1 0 0 0	Local Heat Island	Effects 🛛 🛰	3.1	Reduce Site Heat Island Effects for MID-RISE			1	0 0	0
Surface Water > 4.1 Permeable Lot for MID-RISE 2 0 0 Management 4.2 Permanent Erosion Controls 1 1 0 0 * 4.3 Stormwater Quality Control for MID-RISE 2 2 0 0 Nontoxic Pest Control 5 Pest Control Alternatives 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 0 0 0 6.2 High Density for MID-RISE 2 0 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.2 4 4 0 4 Alternative Transportation 7.1 Public Transit for MID-RISE 2 2 0 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0 0 0		×	3.2	Reduce Roof Heat Island Effects for MID-RISI	E		1	1 0	0
Management 4.2 Permanent erosion commons 1 1 1 0 0 2 3 Stormwater Quality Control for MID-RISE 2 2 0 0 Nontoxic Pest Control 5 Pest Control Alternatives 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 0 0 0 6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.2 4 4 0 4 Alternative Transportation 7.1 Public Transit for MID-RISE 2 0 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0 0	Surface Water	24	4.1	Permeable Lot for MID-RISE			2	0 0	0
Nontoxic Pest Control 5 Pest Control Alternatives 2 2 0 0 Compact Development 6.1 Moderate Density for MID-RISE 2 2 0	wanagement	~	4.2 4.3	Stormwater Quality Control for MID-RISE			2	2 0	0
Compact Development 6.1 Moderate Density for MID-RISE 2 0 0 0 6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.2 4 4 0 4 Alternative Transportation 7.1 Public Transit for MID-RISE 2 0 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0 0	Nontoxic Pest Cor	ntrol	5	Pest Control Alternatives			2	2 0	0
6.2 High Density for MID-RISE SS 6.1, 6.3 3 0 0 0 6.3 Very High Density for MID-RISE SS 6.1, 6.2 4 4 0 4 Alternative Transportation 7.1 Public Transit for MID-RISE 2 0 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0 0	Compact Develop	ment	6.1	Moderate Density for MID-RISE			2	0 0	0
b.s. Very night Density to MID-RISE SS b.1, b.2 4 4 0 4 Alternative Transportation 7.1 Public Transit for MID-RISE 2 2 0 7.2 Bicycle Storage for MID-RISE 1 1 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0			6.2	High Density for MID-RISE		SS 6.1, 6.3	3	0 0	0
7.2 Bicycle Storage for MID-RISE 1 0 0 7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0	Alternative Transp	ortation	б.З 7.1	Public Transit for MID-RISE		33 0.1, 0.2	4	2 0	4
7.3 Parking Capacity/Low-Emitting Vehicles for MID-RISE 1 0 0 0			7.2	Bicycle Storage for MID-RISE			1	1 0	0
			7.3	Parking Capacity/Low-Emitting Vehicles for M	ID-RISE		1	0 0	0

	for Homes		Builder Name	Urbanica				
VSGBG	/0/ //0//00		Project Team Leader (if different):	Shawn Pang Urb	anica			
			Home Address (Street/City/State)	Hyde Park Ave	amaica Plain	ΜΔ		
			nome Address (Sireer City/State).	Thyde I ark Ave, Se	inaica i iani,			
Project Description:				Adjusted C	ertification T	hresholds		
Building type:	lid-rico multi-for	ilv	# of otorioo: 5	Cortified	26 5	meanolas	Cold: 66 F	
Building type.	nu-nse muni-ram		# OI Stories.	Certilled.	30.5		Gold. 00.5	
# of units: 76		Av	g. Home Size Adjustment: -8.5	Silver:	51.5	Plat	inum: 81.5	
						1.1		
Project Point	Total		Final	Credit Catego	ry Total Po	oints		
Prelim: 50 -	⊦ 9 maybe pts		Final: 12.5 ID:	: 0 SS:	4	EA: 7	EQ	: 0
Certification I	Level		LL:	0 WE:		MR: 1.5	5 AE	: 0
Prelim: Cer	tified		Final: Not Certified					
		_						
date la	ast updated :					Max	Project Poir Proliminary	its Final
Innovation and	Design Proce	222	(ID) (No Minimum Points Re	equired)		Max	Y/Pts Maybe No	Y/Pts
1. Integrated Project P	Planning	1.1	Preliminary Rating	. 4		Prereq	Y	
	-	1.2	Energy Expertise for MID-RISE			Prereq	Y	
		1.3	Professional Credentialed with Respect to	LEED for Homes		1	1 0	0
		1.5	Building Orientation for Solar Design			1	0 0	0
		1.6	Trades Training for MID-RISE			1	0 0	0
2. Durability Managem	ient	2.1	Durability Planning			Prereq	Y	
Process		2.2	Durability Management Third-Party Durability Management Verific	cation		Prereq 3	Y O	0
3.Innovative or Region	nal 🔉	3.1	Innovation #1			1	1 0	0
Design	24	3.2	Innovation #2		-	1	0 0	0
	24	3.3	Innovation #3		-	1	0 0	0
	×	3.4	Innovation #4	Such Total for	ID Catagory	1	0 0	0
Leastion and L	inkeree (LL)		(No Minimum Drinte De	Sub-Total Ior	ID Category:	11	Z U	U)//Dtr
1. LEED ND	LINKAGES (LL)	1	LEED for Neighborhood Development	equirea)	112-6	10	T/Pts Maybe No	Y/Pts
2. Site Selection	8	2	Site Selection		•	2	0 0	0
3. Preferred Locations	;	3.1	Edge Development			1	0 0	0
		3.2	Infill		LL 3.1	2	2 0	0
4 1-6		3.3	Brownfield Redevelopment for MID-RISE			1	0 0	0
4. Infrastructure		4	Existing Infrastructure	c		1	1 0	0
5. Community Resource	ces/	5.1 5.2	Extensive Community Resources for MID-RIS	-RISE	LL 5.1. 5.3	2	0 0	0
		5.3	Outstanding Community Resources for M	ID-RISE	LL 5.1, 5.2	3	3 0	0
6. Access to Open Spa	ace	6	Access to Open Space			1	1 0	0
				Sub-Total for	LL Category:	10	7 0	0
Sustainable Si	tes (SS)		(Minimum of 5 SS Point	ts Required)	OR	Max	Y/Pts Maybe No	Y/Pts
1. Site Stewardship		1.1 1.2	Erosion Controls During Construction Minimize Disturbed Area of Site for MID-R	RISE		Prerequisite 1	1 0	0
2. Landscaping	~	2.1	No Invasive Plants			Prerequisite	1 0	
	24	2.2	Basic Landscape Design		SS 2.5	1	0 0	0
	24	2.3	Limit Conventional Turf for MID-RISE		SS 2.5	2	1 0	0
	8 8	2.4	Reduce Overall Irrigation Demand by at L	east 20% for MID-RI	55 2.5 SE	3	0 0	0
3. Local Heat Island Ef	ffects 🔉	3.1	Reduce Site Heat Island Effects for MID-F	RISE	-	1	0 0	0
	×	3.2	Reduce Roof Heat Island Effects for MID-	RISE		1	1 0	0
4. Surface Water	×	4.1	Permeable Lot for MID-RISE			2	0 0	0
wanagement	×	4.2 4.3	Stormwater Quality Control for MID-RISE			2	2 0	0
5. Nontoxic Pest Cont	rol	5	Pest Control Alternatives			2	2 0	0
6. Compact Developm	ent	6.1	Moderate Density for MID-RISE			2	0 0	0
		6.2	High Density for MID-RISE		SS 6.1, 6.3	3	0 0	0
7. Alternative Transpo		7.4	Public Transit for MID-RISE		30 0.1, 0.2	+ 2	2 0	0
	rtation	7.1			1		2 0	
	rtation	7.1	Bicycle Storage for MID-RISE Parking Capacity/Low-Emitting Vehicles for	or MID-RISE		1	1 0	0

	for Homes		Builder Name	Urbanica				
USGNC	for Homes							
			Project Team Leader (if different):	Snawn Pang, Urba	nica			
			Home Address (Street/City/State):	Hyde Park Ave, Jai	maica Plain,	МА		
Project Description:				Adjusted Ce	ertification T	hresholds		
Building type: M	id-rise multi-fan	nily	# of stories: 5	Certified:	36.5		Gold: 66.5	
# of units: 76		Av	g. Home Size Adjustment: -8.5	Silver:	51.5	Plat	inum: 81.5	
								_
Project Point	Total		Final C	Credit Categor	y Total Po	oints		
- Prelim: 50 +	9 maybe pts		Final: 12.5 ID:	0 SS:	4	EA: 7	EQ:	0
Cortification I				0 14/5	0	MD: 1 P		0
Prolim: Cord	.evel		Einal: Not Certified	Minimum Point			r Final Rating	
r renni. Cert	ineu				mesnolus	Not met io	i i inai Natiriy	
date la	st updated :					Max	Project Poin	ts
last u	updated by :					Pts	Preliminary	Final
Innovation and	Design Proc	ess	(ID) (No Minimum Points Requ	uired)		Max	Y/Pts Maybe No	Y/Pts
1. Integrated Project Pl	anning	1.1	Preliminary Rating			Prereq	Y	
		1.2	Professional Credentialed with Respect to L	EED for Homes		1	r 1 0	0
		1.4	Design Charrette			1	0 0	0
		1.5	Building Orientation for Solar Design			1	0 0	0
0. Dural III a Maraa		1.6	Trades Training for MID-RISE			1	0 0	0
2. Durability Manageme Process	ent	2.1	Durability Planning			Prereq	Y	
1100033		2.3	Third-Party Durability Management Verificat	tion		3	0 0	0
3.Innovative or Region	al 🛛	3.1	Innovation #1			1	1 0	0
Design	×	3.2	Innovation #2			1	0 0	0
	24	3.3	Innovation #3			1	0 0	0
	8	3.4	Innovation #4	Cub Total for 1	D Cataman u	11	0 0	0
Leveller en LL	········			Sub-Total for I	D Category:	11	2 0	0
LOCATION AND	inkages (LL)	1	(No Minimum Points Req	uirea)	UR	Max 10	Y/Pts Maybe No	Y/Pts
2. Site Selection	~	2	Site Selection			2	0 0	0
3. Preferred Locations		3.1	Edge Development			1	0 0	0
		3.2	Infill		LL 3.1	2	2 0	0
		3.3	Brownfield Redevelopment for MID-RISE			1	0 0	0
4. Infrastructure		4	Existing Infrastructure			1	1 0	0
5. Community Resource	es/	5.1	Basic Community Resources for MID-RISE			1	0 0	0
Transit		5.2	Outstanding Community Resources for MID-R	ISE I-RISE	LL 5.1, 5.3 LL 5.1, 5.2	2	3 0	0
6. Access to Open Spa	се	6	Access to Open Space		,	1	1 0	0
			· · · ·	Sub-Total for L	L Category:	10	7 0	0
Sustainable Sit	es (SS)		(Minimum of 5 SS Points	Required)	OR	Max	Y/Pts Maybe No	Y/Pts
1. Site Stewardship			Exercise Controle During Construction			Prerequisite		
		1.1	Erosion Controls During Construction			1 Toroquiono		
		1.1 1.2	Minimize Disturbed Area of Site for MID-RIS	SE		1	1 0	0
2. Landscaping	8	1.1 1.2 2.1	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants	SE	66.9.5	1 Prerequisite	1 0	
2. Landscaping	x x	1.1 1.2 2.1 2.2 2.3	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE	SE	SS 2.5 SS 2.5	1 Prerequisite 1 2	1 0 0 0 1 0	0
2. Landscaping	s s s	1.1 1.2 2.1 2.2 2.3 2.4	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE	SE	SS 2.5 SS 2.5 SS 2.5	Prerequisite 1 2 1	1 0 0 0 1 0 1 0	0 0 0
2. Landscaping	S S S	1.1 1.2 2.1 2.2 2.3 2.4 2.5	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea	SE ast 20% for MID-RIS	SS 2.5 SS 2.5 SS 2.5 SS 2.5	1 Prerequisite 1 2 1 3	1 0 0 0 1 0 1 0 0 0	0 0 0 0
2. Landscaping 3. Local Heat Island Ef	a a a fects a	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS	SE ast 20% for MID-RIS SE SE	SS 2.5 SS 2.5 SS 2.5 SS 2.5	1 Prerequisite 1 2 1 3 1	1 0 0 0 1 0 0 0 0 0	0 0 0 0 0
2. Landscaping 3. Local Heat Island Eff	fects	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Reduce Noof Heat Island Effects for MID-RIS	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 SS 2.5	1 Prerequisite 1 2 1 3 1 1 1	1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0
2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management	fects	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RISE Permaent Erosion Controls	SE aast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 E	1 Prerequisite 1 2 1 3 1 1 1 2 1 1 2 1	1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0	0 0 0 0 0 0 0 0 0 0
2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management	fects a	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Permaent Erosion Controls Stormwater Quality Control for MID-RISE	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 SS 2.5	1 Prerequisite 1 2 1 3 1 1 2 1 2 1 2	1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0
 2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management 5. Nontoxic Pest Contr 	fects a a a a a a a a a a a a a a a a a a a	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3 5	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Cote Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Permeable Lot for MID-RISE Permanent Erosion Controls Stormwater Quality Control for MID-RISE Pest Control Alternatives	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 E	Prerequisite 1 2 1 3 1 1 2 1 2 1 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management 5. Nontoxic Pest Contr 6. Compact Developme	fects a b b c ol bent	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3 5 6.1 6.1	Minimize Disturbed Area of Site for MID-RIS No Invasive Plants Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Overall Irrigation Demand by at Lea Reduce Roof Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Permeable Lot for MID-RISE Permanent Erosion Controls Stormwater Quality Control for MID-RISE Pest Control Alternatives Moderate Density for MID-RISE	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 E	1 Prerequisite 1 2 1 3 1 1 2 1 2 2 2 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management 5. Nontoxic Pest Contr 6. Compact Developme	fects a b b ol	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3 5 6.1 6.2 6.3	Minimize Disturbed Area of Site for MID-RIS Minimize Disturbed Area of Site for MID-RIS Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Permaent Erosion Controls Stormwater Quality Control for MID-RISE Pest Control Alternatives Moderate Density for MID-RISE High Density for MID-RISE High Density for MID-RISE	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 E SS 6.1, 6.3 SS 6.1, 6.3	1 Prerequisite 1 2 1 3 1 1 2 1 2 1 2 2 2 3 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management 5. Nontoxic Pest Contr 6. Compact Developme 7. Alternative Transpor 	fects a solution of the soluti	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3 5 6.1 6.2 6.3 7.1	Minimize Disturbed Area of Site for MID-RIS Minimize Disturbed Area of Site for MID-RIS Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Permeable Lot for MID-RISE Permanent Erosion Controls Stormwater Quality Control for MID-RISE Pest Control Alternatives Moderate Density for MID-RISE High Density for MID-RISE Public Transit for MID-RISE	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 SE SS 6.1, 6.3 SS 6.1, 6.2	1 Prerequisite 1 2 1 3 1 1 2 2 2 2 3 4 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 2. Landscaping 3. Local Heat Island Eff 4. Surface Water Management 5. Nontoxic Pest Contr 6. Compact Developme 7. Alternative Transport 	fects A A A A A A A A A A A A A A A A A A A	1.1 1.2 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3 5 6.1 6.2 6.3 7.1 7.2	Minimize Disturbed Area of Site for MID-RIS Minimize Disturbed Area of Site for MID-RIS Basic Landscape Design Limit Conventional Turf for MID-RISE Drought Tolerant Plants for MID-RISE Reduce Overall Irrigation Demand by at Lea Reduce Overall Irrigation Demand by at Lea Reduce Site Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Reduce Roof Heat Island Effects for MID-RIS Permaent Erosion Controls Stormwater Quality Control for MID-RISE Pest Control Alternatives Moderate Density for MID-RISE High Density for MID-RISE Public Transit for MID-RISE Public Transit for MID-RISE Bicycle Storage for MID-RISE Parking Canacity/I ow-Emitting Vabiates for	SE ast 20% for MID-RIS SE ISE	SS 2.5 SS 2.5 SS 2.5 E SS 6.1, 6.3 SS 6.1, 6.2	1 Prerequisite 1 2 1 3 1 1 2 2 2 2 3 4 2 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LEED for Homes Mid-rise Simplified Project Checklist

Figure 3-31: LEED for Homes Checklist for Multi-Family Apartments

LEED for Homes Mid-rise Pilot Simplified Project Checklist (continued)

				Max	P	roject P	oints
				Pts	Pre	liminary	Final
Water Efficiency (WE)			(Minimum of 3 WE Points Required) OR	Max	Y/Pts	Maybe	No Y/Pts
. Water Reuse	24	1	Water Reuse for MID-RISE	5	0	0	0
. Irrigation System	24	2.1	High Efficiency Irrigation System for MID-RISE WE 2.2	2	0	0	0
	æ	2.2	Reduce Overall Irrigation Demand by at Least 45% for MID-RISE	2	0	0	0
. Indoor Water Use		3.1	High-Efficiency Fixtures and Fittings	3	1	0	0
		3.2	Very High Efficiency Fixtures and Fittings	6	4	0	0
		3.3	Water Efficient Appliances for MID-RISE	2	0	2	0
			Sub-Total for WE Category:	15	5	2	0
Energy and Atmosphere	(EA)	(Minimum of 0 EA Points Required) OR	Max	Y/Pts	Maybe	No Y/Pts
. Optimize Energy Performance		1.1	Minimum Energy Performance for MID-RISE	Prereq	Y		
		1.2	Testing and Verification for MID-RISE	Prereq	Y		
		1.3	Optimize Energy Performance for MID-RISE	34	7	0	7
7. Water Heating	×	7.1	Efficient Hot Water Distribution	2	0	0	0
		7.2	Pipe Insulation	1	1	0	0
1. Residential Refrigerant		11.1	Refrigerant Charge Test	Prereq	Y		
Management		11.2	Appropriate HVAC Refrigerants	1	1	0	0
			Sub-Total for EA Category:	38	9	0	7
Materials and Resources	. /	MP)	(Minimum of 2 MR Points Required)	Max	Y/Ptc	Maybe	No V/Pt
Material-Efficient Framing	(1.1	Eraming Order Waste Factor Limit	Preren	1/11/15	Maybe	
. material-Encient Framing		1.1	Detailed Framing Documents MD 1 5	1	0	0	0
		1.3	Detailed Cut List and Lumber Order MR 1.5	1	0	0	0
		1.0	Eraming Efficiencies MR 1.5	3	0	0	0
		1.5	Off-site Eabrication	4	0	4	0
Environmontally Proforable	~	2.1	ESC Cortified Transcel Wood	Prereg		7	Ť
Products	~	2.1	Environmentally Preferable Products	8	15	0	-
Wests Menorement	<u>a</u>	2.2	Construction Works Management Blanning	Drorog	1.5	U	- <u> </u>
s. waste wanagement		3.1	Construction Waste Management Planning	Pieleq	1 5	0	1.5
		3.2		3	1.5	0	1.5
			Sub-Total for MR Category:	16	3	4	1.5
Indoor Environmental Qu	ualit	ty (E	(Minimum of 6 EQ Points Required) OR	Max	Y/Pts	Maybe	No Y/Pts
2. Combustion Venting		2	Basic Combustion Venting Measures	Prereq	Y		
3. Moisture Control		3	Moisture Load Control	1	0	0	0
4. Outdoor Air Ventilation	8	4.1	Basic Outdoor Air Ventilation for MID-RISE	Prereq	Y		_
		4.2	Enhanced Outdoor Air Ventilation for MID-RISE	2	0	2	0
		4.3	Third-Party Performance Testing for MID-RISE	1	0	1	0
. Local Exhaust	~	5.1	Basic Local Exhaust	Prerequisite	Y	-	
	<u> </u>	5.2	Enhanced Local Exhaust	1	1	0	0
		5.3	Third-Party Performance Testing	1	1	0	0
Distribution of Space	~	6.1	Room-by-Room Load Calculations	Prereg	V	-	
Heating and Cooling		6.2	Return Air Flow / Room by Room Controls	1	0	0	0
		6.3	Third-Party Performance Test / Multiple Zones	2	0	0	0
Air Filtoring		7 1	Good Filters	Prereg	v	0	Ť
. All Filtering		7.1	Better Filters F0.7.3	1	0	0	0
		7.3	Best Filters	2	0	0	0
Contaminant Control	~		Indoor Contaminant Control during Construction	1	1	0	0
. containnant control	<u>a</u> s.	0.1 8.2	Indoor Contaminant Control for MID-RISE	2	0	0	0
	~	8.3		1	0	0	0
Padon Brotostion	~	0.1	Padon Posistant Construction in High Pick Aroon	Prorog	NI/A	0	0
	~	9.1 0.2	Radon-Resistant Construction in Moderate Pick Areas	1	N/A	0	
0. Corore Delluterat Protoct	∆s.	J.Z		Dec	0	0	0
o. Garage Pollutant Protection		10.1	NU TVAC IN GARAGE TOF MID-KISE	Prereq	Ŷ	0	
		10.2	Minimize Follutants from Garage for MID-RISE EQ 10.3	2	2	0	0
1 ETS Control	-	10.3	Environamental Tabacco Smoke Deduction for MID DISE	3 1	0	0	0
		11			7	0	0
2. Compartmentalization		12.1	Compartmentalization of Units	Prereq	Ŷ	0	-
of Units		12.2	Ennanced Compartmentalization of Units	1	0	0	0
			Sub-Total for EQ Category:	21	6	3	0
Awareness and Education	on (AE)	(Minimum of 0 AE Points Required)	Max	Y/Pts	Maybe	No Y/Pts
. Education of the	8	1.1	Basic Operations Training	Prereq	Y		
Homeowner or Tenant	~	1.2	Enhanced Training	1	0	0	0
	~	1.3	Public Awareness	1	1	0	0
Education of Building	-		r abile / materiolog	<u> </u>	-	0	-
Manager	24	2	Education of Building Manager	1	1	0	0
พลาลyฮา							
			Sub-Total for AE Category:	3	2	0	0

ENVIRONMENTAL PROTECTION

4.0 **ENVIRONMENTAL PROTECTION COMPONENT**

Shadow Impacts Analysis 4.1

4.1.1 Introduction

The following shadow study describes and graphically depicts anticipated new shadow impacts from the Project compared to shadows from existing buildings. The study presents the existing and built conditions for the proposed Project for the hours 9:00 AM, 12:00 Noon, 3:00 PM, and 6:00 PM for the vernal equinox, summer solstice, autumnal equinox, and winter solstice.

4.1.2 Vernal Equinox (March 21)

At 9:00 AM, shadows are cast in a westerly direction onto the railway behind the Project. There are no new shadows cast on existing buildings.

At 12:00 Noon, new shadow is cast in a northerly direction, which mostly stays within the Project Site. A minimal amount of shadow is anticipated on the edge of Ukraine Way.

At 3:00 PM, new shadow is cast in a northeasterly direction on a portion of Ukraine Way.

At 6:00 PM, shadows are cast in an easterly direction onto Hyde Park Ave. and abutting lawns.

4.1.3 Summer Solstice (June 21)

At 9:00 AM, shadows are cast in a westerly direction onto a portion of the railway behind the Project. There are no new shadows cast on existing buildings.

At 12:00 Noon, a minimal amount of shadow is cast in a northerly direction, which stays within the Site.

At 3:00 PM, a minimal amount of shadow from the Project is cast in a northeasterly direction near the corner of Ukraine Way and Hyde Park Ave.

At 6:00 PM, new shadow from the Project is cast in an easterly direction onto Hyde Park Ave., and a minimal amount cast onto the edge of a few abutting lawns.

4.1.4 Autumnal Equinox (September 21)

At 9:00 AM, shadows are cast in a westerly direction onto the railway behind the Project. There are no new shadows cast on existing buildings.

At 12:00 Noon, new shadow is cast in a northerly direction, which mostly stays within the Site. A minimal amount of shadow is anticipated on the edge of Ukraine Way.

At 3:00 PM, new shadow is cast in a northeasterly direction on a portion of Ukraine Way.

At 6:00 PM, shadows are cast in an easterly direction onto Hyde Park Ave. and abutting lawns.

4.1.5 Winter Solstice (December 21)

At 9:00 AM, shadows are cast in a northwesterly direction onto the railway behind the Project, as well as on portions of Washington St. and Ukraine Way near their intersection.

At 12:00 Noon, shadow is cast in a northerly direction onto the edge of the railway, parts of Ukraine Way, and the edge of the Forest Hills Station parking lot.

At 3:00 PM, new shadow from the Project is cast in a northeasterly direction along Hyde Park Ave., a portion of Ukraine Way, and a corner of the Forest Hills Station parking lot.

4.2.5 Summary

The Proposed Project's shadow impacts are minimal and do not overcast existing buildings during the daytime hours. New shadow is generally limited to the streets surrounding the Site, with afternoon shadows reaching Ukraine Way, and late-afternoon/early-evening shadows on Hyde Park Ave. The Proposed Project's comparable height with its context and the downward slope of the Site help to keep shadows from extending much beyond Hyde Park Ave. and front yards of homes until evening hours. Overall, the Proposed Project's shadow impacts will generally be consistent with current patterns and will not adversely impact the Project Site and surroundings.

Figure 4.2-1. Vernal Equinox- Shadow Study: March 21

Figure 4.2-2. Summer Solstice - Shadow Study: June 21

Parcel U - EPNF

LEGEND

Bus Stop

New shadow

Existing shadow

Figure 4.2-3. Autumnal Equinox –Shadow Study: September 21

Figure 4.2-4. Winter Solstice - Shadow Study: December 21

LEGEND Bus Stop New shadow Existing shadow

Parcel U - EPNF

New shadow

Existing shadow

Shadow Study: Dec. 21, Winter Solstice

4.2 Air Quality

Tech Environmental, Inc. performed air quality analyses for the proposed mixed-use residential/retail development at Parcel U in Jamaica Plain, MA. These analyses consisted of: 1) an evaluation of existing air quality; 2) an evaluation of potential carbon monoxide (CO) impacts from the operation of the Project's parking garage, and 3) a microscale CO analysis for intersections in the Project area that meet the BRA criteria for requiring such an analysis.

4.2.1 Existing Air Quality

The City of Boston is currently classified as being in attainment of the Massachusetts and National Ambient Air Quality Standards ("NAAQS") for all of the criteria air pollutants except ozone (see Table 4.2-1). These air quality standards have been established to protect the public health and welfare in ambient air, with a margin for safety.

The Massachusetts Department of Environmental Protection ("DEP") currently operates air monitors in various locations throughout the city. The closest, most representative, DEP monitors for carbon monoxide (CO), sulfur dioxide (SO_2) , nitrogen dioxide (NO_2) , fine particulate matter ($PM_{2.5}$), coarse particulate matter (PM_{10}), and lead are located at Dudley Square (Harrison Avenue). Harrison Avenue, Boston, MA. The closest, most representative, DEP monitor for ozone is located at Dudley Square (Harrison Avenue).

Table 4.2-2 summarizes the DEP air monitoring data, for the most recent available, complete, three-year period (2010-2012), that are considered to be representative of the project area. Table 4.2-2 shows that the existing air quality in the Project area is generally much better than the NAAQS. The highest impacts relative to a NAAQS are for ozone and $PM_{2.5}$. Ozone is a regional air pollutant on which the small amount of additional traffic generated by this Project will have an insignificant impact. The Project's operations will not have a significant impact on local PM_{2.5} concentrations.

Table 4.2-1. Massachusetts and National Ambient Air Quality Standards (NAAQS)

Pollutant	Averaging Time	NAAQS (µg/m³)
SO ₂	1-hour ^P 24-hour ^P Annual ^P (Arithmetic Mean)	196ª 365 ^b 80
СО	1-hour ^P 8-hour ^P	40,000 ^b 10,000 ^b
NO ₂	1-hour ^P Annual ^{P/S} (Arithmetic Mean)	188 [°] 100
PM ₁₀	24-hour ^{P/S}	150
PM _{2.5}	24-hour ^{P/S} Annual ^{P/S} (Arithmetic Mean)	35 ^d 12 ^{e,f}
O ₃	8-hour ^{P/S}	147 ^g
Pb	Rolling 3-Month Avg. ^{P/S} Calendar Quarter ^{P/S} (Arithmetic Mean)	0.15 1.5
P = primary standard; S = seca 00th percentile 1 hour con	condary standard.	roo (/oors)

tile 1-hour concentrations in a year (average over three years) ^b One exceedance per year is allowed. ^c98th percentile 1-hour concentrations in a year (average over three years). ^d98th percentile 24-hour concentrations in a year (average over three years). ^e Three-year average of annual arithmetic means. [†]As of March 18, 2013, the U.S. EPA lowered the PM₂₅ annual standard from 15 μ /m³ to 12 μ /m³. ^g Three-year average of the annual 4th-highest daily maximum 8-hour ozone concentration must not exceed 0.075 ppm (147 ug/m³) (effective May 27, 2008) and the annual PM_{10} standard was revoked in 2006.

Pollutant, Averaging Period	Monitor Location	Value (ug/m³)	NAAQS (ug/m ³)	Percent of NAAQS
CO, 1-hour	Harrison Avenue, Boston	2,863	40,000	7%
CO, 8-hour	Harrison Avenue, Boston	2,061	10,000	21%
NO ₂ , 1-hour	Harrison Avenue, Boston	93.4	188	50%
NO ₂ , Annual	Harrison Avenue, Boston	34.8	100	35%
Ozone, 8-hour	Harrison Avenue, Boston	131	147	89%
PM ₁₀ , 24-hour	Harrison Avenue, Boston	41	150	27%
PM _{2.5} , 24-hour	Harrison Avenue, Boston	21.3	35	59%
PM _{2.5} , Annual	Harrison Avenue, Boston	8.4	12	69%
Lead, Quarterly	Harrison Avenue, Boston	0.017	1.5	1.1%
SO _{2,} 1-hour	Harrison Avenue, Boston	47.4	196	24%

Table 4.2-2. Representative Existing Air Quality in the Project Area

Source: MassDEP, http://www.mass.gov/dep/air/priorities/agreports.htm., downloaded July 22, 2013.

Notes:

(1) Annual averages are highest measured during the most recent three-year period for which data are available (2010 -2012). Values for periods of 24-hours or less are highest, second-highest over the three-year period unless otherwise noted.

(2) The eight-hour ozone value is the 3-year average of the annual fourth-highest values, the 24-hour PM_{2.5} value is the 3year average of the 98th percentile values, the annual PM2.5 value is the 3-year average of the annual values – these are the values used to determine compliance with the NAAQS for these air pollutants.

(3) The one-hour NO₂ value is the 3-year average of the 98th percentile values and the one-hour SO₂ value is the -year average of the 99th percentile values

(4) The one-hour ozone standard was revoked by the US EPA in 2005; the annual PM₁₀ standard was revoked in 2006 and the 3-hour SO₂ standard was revoked by the US EPA in 2010.

4.2.2 Impacts from Parking Garage Ventilation

The Parcel U project includes a parking garage, located at ground level, designed to provide parking spaces for 42 vehicles. An analysis of the worst-case air quality impacts from the proposed parking garage was performed (see **Appendix B**). The procedures used for this analysis are consistent with U.S. EPA's Volume 9 guidance.¹ The objective of this analysis was to determine the maximum CO concentrations inside the garage and at the closest sensitive receptors surrounding the Project. These closest sensitive receptors include: air intakes located on the proposed building and nearby existing buildings and pedestrians at ground level

anywhere near the Project. CO emissions from motor vehicles operating inside the garage were calculated and the CO concentrations inside the garage and surrounding the Project were based on morning and afternoon peak traffic periods. The garage exhaust CO emissions were modeled using an U.S. EPA-approved air model.

Garage Ventilation System

The proposed parking garage will require mechanical ventilation. The garage ventilation system will be designed to provide adequate dilution of the motor vehicle emissions before they are vented outside. The design of the garage ventilation system will meet all building code requirements. Full ventilation of the garage will require a maximum flow of approximately 19,930 cubic feet per minute (cfm) of fresh air. This quantity of air is designed to meet the building code and will be more than adequate to dilute the emissions inside the parking garage to safe levels before they are vented outside. The garage ventilation exhausts will likely be located at two side vents.

Peak Garage Traffic Volumes

Parking for the apartment component of the Project will be provided in a ground-level garage. The peak morning and afternoon one-hour entering and exiting traffic volumes for the garage are shown in Table 4.2-3.

Table 4.2-3. Peak-Hour Garage Traffic Volumes

Period	Entering (vehicles/hour)	Exiting (vehicles/hour)	Total (vehicles/hour)	
Morning Peak Hour	8	26	34	
Afternoon Peak Hour	25	20	45	

Source: Howard-Stein Hudson, Inc.

Motor Vehicle Emission Rates

The U.S. Environmental Protection Agency (EPA) MOBILE6.2 emission factor model was used to calculate single vehicle CO emissions rates, for a vehicle speed of 5 mph. The inputs to the MOBILE6.2 model followed the latest guidance from the Massachusetts Department of Environmental Protection (DEP) and were performed for the baseline traffic year of 2014. This represents the worst case, since the MOBILE6.2 model predicts decreasing CO emissions rates in future years due to more stringent emission control requirements for new motor vehicles. The

¹ US EPA, "Guidelines for Air Quality Maintenance Planning and Analysis Volume 9 (Revised): Evaluating Indirect Sources," EPA-450/4-78-001, September 1978.

CO emission rate calculated by MOBILE6.2, for a speed of 5 mph, was 14.82 grams per mile (gpm) for each entering and exiting vehicle. These emission rates apply to wintertime conditions when motor vehicle CO emissions are greatest due to cold temperatures. MOBILE6.2 model output is provided in the **Appendix B.**

To determine the maximum one-hour CO emissions inside the garage it was necessary to estimate the amount of time each motor vehicle will be in the parking garage with its engine running. To be conservative, it was assumed that every car entering the garage will travel to the farthest parking spot, and that the vehicles leaving the garage will have to travel the same distance from inside the garage to the exit. The calculations in Appendix B show how long each vehicle was calculated to travel in the garage for both the morning and afternoon peak periods.

Peak Garage CO Emission Rate and CO Concentration Inside the Garage

The peak one-hour CO emission rate for the parking garage was calculated to be 0.97 grams per minute for the morning peak hour and 1.29 grams per minute for the afternoon peak hour. Applying the maximum volumetric garage ventilation flow rate for the parking garage, the peak one-hour CO concentration inside the garage was calculated to be 1.51 parts of CO per million parts of air (ppm) for the morning peak hour and 2.00 ppm for the afternoon peak hour. Therefore, the peak one-hour CO concentration inside the garage will be 2.00 ppm with a peak one-hour emission rate of 1.29 grams/minute (0.0215 grams/second), corresponding to the afternoon peak period. These predictions represent conservative estimates of the peak garage CO emissions and concentrations.

Peak Ambient CO Concentration

Worst-case concentrations of CO from the parking garage were predicted for locations around the building with using AERMOD model (Version 14134) in screening-mode. The results of the air quality analysis for locations outside and around the building are summarized in Table 4.2-4. The results in Table 4.2-4 represent all outside locations on and near the Project Site, including nearby building air intakes and nearby residences. Appendix B contains the AERMOD model output.

The AERMOD model in screening-mode was used to predict the maximum concentration of CO by modeling the garage emissions as a volume source with aerodynamic building downwash using worst-case meteorological conditions for an urban area. The screening-mode option simulates modeling results predicted by AERSCREEN. AERMOD was used to predict the total maximum concentration of CO by modeling the garage emissions as one volume source with the total peak morning CO emissions (0.006 grams/sec). The predicted concentrations presented here represent the worst-case air quality impacts from the garage at all locations on and around the Project. AERMOD predicted one-hour average concentrations of air pollutants.

AERMOD predicted that the maximum one-hour CO concentration from the garage exhausts will be 0.008 ppm (8.55 μ g/m³). This concentration represents the maximum CO concentration at any location surrounding the Project.

The maximum predicted eight-hour CO concentration at any ambient (outside) location will be significantly smaller than the one-hour prediction. This is because: 1) the average number of vehicles entering and exiting the garage over the peak eight-hour period will be significantly less than the peak one-hour values used to predict the peak one-hour CO impact, and 2) the worstcase meteorological conditions used to predict the peak one-hour impact will not persist for eight consecutive hours. AERSCREEN guidance allows the maximum eight-hour CO impact to be conservatively estimated by multiplying the maximum one-hour impact by a factor of 0.9 (i.e. the eight-hour impact is 90% of the one-hour impact). The maximum predicted eight-hour CO concentration was determined to be approximately 0.007 ppm (0.008 ppm x 0.9).

The U.S. EPA has established National Ambient Air Quality Standards (NAAQS) to protect the public health and welfare in ambient air, with a margin for safety. The NAAQS for CO are 35 ppm for a one-hour average and 9 ppm for an eight-hour average. The Commonwealth of Massachusetts has established the same standards for CO. Conservative, urban CO background values of 1.8 ppm for a one-hour period and 1.5 ppm for an eight-hour period were added to the maximum predicted garage ambient impacts to represent the CO contribution from other, more distant, sources. With the conservative background concentration added, the peak, total, one-hour and eight-hour CO impacts from the garage, at any location around the building, will be no larger than 1.50 ppm and 1.80 ppm, respectively. These maximum predicted total CO concentrations (garage exhaust impacts plus background) are safely in compliance with the NAAQS. This analysis demonstrates that the operation of the parking garage will not have an adverse impact on air quality.

Table 4.2-4. Peak Predicted Parking Garages Air Quality Impacts

Location	Peak Predicted One-Hour Impact (ppm)	One-Hour NAAQS (ppm)	Peak Predicted Eight-Hour Impact (ppm)	Eight-Hour NAAQS (ppm)
Outside – Surrounding the Building [*] (Parking Garages)	1.80**	35 (NAAQS)	1.50**	9 (NAAQS)

NAAQS = Massachusetts and National Ambient Air Quality Standards for CO (ppm = parts per million) * Representative of maximum CO impact at all nearby residences, buildings, and sidewalks. ** Includes background concentrations of 1.8 ppm for the one-hour period and 1.5 ppm for the eight-hour period.

Conclusions

A conservative air quality analysis demonstrates that there will be no adverse air quality impacts from the operation of the Project's proposed parking garage.

4.2.3 Microscale CO Analysis for Selected Intersections

The Boston Redevelopment Authority (BRA) and the Massachusetts DEP typically require a microscale air quality analysis for any intersection in the Project study area where the level of service (LOS) is expected to deteriorate to D and the proposed project causes a 10% increase in traffic or where the level of service is E or F and the project contributes to a reduction in LOS. For such intersections, a microscale air quality analysis is required to examine the carbon monoxide (CO) concentrations at sensitive receptors near the intersection.

A microscale air quality analysis was not performed for this Project due to its extremely small motor vehicle trip generation. The Project generates only 37 motor vehicle trips during the morning peak traffic hour and only 51 motor vehicle trips during the afternoon traffic hour. The Project will add no more than 40 motor vehicle trips to any of the intersections included in the transportation impact analysis during either the morning or afternoon peak traffic period. Table 4.2-5 shows that the Project will not deteriorate the LOS at any of the analyzed intersections and will increase the traffic at either intersection by no more than 1.5%. The small motor vehicle trip generation from the Project will not have a significant impact on motor vehicle delays and air pollutant emissions at the analyzed intersections. Therefore, the motor vehicle traffic generated by the Project will not have a significant impact on air quality at any intersection in the Project area and a microscale air quality analysis is not necessary for this Project.

Table 4.2-5. Summary of Build Case Level of Service

Intersection	Build LOS (AM/PM)	Requires Analysis?
Ukraine Way/Washington Street – signalized	D/E	NO*
Ukraine Way/Hyde Park Avenue – signalized	C/E	NO*
Site Drive South/Hyde Park Avenue – signalized	c/c	NO
Site Drive North/Hyde Park Avenue – unsignalized	A/A	NO
Parking Lot/Washington Street – unsignalized	A/A	NO
Weld Hill Street/Hyde Park Avenue– unsignalized	A/A	NO
Patten Street/Hyde Park Avenue – unsignalized	A/A	NO

The LOS shown represents the overall delay at each signalized intersection and the worst approach at the unsignalized intersection. Percentages shown for LOS D are percent increase in traffic from the Project.

*Project does not contribute to reduction in level of service. Source: Howard/Stein-Hudson Associates, Inc.

Conclusions

The traffic generated by the proposed project will have an insignificant impact on the peak-hour traffic volumes at local intersections. Therefore, the proposed Project will have an insignificant impact on the local air quality. The air quality in the Project area will remain safely in compliance with the NAAQS for CO after the Project is built.

4.3 Noise Impacts

Tech Environmental, Inc., performed a noise study to determine whether the operation of the proposed Project will comply with the City of Boston Noise Regulations and the Massachusetts Department of Environmental Protection ("DEP") Noise Policy.

4.3.1 Common Measures of Community Noise

The unit of sound pressure is the decibel (dB). The decibel scale is logarithmic to accommodate the wide range of sound intensities to which the human ear is subjected. A property of the decibel scale is that the sound pressure levels of two separate sounds are not directly additive. For example, if a sound of 70 dB is added to another sound of 70 dB, the total is only a 3-decibel increase (or 73 dB), not a doubling to 140 dB. Thus, every 3 dB increase represents a doubling of sound energy. For broadband sounds, a 3 dB change is the minimum change perceptible to the

human ear. Table 4.3-1 gives the perceived change in loudness of different changes in sound pressure levels.2

Table 4.3-1. Subjective Effects	of Changes in Sound	Pressure Levels
---------------------------------	---------------------	------------------------

Change in Sound Level	Apparent Change in Loudness	
3 dB	Just perceptible	
5 dB	Noticeable	
10 dB	Twice (or half) as loud	

Non-steady noise exposure in a community is commonly expressed in terms of the A-weighted sound level (dBA); A-weighting approximates the frequency response of the human ear. Levels of many sounds change from moment to moment. Some are sharp impulses lasting 1 second or less, while others rise and fall over much longer periods of time. There are various measures of sound pressure designed for different purposes. To establish the background ambient sound level in an area, the L₉₀ metric, which is the sound level exceeded 90 percent of the time, is typically used. The L₉₀ can also be thought of as the level representing the quietest 10 percent of any time period. Similarly, the L_{10} can also be thought of as the level representing the quietest 90 percent of any time period. The L_{10} and L_{90} are broadband sound pressure measures, i.e., they include sounds at all frequencies.

Sound level measurements typically include an analysis of the sound spectrum into its various frequency components to determine tonal characteristics. The unit of frequency is Hertz (Hz), measuring the cycles per second of the sound pressure waves, and typically the frequency analysis examines nine octave bands from 32 Hz to 8,000 Hz. A source is said to create a pure tone if acoustic energy is concentrated in a narrow frequency range and one octave band has a sound level 3 dB greater than both adjacent octave bands.

The acoustic environment in an urban area such as the Project area results from numerous sources. Observations show that major contributors to the background sound level in the Project area include motor vehicle traffic on local and distant streets, aircraft over-flights, mechanical equipment on nearby buildings, and general city noises such as street sweepers and police/fire sirens. Typical sound levels associated with various activities and environments are presented in Table 4.3-2.

4.3.2 Noise Regulations

Commonwealth Noise Policy

The DEP regulates noise through 310 CMR 7.00, "Air Pollution Control." In these regulations "air contaminant" is defined to include sound and a condition of "air pollution" includes the presence of an air contaminant in such concentration and duration as to "cause a nuisance" or "unreasonably interfere with the comfortable enjoyment of life and property."

Regulation 7.10 prohibits "unnecessary emissions" of noise. The DEP DAQC Policy Statement 90-001 (February 1, 1990) interprets a violation of this noise regulation to have occurred if the noise source causes either:

- the ambient level: or
- 2. A "pure tone" condition.

The ambient background level is defined as the L_{90} level as measured during equipment operating hours. A "pure tone" condition occurs when any octave band sound pressure level exceeds both of the two adjacent octave band sound pressure levels by 3 dB or more.

The DEP does not regulate noise from motor vehicles accessing a site or the equipment backup notification alarms. Therefore, the provisions described above only apply to a portion of the sources that may generate sound following construction of the Project.

Local Regulations

The City of Boston Environment Department regulates noise through the Regulations for the Control of Noise as administered by the Air Pollution Control Commission. The Project is located in an area consisting of commercial and residential uses. The Project will have low-rise residential uses to the north, east, and south. The Project must comply with Regulation 2.2 for noise levels in Residential Zoning Districts at these residential locations. Table 4.3-3 lists the maximum allowable octave band and broadband sound pressure levels for residential and business districts. Daytime is defined by the City of Boston Noise Regulations as occurring between the hours of 7:00 a.m. and 6:00 p.m. daily except Sunday. Compliance with the most restrictive nighttime residential limits will ensure compliance for other land uses with equal or higher noise limits.

4.3.3 Pre-Construction Sound Level Measurements

Existing baseline sound levels in the Project area were measured during the quietest overnight period when human activity and street traffic were at a minimum, and when the Project's mechanical equipment (the principal sound sources) could be operating. Since the Project's mechanical equipment may operate at any time during a 24-hour day, a weekday between

1. An increase in the broadband sound pressure level of more than 10 dBA above

² American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., <u>1989 ASHRAE Handbook--Fundamentals</u> (I-P) Edition, Atlanta, GA, 1989.

11:00 p.m. and 4:00 a.m. was selected as the worst-case time period, i.e., the time period when Project-related sounds may be most noticeable due to the quieter background sound levels. Establishing an existing background (L₉₀) during the quietest hours of the facility operation is a conservative approach for noise impact assessment and is required by the DEP Noise Policy.

Table 4.3-2. Common Indoor and Outdoor Sound Levels

Outdoor Sound Levels	Sound Pressure (µPa)	Sound Level (dBA)	Indoor Sound Levels
	6,324,555	110	Rock Band at 5 m
Jet Over-Flight at 300 m		105	
	2,000,000	100	Inside New York Subway Train
Gas Lawn Mower at 1 m		95	
	632,456	90	Food Blender at 1 m
Diesel Truck at 15 m		85	
Noisy Urban Area—Daytime	200,000	80	Garbage Disposal at 1 m
		75	Shouting at 1 m
Gas Lawn Mower at 30 m	63,246	70	Vacuum Cleaner at 3 m
Suburban Commercial Area		65	Normal Speech at 1 m
	20,000	60	
Quiet Urban Area—Daytime		55	Quiet Conversation at 1m
	6,325	50	Dishwasher Next Room
Quiet Urban Area—Nighttime		45	
	2,000	40	Empty Theater or Library
Quiet Suburb—Nighttime		35	
	632	30	Quiet Bedroom at Night
Quiet Rural Area—Nighttime		25	Empty Concert Hall
Rustling Leaves	200	20	Average Whisper
		15	Broadcast and Recording Studios
	63	10	
		5	Human Breathing
Reference Pressure Level	20	0	Threshold of Hearing

Notes: µPa, or micro-Pascals, describes sound pressure levels (force/area). DBA, or A-weighted decibels, describes sound pressure on a logarithmic scale with respect to 20 µPa (reference pressure level).
	Zoning District		
Octave Band (Hz)	R (Daytime)	esidential (All Other Times)	Business (anytime)
32 Hz	76	68	79
63 Hz	75	67	78
125 Hz	69	61	73
250 Hz	62	52	68
500 Hz	56	46	62
1000 Hz	50	40	56
2000 Hz	45	33	51
4000 Hz	40	28	47
8000 Hz	38	26	44
Broadband (dBA)	60	50	65

Table 4.3-3. Maximum Allowable Sound Pressure Levels (dB) City of Boston

The nighttime noise measurement locations are as follows (see the Figure 1 in the **Appendix C**):

Monitoring Location #1: Hyde Park Avenue & Walk Hill Street

Monitoring Location #2: Hyde Park Avenue & Ukraine Way

Broadband (dBA) and octave band sound level measurements were made with a Bruel and Kjaer Model 2250 environmental sound level analyzer, at each monitoring location, for a duration of approximately thirty minutes. The full octave band frequency analysis was performed on the frequencies spanning 16 to 16,000 Hertz. A time-integrated statistical analysis of the data used to quantify the sound variation was also performed, including the calculation of the L_{90} , which is used to set the ambient background sound level.

The B&K model 2250 is equipped with a $\frac{1}{2}$ precision condenser microphone and has an operating range of 5 dB to 140 dB and an overall frequency range of 3.5 Hz to 20,000 Hz. This meter meets or exceeds all requirements set forth in the ANSI S1.4-1983 Standards for Type 1 guality and accuracy and the State and City requirements for sound level instrumentation. Prior to any measurements, this sound analyzer was calibrated with an ANSI Type 1 calibrator that has an accuracy traceable to the National Institute of Standards and Technology (NIST). During all measurements, the B&K 2250 was tripod mounted at approximately five feet above the ground in open areas away from vertical reflecting surfaces.

The nighttime sound level monitoring was conducted on Wednesday and Thursday, May 14 and 15, 2014. Weather conditions during the sound survey were conducive to accurate sound level monitoring: the temperature was 58° F, the skies were overcast, and the winds were 0 to 5 mph.

effects of wind-generated noise.

The nighttime sound level measurements taken in the vicinity of the Project Site reveal sound levels that are typical for an urban area. The significant sources of existing sound at both locations are motor vehicle traffic on local streets, pedestrian traffic and the adjacent MBTA Needham commuter rail line.

The results of the nighttime baseline sound level measurements are presented in Table 4.3-4. The nighttime background L_{90} level was 46.8 dBA at Location #2 and 49.4 dBA at Location #1. The octave band data in **Table 4.3-4** show that no pure tones were detected in the nighttime noise measurements.

Table 4.3-4. Nighttime Baseline Sound Level Measurements, May 14, 2014

Sound Level Measurement	(Location #1) Hyde Park Avenue & Walk Hill Street 11:01 – 11:31 p.m.	(Location #2) Hyde Park Avenue & Urkaine Way 11:45 p.m 12:15 a.m.
Broadband (dBA) Background (L ₉₀)	46.8	49.4
Octave Band L ₉₀ (dB) 16 Hz 32 Hz 63 Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz	51.4 55.1 55.1 50.2 41.7 40.7 43.1 39.3 28.4 17.6 12.5	50.8 57.5 57.1 53.1 47.1 43.6 45.3 41.6 32.4 22.2 12.8
Pure Tone?	No	No

Noise monitoring at the Project Site during the morning peak traffic period was used to evaluate the existing ambient sound levels and to evaluate conformance with the Site Acceptability Standards established by HUD for residential development. The purpose of the HUD guidelines is to provide standards for determining the acceptability of residential project locations with regards to existing sound levels. The HUD criteria regarding the day-night average sound level (L_{dn}) are listed below. These standards apply to L_{dn} measurements taken several feet from the building in the direction of the predominant source of noise.

The microphone of the sound level analyzer was fitted with a 7-inch windscreen to negate any

- Normally Acceptable L_{dn} not exceeding 65 dBA
- Normally Unacceptable L_{dn} above 65 dBA but not exceeding 75 dBA
- Unacceptable L_{dn} above 75 dBA.

These HUD standards do not apply to this Project, but are used as guidance regarding the suitability of the Project area with regard to background sound levels.

Daytime sound level measurements were taken to help estimate the L_{dn} for the Project Site. A 30-minute sound level measurement was taken during the morning, on Friday, May 16, 2014 between 8:36 a.m. and 9:06 a.m. at Hyde Park Avenue and Ukraine Way (Location #2) representing the closest location to the Project Site. The weather conditions during the sound survey were conducive to accurate sound level monitoring: the skies were overcast, and the winds were 5-10 mph. The microphone of the sound level analyzer was fitted with a 7-inch windscreen to negate any effects of wind-generated noise.

The daytime sound level measurements taken in the vicinity of the Project Site reveal sound levels that are typical for an urban area. The main sources of noise during the peak morning traffic period sound level measurement were motor vehicle traffic on nearby local streets, construction vehicles in the distance, adjacent MBTA Needham commuter rail line activity, and aircraft over-flights. The L_{eg} measured during the morning period was 70 dBA. The L_{eg} sound level measured during the nighttime at the same location was 63 dBA. Using both the daytime and nighttime L_{eq} sound levels, the calculated L_{dp} for the site is 71 dBA, which is above the HUD guideline noise limit of 65 dBA.

It is assumed that standard building construction practices will result in at least a 20 dBA reduction of sound from outdoor sound levels. The Proponent will incorporate sound mitigation, as necessary, to assure that motor vehicle sound sources and the MBTA rail yard do not result in noise impacts greater than 45 dBA inside the residential units closest to the neighboring streets.

Reference Data and Candidate Mitigation Measures 4.3.4

The mechanical systems for the Proposed Project are in the early design stage. Typical sound power data for the equipment of the expected size and type for the Project have been used in the acoustic model to represent the Project's mechanical equipment. The sound levels from all potential significant Project noise sources are discussed in this section.

The design for the Proposed Project is expected to include the following significant mechanical equipment:

- Ductless Mini Splits Units with rooftop condensers on the 24 townhomes.
- VRV/VRF units or Multi zoned Minisplits with rooftop condensers on the apartment building.

Parcel U - EPNF

The equipment listed above was included in the noise impact analysis. The Project's traffic was not included in the noise analysis because motor vehicles are exempt under both the City of Boston and Massachusetts DEP noise regulations.

The sound generation profiles for the mechanical equipment noise sources operating concurrently under full-load conditions were used to determine the maximum possible resultant sound levels from the Project Site as a whole, to define a worst-case scenario. To be in compliance with City and DEP regulations, the resultant sound level must not exceed the allowable octave band limits in the City of Boston noise regulation and must be below the allowable incremental noise increase, relative to existing noise levels, as required in the DEP Noise Policy.

This sound level impact analysis was performed using sound generation data for representative equipment to demonstrate compliance with noise regulations. As the building design evolves, the sound generation for the actual equipment selected may differ from the values that were utilized for the analysis.

4.3.5 Calculated Future Sound Levels

Methodology

Future maximum sound levels at the upper floors of all existing residences bordering the Project, and at the nearest residential property line, were calculated with acoustic modeling software assuming simultaneous operation of all mechanical equipment at their maximum loads.

The Cadna-A computer program, a comprehensive 3-dimensional acoustical modeling software package was used to calculate Project generated sound propagation and attenuation.³ The model is based on ISO 9613, an internationally recognized standard specifically developed to ensure the highly accurate calculation of environmental noise in an outdoor environment. ISO 9613 standard incorporates the propagation and attenuation of sound energy due to divergence with distance, surface and building reflections, air and ground absorption, and sound wave diffraction and shielding effects caused by barriers, buildings, and ground topography.

Receptors

The closest/worst-case sensitive (residential) location is to the east of the project on Hyde Park Ave (R1). This location was selected based on the proximity of the equipment (smaller distances correspond to larger noise impacts) and the amount of shielding by other buildings (taller nearby residential locations will experience less shielding from the Project's rooftop mechanical equipment, which may result in larger potential noise impacts from the Project). This location is

³Cadna-A Computer Aided Noise Abatement Program, Version 4.4

expected to receive the largest sound level impacts from the Project's rooftop mechanical equipment. It can be classified as a residential zone.

The sound level impacts from the building's mechanical equipment were predicted at the closest residential location, as well as at four other residential locations to the east and south of the project area. Figure 1 in Appendix C shows the locations of the modeled noise receptors. Noise impacts at other nearby noise-sensitive locations (residences, parks, etc.) farther from the Project Site will be less than those predicted for these receptors.

4.3.6 Compliance with State and Local Noise Standards

The City of Boston and DEP noise standards apply to the operation of the mechanical equipment at the proposed Project. The details of the noise predictions are presented in Tables 4.3-5 through 4.3-9. The sound impact analysis includes the simultaneous operation of the Project's rooftop HVAC equipment. The predicted sound levels are worst-case predictions that represent all hours of the day, as the analysis assumes full operation of the mechanical equipment 24hours a day. The typical sound level impacts from the mechanical equipment will likely be lower than what is presented here, since most of the mechanical equipment will operate at full-load only during certain times of the day and during the warmer months of the year, it is not likely that all of the mechanical equipment will operate at the same time. Sound level impacts at locations farther from the Project (e.g. other residences, etc.) will be lower than those presented in this report.

City of Boston Noise Standards

The noise impact analysis results, presented in **Tables 4.3-6** through **4.3-9**, reveal that the sound level impact at the worst-case property line and the closest residence will be 42.5 dBA. The smallest sound level impact of 39.5 dBA is predicted to occur at the R5 on Walk Hill Street. Noise impacts predicted at all locations are in compliance with the City of Boston's nighttime noise limit (50 dBA) for a residential area. Note that sound levels from the Project will be below the residential nighttime limits at all times. The results also demonstrate compliance with the City of Boston, residential, non-daytime, octave band noise limits at all locations.

The City of Boston noise limits for business areas are significantly higher than the nighttime noise limits for residential areas (see **Table 4.3-3**). The Project will also easily comply with the City of Boston business area noise limits at all surrounding commercial properties.

Massachusetts DEP Noise Regulations

The predicted sound level impacts at the worst-case property line and the worst-case residential locations were added to the measured L₉₀ value of the quietest daily hour to test compliance with DEP's noise criteria. Assuming the Project's mechanical noise is constant throughout the day, the Project will cause the largest increase in sound levels during the period when the between 12:00 a.m. and 5:00 a.m.

The predicted sound level impacts at the worst-case property line and the closest residences were added to the L_{90} values measured during the period with the least amount of background noise to test compliance with DEP's noise criteria. The predicted noise impacts at the property line and the closest residences were added to the most-representative measured L₉₀ values to determine the largest possible increase in the sound level at each location during the guietest hour at the Project Site.

As shown in Tables 4.3-6 through 4.3-9, the Project is predicted to produce a less than 1 dBA change in the background sound levels at all modeled locations. Therefore, the Project's worstcase sound level impacts during the quietest nighttime periods will be in compliance with the Massachusetts DEP allowed noise increase of 10 dBA. The noise predictions for each octave band indicate that the mechanical equipment will not create a pure tone condition at any location.

MBTA Commuter Rail Line

One of the benefits of the project is that the townhouse buildings and apartment building will act as a sound barrier between the MBTA Needham commuter rail line and residences along Hyde Park Avenue and Walk Hill Street. The Cadna-A acoustic model was used to calculate the potential sound reduction of the buildings. The sound level reductions ranged from 3 to 13 dBA, which are considered a barely perceptible to a significant sound reduction.

lowest background noise occurs. Minimum background sound levels (diurnal) typically occur

Table 4.3-5. Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue (Closest PL & Residence) – Location R1

Octave Bands	Residential Nighttime Noise Standards	Maximum Predicted Sound Levels*
32 Hz	68	51
63 Hz	67	49
125 Hz	61	48
250 Hz	52	43
500 Hz	46	42
1000 Hz	40	37
2000 Hz	33	30
4000 Hz	28	21
8000 Hz	26	7
Broadband (dBA)	50	42.5
Compliance with the City of	Boston Noise Regulation?	Yes

Sound Level Metric	Maximum Sound Levels* (dBA)
Existing Nighttime Background, L ₉₀ (Location # 2)	49.4
Parcel U Project*	42.5
Calculated Combined Future Sound Level	50.2
Calculated Incremental Increase	+0.8
Compliance with DEP Noise Policy?	Yes

* Assumes full-load operation of all mechanical equipment.

Note: DEP Policy allows a sound level increase of up to 10 dBA

Location R2

Octave Bands	Residential Nighttime Noise Standards	Maximum Predicted Sound Levels*
32 Hz	68	49
63 Hz	67	46
125 Hz	61	44
250 Hz	52	41
500 Hz	46	41
1000 Hz	40	37
2000 Hz	33	32
4000 Hz	28	23
8000 Hz	26	8
Broadband (dBA)	50	42.0
Compliance with the City of	Boston Noise Regulation?	Yes

Sound Level Metric	Maximum Sound Levels* (dBA)
Existing Nighttime Background, L ₉₀ (Location # 2)	49.4
Parcel U Project*	42.0
Calculated Combined Future Sound Level	50.1
Calculated Incremental Increase	+0.7
Compliance with DEP Noise Policy?	Yes
* Assumes full-load operation of all mechanical equipment. Note: DEP Policy allows a sound level increase of up to 10 dBA	

Table 4.3-6. Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue –

Octave Bands	Residential Nighttime Noise Standards	Maximum Predicted Sound Levels*
32 Hz	68	49
63 Hz	67	45
125 Hz	61	42
250 Hz	52	41
500 Hz	46	40
1000 Hz	40	37
2000 Hz	33	31
4000 Hz	28	23
8000 Hz	26	8
Broadband (dBA)	50	41.3
Compliance with the City of	Boston Noise Regulation?	Yes

Table 4.3-7. Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue – Location R3

Sound Level Metric Maximum Sound Levels* (dBA) Existing Nighttime Background, L₉₀ (Location # 2) 49.4 Parcel U Project* 41.3 Calculated Combined Future Sound Level 50.0 Calculated Incremental Increase +0.6 Compliance with DEP Noise Policy? Yes

* Assumes full-load operation of all mechanical equipment.

Note: DEP Policy allows a sound level increase of up to 10 dBA

Location R4

Octave Bands	Residential Nighttime Noise Standards	Maximum Predicted Sound Levels*
32 Hz	68	47
63 Hz	67	43
125 Hz	61	40
250 Hz	52	39
500 Hz	46	38
1000 Hz	40	36
2000 Hz	33	31
4000 Hz	28	23
8000 Hz	26	10
Broadband (dBA)	50	40.1
Compliance with the City of Boston Noise Regulation?		Yes

Sound Level Metric	Maximum Sound Levels* (dBA)
Existing Nighttime Background, L ₉₀ (Location # 1)	46.9
Parcel U Project*	40.1
Calculated Combined Future Sound Level	47.7
Calculated Incremental Increase	+0.8
Compliance with DEP Noise Policy?	Yes
* Assumes full-load operation of all mechanical equipment. Note: DEP Policy allows a sound level increase of up to 10 dBA	

Table 4.3-8. Estimated Future Sound Level Impacts – Anytime Hyde Park Avenue –

Octave Bands	Residential Nighttime Noise Standards	Maximum Predicted Sound Levels*
32 Hz	68	46
63 Hz	67	42
125 Hz	61	39
250 Hz	52	38
500 Hz	46	38
1000 Hz	40	35
2000 Hz	33	30
4000 Hz	28	21
8000 Hz	26	6
Broadband (dBA)	50	39.5
Compliance with the City of	Boston Noise Regulation?	Yes

Table 4.3-9. Estimated Future Sound Level Impacts	– Walk Hill Street – Location R5
---	----------------------------------

Sound Level Metric	Maximum Sound Levels* (dBA)
Existing Nighttime Background, L ₉₀ (Location # 1)	46.9
Parcel U Project*	39.5
Calculated Combined Future Sound Level	47.6
Calculated Incremental Increase	+0.7
Compliance with DEP Noise Policy?	Yes

* Assumes full-load operation of all mechanical equipment. Note: DEP Policy allows a sound level increase of up to 10 dBA

4.3.7 Conclusions

Sound levels at all nearby sensitive locations and at all property lines will fully comply with the most stringent City of Boston and DEP daytime and nighttime sound level limits. The project will also help to reduce sound levels from the existing MBTA Needham commuter rail line at nearby residences.

criteria.

Stormwater Management and Water Quality 4.4

The existing storm drain utility infrastructure surrounding the proposed Parcel U site appears to be of adequate capacity to service the needs of the project. Best management practices and sustainable design will be incorporated into the Project wherever practical and applicable. Stormwater management systems will be designed to remove 80% of the average annual postconstruction load of Total Suspended Solids (TSS).

Utility connections will be designed to minimize impacts to the surrounding area and all appropriate permits and approvals will be acquired prior to construction.

The proposed stormwater management systems will include water quality units and groundwater recharge systems. The Project will increase the amount of impervious area at the site compared to the existing condition. It is anticipated that the stormwater recharge systems will work to passively infiltrate runoff into the ground with a gravity recharge system. The underground recharge system, and any required site closed drainage systems, will be designed so that there will be no increase in the peak rate of stormwater discharge from the Project site in the developed condition compared to the existing condition. In addition, water quality units will be installed to reduce pollutants prior to discharging to the groundwater recharge systems.

All improvements and connections to BWSC infrastructure will be reviewed as part of the Commission's site plan review process. The process includes a comprehensive design review of the proposed service connections, assessment of project demands and system capacity.

Solid and Hazardous Waste Materials 4.5

4.5.1 Solid Waste

During the preparation of the Site, debris, including asphalt, trash, and demolition debris, as necessary, will be removed from the Project Site. The Proponent will ensure that waste removal and disposal during construction and operation will be in conformance with the City and DEP's Regulations for Solid Waste.

This acoustic analysis demonstrates that the Project's design will meet the applicable acoustic

Upon completion of construction, the Proposed Project will generate approximately 24 tons of solid waste per year, based on the assumption that each residential unit generates 8 lbs of solid waste per day, office (community space) use generates .01 lb/sf / day, and retail uses generate .02 lb / sf / day -translating to approximately 23 tons / year for the residential units, approximately 0.5 tons / year for the office (community space) use, and approximately 0.5 ton / year for the retail. Residential waste for the homeownership units in Phases A and B will be handled by trash containers in the ground floor garages which will be picked up by private contractors. The Phase C, apartment rental trash, will be handled through a trash chute extending to all floors, and then compacted before being brought to the ground level garage for disposal by private contractors. Waste from the office and retail components will be brought directly to the loading area by their respective staffs.

The project will also include ambitious goals for construction waste management in order to meet the requirements for the LEED[™] rating system. This strategy will divert demolition and construction waste by reusing and recycling materials.

In order to meet the requirements for the Boston Environmental Department and the LEED[™] rating system, the overall Proposed Project will include space dedicated to the storage and collection of recyclables, including dedicated dumpsters at the loading area. The recycling program will meet or exceed the City's guidelines, and provide-areas for waste paper and newspaper, metal, glass, and plastics (21 through 27, co-mingled).

4.5.2 Hazardous Waste and Materials

The 2.89 acre Parcel U site is currently vacant, grass covered, undeveloped, and owned by the MBTA. The Site has been utilized as a green space over the last several years, according to IES, Parcel U's hazardous waste consultants; although the property was utilized for rail car storage by various rail companies prior to that since the 1920's.

Based on a historical review and research of state and local files completed by IES Inc. in its Phase I Environmental Site Assessment for Parcel U (May 14, 2014), the project site is not listed on any EPA or DEP data bases, and that there were no recognized environmental conditions (REC's), identified hazardous substances or petroleum products, on the site. Nearby listings of concern identified in the IES study include railroad lines located on the Site's western boundary; a former gasoline filling station with associated UST at 8 Walk Hill Street, which adjoins the Site to the southeast; a used automobile dealer at 388R Washington Street, 100 feet to the south of the Site; and the nearby DEP spill at 25 Walk Hill Street (Release Tracking Number. N81-5012), approximately 250 feet to the southeast of the Site.

None of these spills/releases were considered posing significant environmental problems to the Site at this time according to the IES report. Nevertheless, due to the potential on-site and offsite threats of contamination, IES classifies the Site as a "Moderate/High Cleanup Risk due to

potential for groundwater contamination from adjoining properties and to historical use of the Site for storage and maintenance of railways cars.

The project proponent has continued to retain IEP to provide Licensed Site Professional support services during property redevelopment activities to both maintain compliance with the MCP and to assist with planning and attaining site closure under the MCP.

Additional detailed information from the IEP Phase I Environmental Site Assessment is available upon request to the Proponent.

Geotechnical / Groundwater Impacts Analysis 4.6

Site grades on the 2.9 acres site slope downward from the east (Hyde Park Avenue) to the west (MBTA tracks), and vary from elevations 55 to 37 feet including gradual to steep contours. The adjacent MBTA lines are depressed approximately 7 to 8 feet, and separated by a concrete retaining wall. Below grade parking is proposed for the Phase A and B home ownership developments.

Based on a "Preliminary Groundwater Summary" completed by KMM Geotechnical Consultants, LLC on August 16, 2013, it is anticipated that there will be little or no impact to the groundwater table due to the Proposed Project. The foundations are expected to use a conventional spread footing foundation with very little subsurface work required with the below level garages, and no work below the water table. The subgrade conditions are generally considered suitable by the geotechnical consultant to support the proposed spread footing foundations. Based on eight test borings, many advanced to depths of 14 to 16 feet, indicated that fill was encountered in all test bores to depths of 9 to 12 feet. Soil character generally consisted of brown to dark brown, sand and gravel with little trace of silt. There was also trace amounts of rubble and urban fill, and boulders and stone from prior construction (which may have been residential) with some shallow concrete at one of the test borings. Groundwater was not encountered at the 10-16 feet exploration.

The proposed construction is not anticipated to have adverse effects on long-term groundwater levels because the lowest floor level in the fill areas is above the groundwater level. Roof drains and runoff from impermeable outdoor surfaces will be led to infiltration devices where there is sufficient capacity for percolation. In ledge areas, the drains will lead to detention cisterns of the required size and released gradually into storm drains. Construction mitigation measures will be incorporated into the Proposed Project to avoid any potential for ground movement and settlement.

Additional geotechnical exploration and engineering is expected to be completed as the project design is more fully developed during the various phases.

Construction Impact 4.7

The following section describes impacts likely to result from the construction of the Parcel U Project and the steps that will be taken to avoid or minimize environmental and transportation-related impacts. Construction methodologies and scheduling will aim to minimize impacts on the surrounding

environment. The Proponent will insure that the general contractors will be responsible for developing construction phasing and staging plans and for coordinating construction activities with all appropriate regulatory agencies. The Project's geotechnical consultant will also provide consulting services associated with foundation design recommendations, prepare geotechnical specifications, and review the construction contractor's proposed procedures.

4.7.1 Construction Management Plan

The Proponent will comply with applicable state and local regulations governing construction of the Project. The Proponent will insure that general contractors comply with the Construction Management Plan, ("CMP") developed in consultation with and approved by the Boston Transportation Department ("BTD"), prior to the commencement of construction. The CMPs will establish the guidelines for the duration of the Project phases and will include specific mitigation measures and staging plans to minimize impacts on abutters.

Construction methodologies that will ensure safety will be employed, signage will include General Contractor contact information with emergency contact numbers.

4.7.2 Proposed Construction Program

Construction Activity Schedule

The construction period for the Proposed Project is expected to last approximately 9-12 months for each of Phases A and B, and 15-18 months for Phase C, beginning in the 2nd Quarter 2015 and reaching completion in the 3rd Quarter 2018 for the Phase C (apartment rental) construction. The City of Boston Noise and Work Ordinances will dictate the normal work hours, which will be from 7:00 AM to 6:00 PM, Monday through Friday. Saturday work will be only in the event of schedule delay or unusual tasks such as street openings, etc.

Perimeter Protection/Public Safety

The CMP will describe any necessary sidewalk closures, pedestrian re-routings, and barrier placements and/or fencing deemed necessary to ensure safety around the Site perimeter. When possible, the sidewalk will remain open to pedestrian traffic during the construction period. Barricades and secure fencing will be used to isolate construction areas from pedestrian traffic. In addition, sidewalk areas and walkways near construction activities will be well marked to ensure pedestrian safety.

Proper signage will be placed at every corner of the Proposed Project as well as those areas that may be confusing to pedestrians and automobile traffic.

The Proponent will continue to coordinate with all pertinent regulatory agencies and representatives of the surrounding neighborhoods to ensure they are informed of any changes in construction activities.

4.7.3 Construction Traffic Impacts

Construction Vehicle Routes

Specific truck routes will be established with BTD through the CMPs. These established truck routes will prohibit truck travel on residential side streets. Construction contracts will include clauses restricting truck travel to BTD requirements. Maps showing approved truck routes will be provided to all suppliers, contractors, and subcontractors. It is anticipated that all deliveries will be via Hyde Park Avenue directly to the site, not passing through residential areas in the Forest Hills, Jamaica Plain or Hyde Park neighborhoods.

Construction Worker Parking

The number of workers required for construction of the Proposed Project will vary during the construction period and during each of the phases. However, it is anticipated that all construction workers will arrive and depart prior to peak traffic periods.

Limited parking in designated areas of the Project Site and lay-down area(s) will be allowed. Parking will be discouraged in the immediate neighborhood. Further, given the Proposed Project's close proximity to transit service (e.g., MBTA Orange Line as well as bus service) public transit use will be encouraged with the Proponent and general contractor working to ensure the construction workers are informed of the many public transportation options immediately adjacent to this area. Terms and conditions related to worker parking will be written into each subcontractor's contract. The general contractors will provide a weekly orientation with all new personnel to ensure enforcement of this policy.

Pedestrian Traffic

The Site abuts sidewalks on Hyde Park Avenue and Ukraine Way. Pedestrian traffic may be temporarily impacted in these areas. The general contractors will minimize the impact the construction of the proposed building will have on the adjacent sidewalks. The general contractors will implement plans that will clearly denote all traffic patterns. Safety measures such as jersey barriers, fencing, and signage will be used to direct pedestrian traffic around the construction site and to secure the work area.

4.7.4 Construction Environmental Impacts and Mitigation

Construction Air Quality

Construction activities may generate fugitive dust, which will result in a localized increase of airborne particle levels. Fugitive dust emission from construction activities will depend on such factors as the properties of the emitting surface (e.g. moisture content), meteorological variables, and construction practices employed.

To reduce the emission of fugitive dust and minimize impacts on the local environment the construction contractor will adhere to a number of strictly enforceable mitigation measures. These measures may include:

- Using wetting agents to control and suppress dust from construction debris;
- Ensuring that all trucks traveling to and from the Project Site will be fully covered;
- Removing construction debris regularly;
- Monitoring construction practices closely to ensure any emissions of dust are negligible;
- Cleaning streets and sidewalks to minimize dust and dirt accumulation;
- Monitoring construction activities by the job site superintendent; and
- Wheel-washing trucks before they leave the Project Site during the excavation phase.

Erosion and sediment control measures will be implemented during construction to minimize the transport of site soils to off-site areas and Boston Water and Sewer ("BWSC") storm drain systems. During construction, existing catch basins will be protected from sediments with filter fabric, silt sacks or hay bale filters.

Construction Noise Impacts

To reduce the noise impacts of construction on the surrounding neighborhood, a number of noise mitigation measures will be included in the CMP. Some of the measures that may be taken to ensure a low level of noise emissions include:

- Initiating a proactive program for compliance to the City of Boston's noise limitation requirements;
- Scheduling of work during regular working hours as much as possible;
- Using mufflers on all equipment and ongoing maintenance of intake and exhaust mufflers;
- Muffling enclosures on continuously operating equipment, such as air compressors and power and welding generators;
- Scheduling construction activities so as to avoid the simultaneous operation of the noisiest construction activities;
- Turning off all idling equipment;
- Reminding truck drivers that trucks cannot idle more than five (5) minutes unless the engine is required for operational activity;
- Locating noisy equipment at locations that protect sensitive receptors and neighborhood homes through shielding or distance;

- Installing a site barricade as required;
- project; and

4.7.5 Rodent Control

The City of Boston enforces the requirements established under Massachusetts State Sanitary Code, Chapter 11, 105 CMR 410.550. This policy establishes that the elimination of rodents is required for issuance of any building permits. During construction, rodent control service visits will be made by a certified rodent control firm to monitor the situation.

4.7.6 Utility Protection During Construction

During construction, the City or Commonwealth's infrastructure will be protected using sheeting and shoring, temporary relocations, and construction staging as required. The contractor will be required to coordinate all protection measures, temporary supports, and temporary shutdowns of all utilities with the appropriate utility owners and/or agencies. The contractor will also be required to provide adequate notification to the utility owner/operator prior to any work commencing on their utility. Also, in the event a utility cannot be maintained in service during a switch-over to a temporary or permanent system, the contractor will be required to coordinate the shutdown with the utility owners/operators and Project abutters to minimize impacts and inconveniences accordingly.

Identifying and maintaining truck routes to minimize traffic and noise throughout the

Maintaining all equipment to have proper sound attenuation devices.

This section provides a discussion of the history of the Project Site and the historic resources/ districts in the Project vicinity.

5.1 Historic Resources on the Project Site and Property History

The 2.89 acre Parcel U site is currently vacant, grass covered, undeveloped, and owned by the MBTA. The Site has been utilized as a green space over the last several years, according to IES, Parcel U's hazardous waste consultants; although the property was utilized for rail car storage by various rail companies since the 1920's. A review of Sanborn Atlases over the last 100 years completed by IES indicated that in 1898 the Site appeared to be occupied by several residential flat structures. The 1928 Atlas revealed that the northerly portion of site was occupied by the "Boston Elevated Railway Car House" (built 1922) and the southerly portion of the Site was utilized as a "Boston Elevated Railway Storage Yard for Cars". The 1950 and 1964 Atlases showed the same railway uses.

According to files at the Massachusetts Historical Commission, the on-site structures are not listed in the National or State Register of Historic Places, or the Inventory of Historical and Archaeological Assets of the Commonwealth. It is not expected that the Project will cause adverse impacts on any historic or architectural elements of nearby historic resources outside the Project Site (see Figure 5-1 for identifications of historic resources in the Project vicinity).

5.2 **Historic Districts and Resources**

The Project Site is not within, nor does it directly abut, any listed historic districts or resources. However, the Woodbourne Historic District is within one-quarter-mile radius of the Proposed Project. The area surrounding the Project Site is a busy commercial district. Residential, retail and commercial uses characterize much of the area along Hyde Park Avenue and Washington Street. The nearby Arnold Arboretum is a United State National Landmark and 19 individual properties within one-guarter-mile radius of the Proposed Project are included in the National Register of Historic Properties (excluding properties within the Woodbourne Historic District).

The historic resources within one-quarter-mile radius of the Proposed Project are summarized in Table 5-1 that follows.

HISTORIC RESOURCES

Component

ources

Re

Parcel U - Historic

Figure 5-1. Historic Resources

Key to Historic Resources Figure Historic Resource		Address/Description
(<u>Figure 5-1</u>)		
National Register Individual P	roperties	
3	Forest Hills Cemetery	95 Forest Hills Avenue
4	Thomas F. Minton Building	2 Hyde Park Avenue
5	Charles Emmell Two-Family House	5 Craft Place
6	Charles Emmell Two-Family House	7 Craft Place
8	Saint Andrew the Apostle Roman Catholic Convent	84 Wachusett Street
9	Saint Andrew the Apostle Roman Catholic School	86 Wachusett Street
10	Chemical Engine #13 Fire House	16-18 Walk Hill Street
11	Saint Andrew the Apostle Roman Catholic Rectory & Church	38 + 40 Walk Hill Street
12	Weld and Browne Two-Family House	16 Weld Hill Street
13	Weld and Browne Two-Family House	24 Weld Hill Street
14	Weld and Browne Two-Family House	31 Weld Hill Street
15	Weld and Browne Two-Family House	37 Weld Hill Street
16	Weld and Browne Two-Family House	57 Weld Hill Street
17	Charles Emmell Two-Family House	45 Wenham Street
18	Charles Emmell Two-Family House	47 Wenham Street
19	Lanin Realty Company Three Decker	15-17 Woodlawn St
20	Lanin Realty Company Three Decker	32 Woodlawn St
21	Lanin Realty Company Three Decker	47 Woodlawn St
22	Lanin Realty Company Three Decker	49 Woodlawn St
J.S. National Historic Landma	rks	
1	Arnold Arboretum	125 Arborway
National Register Historic Dis	trict	
2	Woodbourne Historic District	District bounded by Walk Hill, Goodway and
monton of the set of		wacnusett Streets
nventory of Historic Places		
7	I oll Gate Cemetery	Hyde Park Avenue

Key to Historic Resources Figure (<u>Figure 5-1</u>)	Historic Resource	Address/Description
National Register Individual P	Properties	
3	Forest Hills Cemetery	95 Forest Hills Avenue
4	Thomas F. Minton Building	2 Hyde Park Avenue
5	Charles Emmell Two-Family House	5 Craft Place
6	Charles Emmell Two-Family House	7 Craft Place
8	Saint Andrew the Apostle Roman Catholic Convent	84 Wachusett Street
9	Saint Andrew the Apostle Roman Catholic School	86 Wachusett Street
10	Chemical Engine #13 Fire House	16-18 Walk Hill Street
11	Saint Andrew the Apostle Roman Catholic Rectory & Church	38 + 40 Walk Hill Street
12	Weld and Browne Two-Family House	16 Weld Hill Street
13	Weld and Browne Two-Family House	24 Weld Hill Street
14	Weld and Browne Two-Family House	31 Weld Hill Street
15	Weld and Browne Two-Family House	37 Weld Hill Street
16	Weld and Browne Two-Family House	57 Weld Hill Street
17	Charles Emmell Two-Family House	45 Wenham Street
18	Charles Emmell Two-Family House	47 Wenham Street
19	Lanin Realty Company Three Decker	15-17 Woodlawn St
20	Lanin Realty Company Three Decker	32 Woodlawn St
21	Lanin Realty Company Three Decker	47 Woodlawn St
22	Lanin Realty Company Three Decker	49 Woodlawn St
U.S. National Historic Landma	arks	
1	Arnold Arboretum	125 Arborway
National Register Historic Dis	trict	
2	Woodbourne Historic District	District bounded by Walk Hill, Goodway and
		Wachusett Streets
Inventory of Historic Places		
7	Toll Gate Cemetery	Hyde Park Avenue

The Proposed Project is not expected to have effects on any of the listed historically significant resources in Table 5-1.

Parcel U- PNF

IG LLC

Table 5.1. Historic Resources in the Vicinity of the Project Site

5.3 Archaeological Resources

No known archaeological resources were located within the Project site during the review of Massachusetts Historic Commission files and MACRIS, therefore no impacts to archaeological resources are anticipated.

INFRASTRUCTURE SYSTEMS

Figure 6-1.0 Existing Sewer System

INFRASTRUCTURE SYSTEMS COMPONENT 6.0

Introduction 6.1

This section of the PNF outlines the existing utilities surrounding the Proposed Project site, the proposed connections required to provide service to the Proposed Project, and any impacts on the existing utility systems that may result from the construction of the Proposed Project. The following utility systems are discussed herein:

- Sewer
- Domestic water
- Fire protection
- Drainage
- Electricity
- Telecommunications
- Natural gas

The Proposed Project includes the development of an approximately 2.9± acre site identified as Parcel "U" that was formerly owned by the Massachusetts Bay Transportation Authority (MBTA) into a 124 dwelling unit site development. The Proposed Project is located on Hyde Park Avenue in Boston's Jamaica Plain neighborhood.

6.2 Wastewater

6.2.1 Sewer Infrastructure

There is an existing Boston Water and Sewer Commission (BWSC) sanitary sewer main located in Hyde Park Avenue adjacent to the Project site. There is a 12-inch sanitary sewer beneath Hyde Park Avenue flowing in an easterly direction.

There is also an existing BWSC 36-inch sanitary sewer main located within the project site which will maintained as part of the Proposed Project. The 36-inch sanitary sewer main into the project site from Washington Street in a southeasterly direction then flows northeasterly direction where both 12-inch and 36-inch sewer mains connect to an existing 32"x48" sewer main located at the intersection of Hyde Park Avenue and Tower Street. Ultimately this sanitary sewer line drains to the MWRA Deer Island Waste Water Treatment Plant for disposal.

The existing sewer system is illustrated in **Figures 6-1.0** and **6-1.1**.

MA 02:0 4102/02/8

Figure 6-1.1 Existing Sewer System

6.2.2 Wastewater Generation

The Proposed Project's sewage generation rates were estimated using the Massachusetts Division of Water Pollution Control Sewer System Extension and Connection Permit Program at 314 CMR 07.00 and the proposed building program. 314 CMR 7.00 lists typical sewage generation values for the proposed sources, as shown in **Table 6-1**. Typical generation values are conservative values for estimating the sewage flows from new construction. 314 CMR 7.00 sewage generation values are used to evaluate new sewage flows or an increase in flows to existing connections. Table 6-1 describes the increased sewage generation in gallons per day (gpd) due to the Proposed Project.

Table 6-1. Proposed Project Wastewater Generation

Program	Unit	314 CMR Value (gpd/unit)	Total Flow (gpd)
Phase A – 24 DU's	54 Bedrooms	110 gpd/bedroom	5,940
Phase B – 24 DU's	54 Bedrooms	110 gpd/bedroom	5,940
Phase C – 76 DU's	117 Bedrooms	110 gpd/bedroom	12,870
Proposed Sewer Flows (gpd)			24,750

6.2.3 Sewage Capacity & Impacts

The Proposed Project's impact to the existing BWSC systems in Hyde Park Avenue was analyzed. The existing sewer system capacity calculations are presented in **Table 6-2**.

Table 6-2.	Sewer	H١	ydraulic C	apacity	Analy	ysis
------------	-------	----	------------	---------	-------	------

Manhole (BWSC Number)	Distance (feet)	Invert Elevation (up)	Invert Elevation (down)	Slope (%)	Diameter (inches)	Manning's Number	Flow Capacity (cfs)	Flow Capacity (MGD)
Hyde Park Avenue								
143 to 142	280	47.3	43.82	1.2%	12	0.013	3.98	2.57
142 to 141	149	43.82	40	2.1%	12	0.013	5.16	3.33
141 to 146	278	40.7	40.3	0.14%	12	0.013	1.36	0.88
146 to 147	296	40.3	39.7	0.20%	12	0.013	1.61	1.04
	Minimum Flow Analyzed:							0.88
Notes:	Notes: 1. Manhole numbers taken from BWSC Sewer System Map No. 12G 2. Flow Calculations based on Manning Equation.							

6.2.4 *Proposed Conditions*

The Proponent will coordinate with the BWSC on the design and capacity of the proposed connections to the sewer system. The Proposed Project is expected to generate an increase in wastewater flows of approximately 24,750 gallons per day. Because the sanitary flow is less than 50,000 gpd, a Massachusetts Department of Environmental Protection (MassDEP) Sewer Compliance Certification will be required. MassDEP is currently in the process of eliminating its sewer connection permit program. Depending on the timing, the Project may not be required to submit to MassDEP. In that case, approval for the increase in sanitary flow will come from BWSC.

The sewer services for the Proposed Project will connect to the existing sewer main located in Hyde Park Avenue.

All improvements and connections to BWSC infrastructure will be reviewed as part of the BWSC's site plan review process for the Proposed Project. This process includes a comprehensive design review of the proposed service connections, an assessment of project demands and system capacity, and the establishment of service accounts.

6.2.5 Proposed Impacts

The adjacent roadway sewer system in Hyde Park Avenue and potential building service connections to the sewer system were analyzed.

capacity problems are expected within the Hyde Park Avenue system.

6.2.6 Water Infrastructure

Water for the Proposed Project site will be provided by the BWSC. There are five water systems within the City, and these provide service to portions of the City based on ground surface elevation. The five systems are southern low (commonly known as low service), southern high (commonly known as high service), southern extra high, northern low, and northern high. There is a 12-inch Southern High main beneath Hyde Park Avenue which increases to a 16-inch Southern High main beneath Hyde Park Avenue near Ukraine Street. There is also a 12-inch Southern High Main beneath Ukraine Street. There is a 48-inch water main beneath Hyde Park Avenue that is owned by the Massachusetts Water Resources Authority (MWRA). No connection to the 48" MWRA water main is expected with this project. The existing water system is illustrated in Figures 6-2.0 and 6-2.1.

Hydrant(s) may be installed onsite to meet fire protection requirements.

6.3 Water Supply

6.3.1 Water Consumption

The Proposed Project's water demand estimate for domestic services is based on the Proposed Project's estimated sewage generation, described above. A conservative factor of 1.1 (10%) is applied to the estimated average daily wastewater flows calculated with 314 CMR 07.00 values to account for consumption, system losses and other usages to estimate an average daily water demand. The Proposed Project's estimated domestic water demand is 27,225 gpd. The water for the Proposed Project will be supplied by the BWSC systems in Hyde Park Avenue.

All efforts to reduce water consumption will be made. Aeration fixtures and appliances will be chosen for water conservation qualities. In public areas, sensor operated faucets and toilets will be installed.

Results shown in Table 6-2 indicate the hydraulic capacity of the 12-inch sanitary sewer within Hyde Park Avenue near the Proposed Project. The minimum hydraulic capacity is 0.88 million gallons per day (MGD) or 1.36 cubic feet per second (cfs) for the 12-inch system in Shawmut Avenue. Based on an average daily flow estimate for the Proposed Project of 24,750 GPD or 0.02 MGD; and with a factor of safety of 10 (total estimate = 0.02 MGD x 10 = 0.25 MGD), no

All new water services will be installed in accordance with the latest local, state, and federal codes and standards. Backflow preventers will be installed at both domestic and fire protection service connections. New meters will be installed with Meter Transmitter Units (MTU's) as part of the Boston Water and Sewer Commission's Automatic Meter Reading (AMR) system.

6.3.2 Existing Water Capacity & Impacts

BWSC record flow test data containing actual flow and pressure for hydrants within the vicinity of the Proposed Project site was requested by the Proponent. BWSC did not have record data near the Project site. The Proponent will request BWSC to perform hydrant flow testing adjacent to the Proposed Project, as hydrant flow data should be less than a year old to be used as a design tool. As the design progresses, the Proponent will request hydrant flows be conducted by BWSC adjacent to the Proposed Project.

6.3.3 Proposed Project

The domestic and fire protection water services for the Proposed Project will connect to the existing BWSC water main in Hyde Park Avenue.

The domestic and fire protection water service connections required by the Proposed Project will meet the applicable City and State codes and standards, including cross-connection backflow prevention. Compliance with the standards for the domestic water system service connection will be reviewed as part of BWSC's Site Plan Review Process. This review includes, but is not limited to, sizing of domestic water and fire protection services, calculation of meter sizing, backflow prevention design, and location of hydrants and siamese connections that conform to BWSC and Boston Fire Department requirements.

Figure 6-2.0. Existing Water System

MA 02:0 4102/02/8

Figure 6-2.1. Existing Water System

6.2.1 Proposed Impacts

Water capacity problems are not anticipated within this system as a result of the Proposed Project's construction.

6.4 Stormwater

There are existing BWSC storm drains in Hyde Park Avenue and Ukraine Street. There is a 30-inch storm drain main within Hyde Park Avenue that flows in an easterly direction where it connects into a 204"x165" storm drain main. There is also a 12-inch storm drain main in Ukraine Street that flows easterly to the 204"x165" storm drain main.

There is an existing closed drainage system on the project site. There are three catch basins connecting to a 24-inch drain line that flows to a 204"x165" storm drain main located on the northerly side of Ukraine Street.

6.4.1 Proposed Project

Stormwater runoff collected from the roof of the Proposed Project will be directed to subsurface recharge system(s) on site which will overflow to an adjacent BWSC storm drain. Site runoff will be collected by a closed drainage system, treated and recharged into the ground before overflowing to the BWSC storm drainage system. The existing BWSC storm drain system is illustrated in Figures 6-3.0 and 6-3.1.

The Proposed Project will increase the amount of impervious area at the site compared to the existing condition. The project is expected to maintain the existing peak rates and volumes of stormwater runoff from the site.

The proposed stormwater management system will include a groundwater recharge system. The Project will increase the amount of impervious area at the site compared to the existing condition. It is anticipated that the stormwater recharge system will work to passively infiltrate runoff into the ground with a gravity recharge system. The underground recharge system, and any required site closed drainage systems, will be designed so that there will be no increase in the peak rate of stormwater discharge from the Project site in the developed condition compared to the existing condition.

All improvements and connections to BWSC infrastructure will be reviewed as part of the Commission's site plan review process. The process includes a comprehensive design review of the proposed service connections, assessment of project demands and system capacity.

Figures 6-3.0. Existing Drain System

Figures 6-3.1. Existing Drain System

6.2.2 Water Quality Impact

The Proposed Project will not affect the water quality of nearby water bodies. Erosion and sediment control measures will be implemented during construction to minimize the transport of site soils to off-site areas and BWSC storm drain systems. During construction, existing catch basins will be protected with filter fabric, straw bales and/or crushed stone, to provide for sediment removal from runoff. These controls will be inspected and maintained throughout the construction phase until all areas of disturbance have been stabilized through the placement of pavement, structure, or vegetative cover.

All necessary dewatering will be conducted in accordance with applicable MWRA and BWSC discharge permits. Once construction is complete, the Proposed Project will each be in compliance with all local and state stormwater management policies. See below for additional information.

DEP Stormwater Management Policy Standards 6.4.3

In March 1997, MassDEP adopted a new Stormwater Management Policy to address non-point source pollution. In 1997, MassDEP published the Massachusetts Stormwater Handbook as guidance on the Stormwater Policy, which was revised in February 2008. The Policy prescribes specific stormwater management standards for development projects, including urban pollutant removal criteria for projects that may impact environmental resource areas. Compliance is achieved through the implementation of Best Management Practices (BMPs) in the stormwater management design. The Policy is administered locally pursuant to MGL Ch. 131, s. 40.

A brief explanation of each Policy Standard and the system compliance is provided below:

Standard #1: No new stormwater conveyances (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

Compliance: The proposed design will comply with this Standard. The project site is not located near any wetlands or water bodies. Therefore, no new untreated stormwater will be directly discharged to, nor will erosion be caused to wetlands or waters of the Commonwealth as a result of stormwater discharges related to the Proposed Project.

Standard #2: Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates.

Compliance: The proposed design will comply with this Standard. The existing discharge rate will be met or decreased as a result of the improvements associated with the Proposed Project.

Standard #3: Loss of annual recharge to groundwater should be minimized through the use of infiltration measures including environmental sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil types. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Compliance: The Proposed Project will comply with this standard to the maximum extent practicable.

Standard #4: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:

a. Suitable practices for source control and pollution prevention are identified in a longterm pollution prevention plan, and thereafter are implemented and maintained;

b. Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook: and

Handbook.

Compliance: The proposed design will comply with this standard. Within the Proposed Project's limit of work, there will be mostly roof, landscaping, parking and pedestrian areas. Any paved areas that would contribute unwanted sediments or pollutants to the existing storm drain system will be collected by deep sump, hooded catch basins and conveyed through water quality units before discharging into the BWSC system.

Standard #5: For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

Compliance: The proposed design will comply with this standard. The Proposed Project is not associated with Higher Potential Pollutant Loads (per the Policy, Volume I, Page 1-6). The project complies with this standard.

Standard #6: Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural

c. Pretreatment is provided in accordance with the Massachusetts Stormwater

stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

Compliance: The proposed design will comply with this Standard. The Proposed Project will not discharge untreated stormwater to a sensitive area or any other area.

Standard #7: A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

Compliance: The proposed design will comply with this Standard. The Proposed Project complies with the Stormwater Management Standards as applicable to the *redevelopment*.

Standard #8: Erosion and sediment controls must be implemented to prevent impacts during construction or land disturbance activities.

Compliance: The Proposed Project will comply with this standard. Sedimentation and erosion controls will be incorporated as part of the design of these projects and employed during construction.

Standard 9: A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

Compliance: The Proposed Project will comply with this standard. An O&M Plan including longterm BMP operation requirements will be prepared for the Proposed Project and will assure proper maintenance and functioning of the stormwater management system.

Standard 10: All illicit discharges to the stormwater management system are prohibited.

Compliance: The Proposed Project will comply with this standard. There will be no illicit connections associated with the Proposed Project.

Protection Proposed During Construction 6.5

Existing public and private infrastructure located within nearby public rights-of-way will be protected during construction of each component of the Proposed Project. The installation of proposed utility connections within public ways will be undertaken in accordance with BWSC, Boston Public Works Department, the Dig-Safe Program, and applicable utility company requirements. Specific methods for constructing proposed utilities where they are near to, or connect with, existing water, sewer, and drain facilities will be reviewed by the BWSC as part of its Site Plan Review process. All necessary permits will be obtained before the commencement of work.

The Proponent will continue to work and coordinate with the BWSC and the utility companies to ensure safe and coordinated utility operations in connection with the Proposed Project.

Conservation of Resources 6.6

The State Building Code requires the use of water-conserving fixtures. Water conservation measures such as low-flow toilets and restricted flow faucets will help reduce the domestic water demand on the existing distribution system. The installation of sensor-operated sinks with water conserving aerators and sensor-operated toilets in all restrooms will be incorporated into the design plans for the Proposed Proiect.

Electrical Service 6.7

NSTAR owns the electrical system in the vicinity of the Project site. It is expected that adequate service is available in the existing electrical systems near the Project. The Proponent will work with NSTAR to confirm adequate system capacity as design is finalized.

6.8 **Telecommunications Systems**

The Proponent will select private telecommunications companies to provide telephone, cable, and data services. There are several potential candidates with substantial Boston networks capable of providing service. Upon selection of a provider or providers, the Proponent will coordinate service connection locations and obtain appropriate approvals.

6.9 Gas Systems

National Grid has gas service adjacent to the site. There is adequate capacity in the gas supply system to meet the Project's demand.

7.0 TRANSPORTATION COMPONENT

7.1 Introduction

7.1.1 Purpose of the Transportation Component

Howard/Stein-Hudson Associates, Inc. (HSH) has conducted an evaluation of the transportation impacts of a proposed residential development consisting of 48 townhouse units, 76 apartment units, and 1,750 square feet (sf) of ancillary retail space located along Hyde Park Avenue, south of Ukraine Way near the Forest Hills Station (the "Project"). The parcel (Parcel U) is currently owned by the Massachusetts Bay Transportation Authority (MBTA) and is included in the Forest Hills Improvement Initiative planning study developed by the Boston Redevelopment Authority (BRA). This transportation study adheres to the Boston Transportation Department (BTD) *Transportation Access Plan Guidelines* and Article 80 development review process. This study includes an evaluation of existing conditions, future conditions with and without the Project, projected parking demand, loading operations, transit services, and pedestrian activity.

7.1.2 Project Description

The Project site is located off of Hyde Park Avenue, immediately south of Ukraine Way in the Forest Hills neighborhood of Boston as shown in **Figure 7-1**. The site is conveniently located in proximity to the Forest Hills Station and several MBTA bus lines, providing convenient access to transit opportunities. The site is bounded by the MBTA Commuter Rail to the west, Hyde Park Avenue to the east, Ukraine Way to the north, and a vacant parcel to the south. The site is currently vacant.

Vehicular access to the site will be provided by two driveways. A full access driveway will be located opposite Walk Hill Street and will form the fourth leg of the signalized intersection. An entrance-only, one-way entering driveway will be provided in the northerly part of the site. Primary pedestrian connectivity will be provided along Hyde Park Avenue. Loading, deliveries, move-in/move-out, and trash pick-up will take place on the Project site.

A total of 90 parking spaces will also be provided on the Project site. A total of 48 spaces will be provided for the townhouse units and a total of 42 spaces will be provided for the apartment units. An additional 8 parallel parking spaces will be provided along Hyde Park Avenue southbound that will serve the retail uses in the northerly part of the site. Secure and covered storage for bicycles will also be provided on the site.

TRANSPORTATION

Figure 7-1. **Study Area Intersections**

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

7.1.3 Study Area

The transportation study area is generally bounded by the MBTA Commuter Rail to the west, a vacant parcel to the south, Ukraine Way to the north, and Hyde Park Avenue to the east. It includes the following three intersections, also shown on Figure 7-1:

- Washington Street at Ukraine Way;
- Hyde Park Avenue at Ukraine Way; and
- Hyde Park Avenue at Walk Hill Street.

7.1.4 Study Methodology

This transportation study and supporting analyses were conducted in accordance with BTD guidelines and is described below.

The existing conditions analysis includes an inventory of the existing (2014) transportation conditions such as roadway capacities, traffic characteristics, parking and curb usage, transit, pedestrian circulation, bicycle facilities, loading, and site conditions. Existing counts were conducted for vehicles, bicycles, and pedestrians at the intersection of Hyde Park Avenue at Walk Hill Street in May 2014. Existing counts at the other two study area intersections were conducted in February 2012 and obtained from the proposed Casey Arborway project documents. The traffic counts form the basis for the transportation analysis conducted as part of this evaluation.

The future transportation conditions analysis evaluates potential transportation impacts associated with the Project. Long-term impacts are evaluated for the year 2019, based on a fiveyear horizon from the year of the filing of this traffic study (2014). Expected roadway, parking, transit, pedestrian, bicycle accommodation, and loading capacities and deficiencies are identified. This section includes the following scenarios:

- scenario.

The final part of the transportation study identifies measures to mitigate Project-related impacts and to address any traffic, pedestrian, bicycle, transit, safety, or construction related issues that are necessary to accommodate the Project.

• The 2019 No-Build conditions scenario includes both general background traffic growth and traffic growth associated with specific developments and transportation improvements that are planned in the vicinity of the Project site.

• The 2019 Build conditions scenario includes Project-generated traffic volume estimates added to the traffic volumes developed as part of the 2019 No-Build conditions An evaluation of short-term traffic impacts associated with construction activities is also provided.

Existing Transportation Conditions 7.2

This section includes descriptions of existing study area roadway geometries, intersection traffic control, peak-hour vehicular and pedestrian volumes, average daily traffic volumes, transit availability, parking and curb usage, and loading conditions.

7.2.1 Existing Roadway Conditions

The major study area roadways are described below. The descriptions reflect functional classifications by the Massachusetts Department of Transportation (MassDOT) Highway Division's Office of Transportation Planning.

Washington Street is located west of the Project site, is classified as an urban principal arterial under BTD jurisdiction, and generally runs in a north to south direction between South Street to the north and Hill Street in Norwood to the south. Washington Street generally consists of one lane in each direction with additional turning lanes provided at major intersections. On-street parking is not provided in the vicinity of the Project site. Sidewalks are provided along both sides of Washington Street.

Ukraine Way is located adjacent to the north side of the Project site, is classified as a local roadway under BTD jurisdiction, and runs in an east to west direction between Washington Street to the west and Hyde Park Avenue to the east. Ukraine Way consists of two travel lanes in each direction with a 6 foot median separating the directions of travel. There is no parking provided along Ukraine Way. Sidewalks are provided along both sides of the roadway.

Hyde Park Avenue is located adjacent to the east side of the Project site, is classified as an urban principal arterial under BTD jurisdiction, and runs in a north to south direction beginning at Forest Hills Station to the north and terminating in Readville south of Wolcott Square. Hyde Park Avenue is a two-way roadway with two travel lanes in each direction in the vicinity of the Project site. On-street parking is provided in the northbound direction in the vicinity of the Project site. Sidewalks are provided along both sides of Hyde Park Avenue.

Walk Hill Street is southeast of the Project site, is classified as an urban minor arterial under BTD jurisdiction, and runs in a northwest to southeast direction between Hyde Park Avenue to the northwest and Blue Hill Avenue to the southeast. Walk Hill Street is a two-way roadway with a single travel lane in each direction. A combination of two hour parking and residential parking is provided along Walk Hill Street in the vicinity of the Project site. Sidewalks are provided along both sides of Walk Hill Street.

7.2.2 Existing Intersection Conditions

Washington Street at Ukraine Way is a signalized intersection with three approaches. The Ukraine Way westbound approach consists of a left turn lane and a right turn lane. The directions of travel along Ukraine Way are separated by a 6 foot median. The Washington Street northbound approach consists of a through lane and a through/right-turn lane. The Washington Street southbound approach consists of a left-turn lane a through lane. The directions of travel along Washington Street are separated by a double-yellow centerline. Parking is prohibited along all legs of the intersection. Crosswalks are provided across the westbound and southbound approaches. Sidewalks are provided along both sides of all approaches.

Hyde Park Avenue at Ukraine Way is a signalized intersection with three approaches. The Ukraine Way eastbound approach consists of a left turn lane and a right turn lane. The directions of travel along Ukraine Way are separated by a 6 foot median. The Hyde Park Avenue northbound approach consists of a left-turn/through lane and a through lane. The Hyde Park Avenue southbound approach consists of a right-turn lane and a through lane. The directions of travel along Hyde Park Avenue are separated by a double-yellow centerline north of the intersection, and separated by a median south of the intersection. Parking is allowed along the northbound approach. Crosswalks are provided across all approaches. Sidewalks are provided along both sides of all approaches.

Hyde Park Avenue at Walk Hill Street is a signalized intersection with three approaches. The Walk Hill Street westbound approach consists of a single travel lane that accommodates leftturn and right-turn movements. The Hyde Park Avenue northbound approach consists of a through lane and a shared through/right-turn lane. The Hyde Park Avenue southbound approach consists of two through lanes and an exclusive left-turn lane. The directions of travel along Hyde Park Avenue are separated by a median along the northbound approach. MBTA bus stops are provided along both sides of Hyde Park Avenue, north of Walk Hill Street for Bus Route 32. Parking is allowed along Walk Hill Street and is prohibited along Hyde Park Avenue at the intersection. Sidewalks are provided along both sides of all approaches. Crosswalks are provided across the westbound and northbound approaches to the intersection.

7.2.3 Existing Traffic Conditions

Traffic movement data was collected at the intersections of Washington Street/Ukraine Way and Hyde Park Avenue/Ukraine Way in February 2012 for the Casey Arborway project. Additional traffic movement data was collected at the intersection of Hyde Park Avenue/Walk Hill Street in May 2014. Manual turning movement counts (TMCs) and vehicle classification counts were conducted during the weekday morning and weekday evening peak periods (7:00-9:00 a.m. and 4:00-6:00 p.m., respectively). The vehicle classification counts included car, truck, pedestrian, and bicycle movements. Based on the TMCs, the peak hours of vehicular traffic throughout the study area are 7:00-8:00 a.m. and 4:15-5:15 p.m. The detailed traffic counts are provided in the Appendix. The 2012 counts were adjusted upward to reflect 2014 conditions.

The 2014 Existing weekday a.m. and p.m. peak hour traffic volumes are shown in Figures 7-2 and 7-3, respectively.

7.2.4 Existing Traffic Operations

The criterion for evaluating traffic operations is level of service (LOS), which is determined by assessing average delay experienced by vehicles at intersections and along intersection approaches. Trafficware's Synchro (version 6) software package was used to calculate average delay and associated LOS at the study area intersections. This software is based on the traffic operational analysis methodology of the Transportation Research Board's 2000 Highway Capacity Manual (HCM). Field observations were performed by HSH to collect intersection geometry such as number of turning lanes, lane length, and lane width that were then incorporated into the operations analysis.

LOS designations are based on average delay per vehicle for all vehicles entering an intersection. Table 7-1 displays the intersection LOS criteria. LOS A indicates the most favorable condition, with minimum traffic delay, while LOS F represents the worst (unacceptable) condition, with significant traffic delay. LOS D or better is typically considered acceptable in an urban area. However, LOS E or F is often typical for a stop controlled minor street that intersects a major roadway.

Figure 7-2. Existing Conditions (2014) Turning Movement Volumes, a.m. Peak Hour (7:00 - 8:00 a.m.)

Parcel U - Expanded PNF

Table 7-1. Intersection Level of Service Criteria

	Average Stopped Delay (sec/veh)					
Level of Service	Signalized Intersection	Unsignalized Intersection				
А	≤10	≤10				
В	>10 and ≤20	>10 and ≤15				
С	>20 and ≤35	>15 and ≤25				
D	>35 and ≤55	>25 and ≤35				
E	>55 and ≤80	>35 and ≤50				
F	>80	>50				

In addition to delay and LOS, the operational capacity and vehicular queues are calculated and used to further quantify traffic operations at intersections. The following describes these other calculated measures.

The volume-to-capacity (v/c) ratio is a measure of congestion at an intersection approach. A v/c ratio below one indicates that the intersection approach has adequate capacity to process the arriving traffic volumes over the course of an hour. A v/c ratio of one or greater indicates that the traffic volume on the intersection approach exceeds capacity.

The 50th percentile queue length, measured in feet, represents the maximum queue length during a cycle of the traffic signal with typical (or median) entering traffic volumes.

The 95th percentile queue length, measured in feet, represents the farthest extent of the vehicle queue (to the last stopped vehicle) upstream from the stop line during five percent of all signal cycles. The 95th percentile queue will not be seen during each cycle. The queue would be this long only five percent of the time and would typically not occur during off-peak hours. Since volumes fluctuate throughout the hour, the 95th percentile queue represents what can be considered a "worst case" scenario. Queues at the intersection are generally below the 95th percentile queue throughout the course of the peak hour. It is also unlikely that the 95th percentile queues for each approach to the intersection will occur simultaneously.

Table 7-2 and Table 7-3 present the 2014 Existing conditions operational analysis for the study area intersections for the a.m. and p.m. peak hours, respectively. The detailed analysis sheets are provided in **Appendix D.**

Figure 7-3. Existing Conditions (2014) Turning Movement Volumes, p.m. Peak Hour (4:15 - 5:15 p.m.)

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Parcel U - Expanded PNF

Table 7-2. Existing Conditions (2014) Level of Service Summary, a.m. Peak Hour

Intersection	LOS	Delay (seconds)	V/C Ratio	50 th Percentile Queue Length (ft)	95 th Percentile Queue Length (ft)
	Signalize	ed			
Washington Street / Ukraine Way	С	34.4	-	-	-
Ukraine Way WB left	E	64.9	0.68	130	m116
Ukraine Way WB right	В	15.7	0.66	86	m131
Washington Street NB thru thru/right	D	42.3	0.76	251	#454
Washington Street SB left	D	51.3	0.82	190	#319
Washington Street SB thru	В	19.1	0.38	129	184
Hyde Park Avenue / Ukraine Way	С	31.2	-	-	-
Ukraine Way EB left	E	67.8	0.85	167	m#213
Ukraine Way EB right	В	14.7	0.35	66	m182
Hyde Park Avenue NB left/thru thru	С	21.0	0.92	580	#703
Hyde Park Avenue SB thru thru/right	D	52.3	0.85	205	#489
Hyde Park Avenue / Walk Hill Street	С	32.4	-	-	-
Walk Hill Street WB left	D	50.8	0.22	21	41
Walk Hill Street WB right	А	9.4	0.84	27	87
Hyde Park Avenue NB thru thru/right	D	37.7	0.84	448	#698
Hyde Park Avenue SB left	F	>80.0	>1.00	~202	233
Hyde Park Avenue SB thru thru	А	6.2	0.28	52	m201

^r = 50th percentile volume exceeds capacity. Queue may be longer.

= 95th percentile volume exceeds capacity. Queue may be longer. Queue shown is the maximum after two cycles.

 $m = 95^{th}$ percentile queue is metered by upstream traffic signal.

Grey shading indicates LOS E or LOS F.

Table 7-3. Existing Conditions (2014) Level of Service Summary, p.m. Peak Hour

Intersection	LOS	Delay (seconds)	V/C Ratio	50 th Percentile Queue Length (ft)	95 th Percentile Queue Length (ft)
	Signalize	ed			
Washington Street / Ukraine Way	D	53.4	-	-	-
Ukraine Way WB left	E	59.7	0.78	191	m220
Ukraine Way WB right	С	22.3	0.39	123	m165
Washington Street NB thru thru/right	D	49.2	0.82	~298	#414
Washington Street SB left	F	>80.0	>1.00	~484	#687
Washington Street SB thru	В	19.3	0.46	213	284
Hyde Park Avenue / Ukraine Way	D	54.0	-	-	-
Ukraine Way EB left	E	72.8	0.73	147	m149
Ukraine Way EB right	F	>80.0	0.84	188	m88
Hyde Park Avenue NB left/thru thru	D	37.8	>1.00dl	~394	#567
Hyde Park Avenue SB thru thru/right	D	37.8	0.85	~534	#699
Hyde Park Avenue / Walk Hill Street	С	29.3	-	-	-
Walk Hill Street WB left	E	66.4	0.49	42	33
Walk Hill Street WB right	А	3.5	0.35	0	41
Hyde Park Avenue NB thru thru/right	D	42.5	0.75	293	#416
Hyde Park Avenue SB left	E	63.4	>1.00	~363	m#561
Hyde Park Avenue SB thru thru	В	10.0	0.53	251	464
= 50 th percentile volume exceeds capacity. Queue may be lo	nger.				

= 95th percentile volume exceeds capacity. Queue may be longer. Queue shown is the maximum after two cycles. $m = 95^{th}$ percentile queue is metered by upstream traffic signal. dl = Defacto left turn lane; through/left-turn lane operates as an exclusive left-turn lane. Grey shading indicates LOS E or LOS F.

As shown in **Tables 7-2** and **7-3**, the intersection of Washington Street/Ukraine Way currently operates at LOS C during the weekday a.m. peak hour and LOS D during the weekday p.m. peak hour. The Ukraine Way westbound left-turn movements currently operate at LOS E during both the weekday a.m. and p.m. peak hours, with the Washington Street southbound left-turn movements operating at LOS F during the p.m. peak hour. The longest queues at the intersection occur along Washington Street southbound during the a.m. peak hour and along Washington Street northbound during the p.m. peak hour.

The intersection of Hyde Park Avenue/Ukraine Way currently operates at LOS C during the weekday a.m. peak hour and LOS D during the weekday p.m. peak hour. The Ukraine Way eastbound left-turn movements currently operate at LOS E during both the weekday a.m. and p.m. peak hours, with the Ukraine Way eastbound right-turn movements operating at LOS F during the p.m. peak hour. The longest queues at the intersection occur along the Hyde Park Avenue northbound and southbound approaches.

The intersection of Hyde Park Avenue at Walk Hill Street currently operates at LOS C during both the a.m. and p.m. peak hours. The Hyde Park Avenue southbound left-turn movements currently operate at LOS F during the weekday a.m. peak hour and LOS E during the p.m. peak hour. The Walk Hill Street westbound left-turn movements currently operate at LOS E during the p.m. peak hour. The longest queues at the intersection occur along the Hyde Park Avenue northbound approaches during the peak hours.

7.2.5 Existing Parking and Curb Use

Figure 7-4 illustrates the on-street parking regulations in the vicinity of the study area. As shown in Figure 7-4, on-street parking is not allowed along Ukraine Way or Washington Street in the vicinity of the Project site. On-street parking is generally allowed along the northbound side of Hyde Park Avenue in the vicinity of the Project site, with two hour time restriction and resident permit parking. There are 206 off-street parking spaces provided at Forest Hills Station for \$6.00 per day. Bus stops are located along Washington Street and Hyde Park Avenue in the vicinity of the Project site.

Figure 7-4. **On-Street Parking Regulations**

7.2.6 Existing Public Transportation

The Project site is located conveniently within a quarter mile of the Forest Hills Station, which provides service to sixteen bus routes, one subway route, and one commuter rail route. These routes are summarized in Table 7-4 and shown graphically in Figure 7-5.

Table 7-4. Public Transportation

Route	Description							
	Bus Routes							
16	Forest Hills Station – Andrew Station	15-17						
21	Ashmont Station – Forest Hills Station via Morton St.	9-12						
30	Mattapan Station – Forest Hills Station via Cummins Highway & Roslindale Square	7-20						
31	Mattapan Station – Forest Hills Station via Morton St.	5						
32	Wolcott Square – Forest Hills Station via Hyde Park Ave.	7-8						
34	Walpole Center – Forest Hills Station via Washington St.	9-15						
34E	Walpole Center – Forest Hills Station via Washington St.	20						
35	Stimson St. – Forest Hills Station via Belgrade Ave. & Centre St.	20-26						
36	Charles River Loop – Forest Hills Station via Belgrade Ave. & Centre St.	3-17						
37	Bake & Vermont Sts. – Forest Hills Station via Belgrade Ave. & Centre St.	18-31						
38	Wren St. – Forest Hills Station via Centre & South Streets	22						
39	Forest Hills Station – Back Bay Station via Huntington Ave.	1-6						
40	Georgetown – Forest Hills Station via Washington St & West Boundary Road	30						
42	Forest Hills Station – Dudley or Ruggles Station via Washington Street	12						
50	Cleary Square – Forest Hills Station via Roslindale Square	25						
51	Cleveland Circle – Forest Hills Station via Hancock Village	10-25						
	Subway Routes							
Orange Line	Oak Grove – Forest Hills	6						
	Commuter Rail Routes							
Providence /Stoughton	Wickford Junction – South Station	10-60						

The MBTA Orange Line subway provides service from Forest Hills Station in Jamaica Plain through downtown Boston to Oak Grove Station in Malden, Massachusetts. The Orange Line provides inbound and outbound service approximately every five minutes Monday through Friday and every ten minutes on Saturday and Sunday. The most recent published passenger count data indicates that the Orange Line serves approximately 141,000 passengers per day⁴.

The primary MBTA bus route serving the Project site is the #32 bus, which provides service between Wolcott Square in Readville and Forest Hills Station via Hyde Park Avenue. The buses operate on 7-8 minute headways in the a.m. and p.m. peak periods.

The Needham MBTA commuter rail line stops at Forest Hills Station. This train provides access between Needham Heights and South Station in downtown Boston. On a weekday, the Needham Line has 16 inbound trains that run between 6:37 a.m. and 10:35 p.m. and 14 outbound trains that run between 7:16 a.m. and 10:43 p.m. that stop at Forest Hills Station. There is no weekend commuter rail service at Forest Hills Station.

⁴ <u>Ridership and Service Statistics (13th Edition)</u>; Central Transportation Planning Staff; Boston, MA; 2010.

7.2.7 Car Sharing Services

Car sharing, predominantly served by Zipcar in the Boston area, provides easy access to short term vehicular transportation. Vehicles are rented on an hourly or daily basis, and all vehicle costs (gas, maintenance, insurance, and parking) are included in the rental fee. Vehicles are checked out for a specific time period and returned to their designated location.

The nearby Zipcar service provides an important transportation option and reduces the need for private vehicle ownership. As shown on Figure 7-6, Zipcar has two locations in the vicinity of the Project.

7.2.8 Existing Pedestrian and Bicycle Conditions

The Project site is located immediately adjacent to Hyde Park Avenue, which provides primary pedestrian access to the Forest Hills Station to the north. Sidewalks are generally provided along all streets within the study area and are generally in fair to good condition. Adjacent to the Project site, the sidewalks are approximately 10 feet in width along Hyde Park Avenue. Crosswalks and pedestrian signal equipment are provided at the three study area intersection locations.

To estimate the amount of pedestrian activity within the study area, pedestrian counts were conducted concurrent with the TMCs at the study area intersections and are presented in Figure 7-7. The pedestrian activity within the study area is heaviest along the north-south movements across Ukraine Way at Washington Street and Hyde Park Avenue. These crossings provide access to the Forest Hills Station from the south.

Figure 7-5. **Public Transportation Facilities**

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Parcel U - Expanded PNF

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Parcel U - Expanded PNF

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Figure 7-7. Existing Pedestrian (2014) Volumes, a.m. and p.m. Peak Hour

7.2.9 Existing Bicycle Facilities

In recent years, bicycle use has increased dramatically throughout the City of Boston. The Project site is conveniently located south of the terminus of the Southwest Corridor Park, which provides approximately 4.7 miles of biking, walking, and jogging paths between Forest Hills and Back Bay.

Washington Street currently has exclusive bicycle lanes in both the northbound and southbound directions in the vicinity of the Project site. The remaining roadways in the study area currently have no designated bicycle lanes or markings. In the vicinity of the study area, both Washington Street and Hyde Park Avenue are designated as advanced-level bike routes suitable for experienced and traffic confident cyclists on the 2010-2011 Boston Bikes Map.

The 2014 existing a.m. and p.m. peak-hour bicycle turning movement counts appear in **Figure 7-8**. Detailed bicycle counts are provided in **Appendix D**.

Figure 7-8. Existing Bicycle (2014) Volumes, a.m. and p.m. Peak Hour

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

7.3 **Future Conditions**

For transportation impact analyses, it is standard practice to evaluate two future conditions: No-Build conditions (without the proposed project) and Build conditions (with the proposed project). In accordance with BTD guidelines, these conditions are projected to a future date five years from the Existing conditions year. For this evaluation of this Project, 2019 was selected as the horizon year for the future conditions analyses.

This section presents a description of the 2019 future conditions scenarios and includes an evaluation of the transportation facilities under the No-Build and Build conditions.

7.3.1 No-Build Conditions

The No-Build conditions reflect a future scenario that incorporates any anticipated traffic growth independent of the Project and any planned infrastructure improvements that will affect travel patterns throughout the study area.

No-Build Background Growth

Two methodologies are used to account for future traffic growth, independent of the Project. The first methodology accounts for general background traffic growth that may be affected by changes in demographics, automobile usage, and automobile ownership. Based on a review of recent traffic studies conducted for projects within the vicinity of the study area, a 0.5% annual traffic growth rate was used to develop the future conditions traffic volumes.

The second methodology identifies any specific planned developments that are expected to affect traffic patterns throughout the study area within the future analysis time horizon. The following projects are located in the vicinity of the study area and, where appropriate, traffic volumes associated with these projects were also incorporated into the future conditions traffic volumes.

The Commons at Forest Hills Station – This proposed project consists of the redevelopment of the former Hughes Oil site in Jamaica Plain to include 289 residential units including 37 affordable units, parking and ground floor retail space. This project has been approved by the BRA.

3521-3529 Washington Street – This proposed project consists of the construction of a 4-story self-storage facility, 2-story retail building fronting Washington Street and multifamily housing fronting Burnett Street. This project is currently under review by the BRA.

The 0.5% per year annual growth rate was applied to the 2014 Existing conditions traffic volumes, then the traffic volumes associated with the background development projects listed above were added to develop the 2019 No-Build conditions traffic volumes. The 2019 No-Build

weekday a.m. and p.m. peak hour traffic volumes are shown on Figure 7-9 and Figure 7-10, respectively.

Figure 7-9. No-Build Conditions (2019) Turning Movement Volumes, a.m. Peak Hour

Parcel U - Expanded PNF

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Figure 7-10. No-Build Conditions (2019) Turning Movement Volumes, p.m. Peak Hour

Parcel U - Expanded PNF

Proposed Infrastructure Improvements

A review of planned improvements to roadway, transit, bicycle, and pedestrian facilities was conducted to determine if there are any nearby projects in the vicinity of the study area. Based on this review, the following project was identified within the study area.

Casey Arborway Project. This Project will replace the existing structurally deficient Casey Overpass with a new at-grade boulevard. The intersections of Washington Street at Arborway and South Street at Arborway will be reconstructed as at-grade, signalized intersections. Leftturns from the Arborway to Washington Street and South Street will be accommodated by two new u-turns that will be located east of Washington Street (for Arborway eastbound left-turns) and west of South Street (for Arborway westbound left-turns). A separate bus lane will be provided for the MBTA buses for the Arborway westbound left-turn movement to Washington Street southbound. The Casey Arborway Project will also improve the multi-use path connections between the Southwest Corridor Park and the adjacent transportation facilities (i.e. Washington Street, South Street, and the Forest Hills MBTA Station). This project is expected to commence between summer 2014 and fall 2016.

No-Build Traffic Operations

The 2019 No-Build conditions scenario analysis uses the same methodology as the 2014 Existing conditions scenario analysis. Table 7-5 and Table 7-6 present the 2019 No-Build conditions operations analysis for the weekday morning and evening peak hours, respectively. The shaded cells in the tables indicate a worsening in LOS between the 2014 Existing conditions and the 2019 No-Build conditions. The detailed analysis sheets are provided in Appendix D.

rable 7-5. No-Build Conditions (2019) Level of Service Summary, a.m. Peak Hour						
Intersection	LOS	Delay (seconds)	V/C Ratio	50 th Percentile Queue Length (ft)	95 th Percentile Queue Length (ft)	
	Signalize	ed				
Washington Street / Ukraine Way	D	36.1	-	-	-	
Ukraine Way WB left	E	64.3	0.69	133	m116	
Ukraine Way WB right	В	18.1	0.69	102	m131	
Washington Street NB thru thru/right	D	44.1	0.79	261	#471	
Washington Street SB left	D	53.4	0.84	196	#335	
Washington Street SB thru	В	19.5	0.39	134	189	
Hyde Park Avenue / Ukraine Way	С	33.1	-	-	-	
Ukraine Way EB left	E	67.9	0.86	170	m208	
Ukraine Way EB right	В	14.8	0.35	68	m182	
Hyde Park Avenue NB left/thru thru	С	23.3	0.95	594	#735	
Hyde Park Avenue SB thru thru/right	D	54.8	0.88	213	#503	
Hyde Park Avenue / Walk Hill Street	С	34.5	-	-	-	
Walk Hill Street WB left	D	50.2	0.22	21	43	
Walk Hill Street WB right	А	10.1	0.66	34	98	
Hyde Park Avenue NB thru thru/right	D	40.0	0.87	476	#725	
Hyde Park Avenue SB left	F	>80.0	>1.00	~247	#244	
Hyde Park Avenue SB thru thru	А	6.5	0.29	53	m201	

 $\sim = 50^{\text{th}}$ percentile volume exceeds capacity. Queue may be longer. # = 95th percentile volume exceeds capacity. Queue may be longer. Queue shown is the maximum after two cycles. $m = 95^{th}$ percentile queue is metered by upstream traffic signal. Grey shading indicates a decrease to LOS E or LOS F when compared to existing conditions.

Table 7-6. No-Build Conditions (2018) Level of Service Summary, p.m. Peak Hour

Intersection	LOS	Delay (seconds)	V/C Ratio	50 th Percentile Queue Length (ft)	95 th Percentile Queue Length (ft)
	Signalize	ed			
Washington Street / Ukraine Way	E	57.8	-	-	-
Ukraine Way WB left	E	60.4	0.79	196	m220
Ukraine Way WB right	С	23.1	0.39	126	m162
Washington Street NB thru thru/right	D	53.7	0.85	~318	#429
Washington Street SB left	F	>80.0	>1.00	~505	#710
Washington Street SB thru	В	19.7	0.48	219	290
Hyde Park Avenue / Ukraine Way	E	57.9	-	-	-
Ukraine Way EB left	E	70.6	0.74	151	m148
Ukraine Way EB right	F	>80.0	0.85	84	m87
Hyde Park Avenue NB left/thru thru	D	40.3	>1.00dl	~413	#587
Hyde Park Avenue SB thru thru/right	D	40.5	0.88	~563	#726
Hyde Park Avenue / Walk Hill Street	С	31.0	-	-	-
Walk Hill Street WB left	E	67.1	0.50	44	35
Walk Hill Street WB right	А	3.4	0.38	0	41
Hyde Park Avenue NB thru thru/right	D	43.4	0.77	303	#436
Hyde Park Avenue SB left	E	70.0	>1.00	~428	m#564
Hyde Park Avenue SB thru thru	В	10.5	0.55	279	506

= 50th percentile volume exceeds capacity. Queue may be longer.

= 95th percentile volume exceeds capacity. Queue may be longer. Queue shown is the maximum after two cycles.

 $m = 95^{th}$ percentile queue is metered by upstream traffic signal.

dl = Defacto left turn lane; through/left-turn lane operates as an exclusive left-turn lane.

Grey shading indicates a decrease to LOS E or LOS F when compared to existing conditions.

As shown in Table 7-5 and Table 7-6, operations at the intersection of Washington Street/Ukraine Way will decrease to LOS D from LOS C during the a.m. peak hour and to LOS E from LOS D during the p.m. peak hour under the No-Build conditions. The longest queues at the intersection will continue to occur along both Washington Street approaches.

Operations at the intersection of Hyde Park Avenue/Ukraine Way will remain at LOS C during the a.m. peak hour and will decrease to LOS E during the p.m. peak hour under the No-Build conditions. The longest queues at the intersection will continue to occur along Hyde Park Avenue.

Operations at the intersection of Hyde Park Avenue/Walk Hill Street will remain at LOS C during both the a.m. and p.m. peak hours under the No-Build conditions.

7.3.2 Build Conditions

As previously summarized, the Project consists of the construction of a 48 residential townhomes, 76 apartment units, and approximately 1,600 sf of ancillary retail space to be located off Hyde Park Avenue, south of Ukraine Way in the Forest Hills neighborhood of Boston. The 2019 Build conditions reflect a future scenario that adds anticipated Project-generated trips to the 2019 No-Build conditions traffic volumes. A total of 90 parking spaces will be provided for the residential uses on the site, with an additional 8 parallel parking spaces proposed along Hyde Park Avenue to serve the retail spaces on site. Secure storage for approximately 124 bicycles will also be provided on the site.

Site Access and Circulation

As shown in the Project site plan in **Figure 7-11**, primary access and egress will be provided by way of a proposed driveway opposite Walk Hill Street along Hyde Park Avenue. This driveway will form the fourth leg of the signalized intersection. Secondary access will be provided by way of a right-in entrance-only driveway in the northerly part of the site. Left-turns into the site at the northern driveway would be physically precluded via a proposed extension of the existing median along Hyde park Avenue. Circulation throughout the site will be provided by way of an access driveway in the rear of the site that runs parallel to Hyde Park Avenue. Loading and service, including trash, recycling, and deliveries will occur on-site. In addition, adequate space has been provided on-site to accommodate residential move-in/move-out without impacting the public sidewalk, parking, or roadway. Primary pedestrian connectivity will be provided along Hyde Park Avenue.

Parcel U - Expanded PNF

Figure 7-11. Proposed Site Access Plan

Howard/Stein-Hudson Associates, Inc. creative solutions • effective partnering

Trip Generation

Trip generation is a complex, multi-step process that produces an estimate of vehicle trips, transit trips, walk trips, and bicycle trips associated with a proposed project and a specific land use program. A project's location and proximity to different modes determines how people will travel to and from that project site.

To estimate the number of trips expected to be generated by the Project, data published by the Institute of Transportation Engineers (ITE) in the *Trip Generation Manual⁵* were used. ITE provides data to estimate the total number of unadjusted vehicular trips associated with the Project. In an urban setting well-served by transit, adjustments are necessary to account for other travel mode shares such as walking, bicycling, and transit.

To estimate the unadjusted number of vehicular trips for the Project, the following ITE land use codes (LUCs) were used:

LUC 220 – Apartment. Apartments are rental dwelling units that are located within the same building with at least three other dwelling units-for example, quadraplexes and all types of apartment buildings. This LUC was used for the apartment component of the Project.

LUC 230 – Residential Condominium/Townhouse. Residential condominiums/townhouses are defined as *ownership* units that have at least one other owned unit within the same building structure. Both condominiums and townhouses are included in this land use. This LUC was used for the townhouse component of the Project.

LUC 820 - Shopping Center. A shopping center is an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. A shopping center's composition is related to its market area in terms of size, location, and type of store. A shopping center also provides on-site parking facilities sufficient to serve its own parking demands.

Mode Share

The BTD provides vehicle, transit, and walking mode split rates for different areas of Boston. The Project is located in the northerly portion of designated Area 6. The unadjusted vehicular trips were converted to person trips by using vehicle occupancy rates published by the Federal Highway Administration (FHWA)⁶. The person trips were then distributed to different modes according to the mode shares shown in Table 7-7.

⁵ Trip Generation Manual, 9th Edition; Institute of Transportation Engineers; Washington, D.C.; 2012.

⁶ Summary of Travel Trends: 2009 National Household Travel Survey; FHWA; Washington, D.C.; June 2011.
Table 7-7. Travel Mode Shares

Time Period		Vehicle Occupancy Bate ^a	Walk Share	Transit	Auto
Daily		nate		Jilare	Jiare
2 0009	In	1.13	13%	25%	62%
Apartment	Out	1.13	13%	25%	62%
	In	1.13	13%	25%	62%
Condominium	Out	1.13	13%	25%	62%
Deteil	In	1.78	16%	23%	61%
Retail	Out	1.78	16%	23%	61%
a.m. Peak Hour					
Apartment	In	1.13	18%	26%	56%
	Out	1.13	12%	44%	44%
Condominium	In	1.13	18%	26%	56%
	Out	1.13	12%	44%	44%
Potail	In	1.78	20%	26%	54%
Retail	Out	1.78	13%	42%	45%
p.m. Peak Hour					
Anartment	In	1.13	12%	44%	44%
Apartment	Out	1.13	18%	26%	56%
Condominium	In	1.13	12%	44%	44%
Condominium	Out	1.13	18%	26%	56%
Retail	In	1.78	13%	42%	45%
netali	Out	1.78	20%	26%	54%

Based on Table 16 from "Summary of Travel Trends: 2009 National Household Travel Survey" (FHWA,2011). а h

Based on rates published by the Boston Transportation Department.

Trip Generation Summary

The mode share percentages shown in **Table 7-7** were applied to the number of person trips to develop walk/bicycle, transit, and vehicle trip generation estimates. The trip generation for the Project by mode is shown in **Table 7-8**. The detailed trip generation is provided in **Appendix D**.

Table 7-8. Project Trip Generation

Land Use		Walk/ Bicycle Trips	Transit Trips	Vehicle Trips
		Daily	•	
Apartments ¹	In	43	82	181
76 units	Out	43	82	181
Townhomes ²	In	25	48	106
48 units	Out	25	48	106
Retail ³	In	10	14	21
1,600 sf	Out	10	14	21
	a.n	n. Peak Hour	•	
Apartments ¹	In	2	2	4
76 units	Out	4	16	15
Townhomes ²	In	1	1	3
48 units	Out	3	12	11
Retail ³	In	0	0	1
1,600 sf	Out	0	1	0
	p.m	n. Peak Hour	_	
Apartments ¹	In	4	15	14
76 units	Out	4	6	12
Townhomes ²	In	3	11	10
48 units	Out	2	3	6
Retail ³	In	1	2	1
1,600 sf	Out	1	2	2

Based on ITE LUC 220 – Apartments for 76 units. 2 Based on ITE LUC 230 – Condominium/Townhouse for 48 units.

3 Based on ITE LUC 820 – Shopping Center for 1,600 sf.

Vehicle Trip Generation

To develop the overall trip generation characteristics, the adjusted vehicular trips associated with the Project were estimated. The Project-generated new vehicle trips are summarized in Table 7-9, with the detailed trip generation information provided in Appendix D.

Table 7-9. Project Vehicle Trip Generation

Time Period	Direction	Apartments ¹	Townhomes ²	Retail ³	Total
	In	181	106	21	308
Daily	<u>Out</u>	<u>181</u>	<u>106</u>	<u>21</u>	<u>308</u>
	Total	362	212	42	616
	In	4	3	1	8
a.m. Peak Hour	<u>Out</u>	<u>15</u>	<u>11</u>	<u>0</u>	<u>26</u>
	Total	19	14	1	34
	In	14	10	1	25
p.m. Peak Hour	<u>Out</u>	<u>12</u>	<u>6</u>	<u>2</u>	<u>20</u>
	Total	26	16	3	45

Based on ITE LUC 220 – Apartments for 76 units. 1

Based on ITE LUC 230 – Condominium/Townhouse for 48 units. 2

3 Based on ITE LUC 820 – Shopping Center for 1,600 sf.

As shown in **Table 7-9**, the Project is expected to generate approximately 616 new daily vehicle trips (308 entering and 308 exiting), with 34 new vehicle trips (8 entering and 26 exiting) during the a.m. peak hour and 45 new vehicle trips (25 entering and 20 exiting) during the p.m. peak hour.

Trip Distribution

The trip distribution identifies the various travel paths for vehicles arriving and leaving the Project site. Trip distribution patterns for the Project were based on BTD's origin-destination data for Area 6 and trip distribution patterns presented in traffic studies for nearby projects. The trip distribution patterns for the Project are illustrated on Figure 7-12.

The Project-generated trips were assigned to the study area roadway network based on the trip distribution patterns shown in Figure 7-12 and are shown in Figure 7-13 and Figure 7-14 for the weekday a.m. and weekday p.m. peak hours, respectively. The Project-generated trips were added to the 2019 No-Build conditions traffic volumes to develop the 2019 Build conditions peak hour traffic volume networks and are shown in Figure 7-15 and Figure 7-16 for the weekday a.m. and weekday p.m. peak hours, respectively.

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Figure 7-12. **Vehicle Trip Distribution**

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING Parcel U - Expanded PNF

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Figure 7-14. Project Generated Trips, p.m. Peak Hour

Figure 7-15. Build Conditions (2019) Turning Movement Volumes, a.m. Peak Hour

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Parcel U - Expanded PNF

Howard/Stein-Hudson Associates, Inc. CREATIVE SOLUTIONS • EFFECTIVE PARTNERING

Figure 7-16. Build Conditions (2019) Turning Movement Volumes, p.m. Peak Hour

Parcel U - Expanded PNF

Build Conditions Traffic Operations

The 2019 Build conditions scenario analysess use the same methodology as the 2014 Existing and 2019 No-Build conditions scenario analyses. Table 7-10 and Table 7-11 present the 2019 Build conditions operations analyses for the weekday a.m. and p.m. peak hours, respectively. The detailed analysis sheets are provided in **Appendix D.**

Table 7-10. Build Conditions (2019) Level of Service Summary, a.m. Peak Hour

Intersection	LOS	Delay (seconds)	V/C Ratio	50 th Percentile Queue Length (ft)	95 th Percentile Queue Length (ft)
	Signalize	ed			
Washington Street / Ukraine Way	D	36.3	-	-	-
Ukraine Way WB left	E	64.4	0.71	135	m115
Ukraine Way WB right	С	21.4	0.69	104	m130
Washington Street NB thru thru/right	D	44.1	0.78	262	#471
Washington Street SB left	D	48.0	0.84	171	#366
Washington Street SB thru	С	20.2	0.38	134	231
Hyde Park Avenue / Ukraine Way	С	32.1	-	-	-
Ukraine Way EB left	E	67.7	0.86	170	m#209
Ukraine Way EB right	В	15.1	0.36	71	m184
Hyde Park Avenue NB left/thru thru	С	20.9	0.97	134	#763
Hyde Park Avenue SB thru thru/right	E	56.2	0.89	217	#512
Hyde Park Avenue / Walk Hill Street / Site Drive South	С	32.5	-	-	-
Site Drive South EB left/thru/right	E	57.1	0.29	20	52
Walk Hill Street WB left/thru	E	59.5	0.29	22	54
Walk Hill Street WB right	С	24.6	0.88	0	#119
Hyde Park Avenue NB left/thru thru/right	D	35.7	0.84	474	#629
Hyde Park Avenue SB left	E	75.1	0.98	234	237
Hyde Park Avenue SB thru thru/right	А	6.9	0.28	111	m194
	Unsignalize	d			
Hyde Park Avenue / Site Drive North	-	-	-	-	-
Hyde Park Avenue NB left/thru thru	А	0.0	0.60	-	0
Hyde Park Avenue SB thru/right thru	А	0.0	0.31	-	0

 \sim = 50th percentile volume exceeds capacity. Queue may be longer. # = 95th percentile volume exceeds capacity. Queue may be longer. Queue shown is the maximum after two cycles. m = 95th percentile queue is metered by upstream traffic signal. Grey shading indicates a decrease to LOS E or LOS F when compared to No-Build conditions.

Table 7-11. Build Conditions (2019) Level of Service Summary, p.m. Peak Hour

Intersection	LOS	Delay (seconds)	V/C Ratio	50 th Percentile Queue Length (ft)	95 th Percentile Queue Length (ft)
	Signalize	ed			
Washington Street / Ukraine Way	E	58.1	-	-	-
Ukraine Way WB left	E	58.3	0.80	197	m212
Ukraine Way WB right	С	26.8	0.40	140	m154
Washington Street NB thru thru/right	D	52.6	0.85	~318	#428
Washington Street SB left	F	>80.0	>1.00	~513	#766
Washington Street SB thru	С	20.5	0.48	226	361
Hyde Park Avenue / Ukraine Way	E	61.7	-	-	-
Ukraine Way EB left	E	68.8	0.68	135	m146
Ukraine Way EB right	F	>80.0	0.85	169	m88
Hyde Park Avenue NB left/thru thru	D	44.7	>1.00dl	~463	m#567
Hyde Park Avenue SB thru thru/right	D	47.7	0.92	~629	#741
Hyde Park Avenue / Walk Hill Street / Site Drive South	С	28.8	-	-	-
Site Drive South EB left/thru/right	E	56.7	0.22	14	40
Walk Hill Street WB left/thru	F	>80.0	0.71	46	#118
Walk Hill Street WB right	А	3.8	0.39	0	42
Hyde Park Avenue NB left/thru thru/right	E	56.9	0.92	~398	#482
Hyde Park Avenue SB left	D	40.3	0.94	285	m#497
Hyde Park Avenue SB thru thru/right	А	7.9	0.52	235	348
	Unsignalize	d			
Hyde Park Avenue / Site Drive North	-	-	-	-	-
Hyde Park Avenue NB left/thru thru	А	0.0	0.37	-	0
Hyde Park Avenue SB thru/right thru	А	0.0	0.63	-	0

 \sim = 50th percentile volume exceeds capacity. Queue may be longer.

= 95th percentile volume exceeds capacity. Queue may be longer. Queue shown is the maximum after two cycles.

 $m = 95^{th}$ percentile queue is metered by upstream traffic signal.

dl = Defacto left turn lane; through/left-turn lane operates as an exclusive left-turn lane.

Grey shading indicates a decrease to LOS E or LOS F when compared to No-Build conditions.

As shown in Table 7-10 and Table 7-11, the intersection of Washington Street/Ukraine Street will continue to operate at an overall LOS D during the a.m. peak hour and LOS E during the p.m. peak hour under the 2019 Build conditions. The Project was shown to have minimal impact upon operations at this intersection.

Overall operations at the intersection of Hyde Park Avenue/Ukraine Way are expected to remain at LOS C during the a.m. peak hour and LOS E during the p.m. peak hour under the 2019 Build conditions. The Hyde Park Avenue southbound movements will decrease from LOS D to LOS E during the a.m. peak hour due to the minimal amount of Project-generated trips traveling through the intersection. The decrease in LOS is caused by an increase of 1.4 seconds of delay for the movement.

The Project will add a fourth leg to the signalized intersection of Hyde Park Avenue/Walk Hill Street. This newly modified intersection will operate at an overall LOS C during both the a.m. and p.m. peak hours under the 2019 Build conditions, which is consistent with the 2019 No-Build operations. The intersection will also be provided an optimal traffic signal timing and phasing plan.

The proposed intersection of Hyde Park Avenue at the northerly site drive will accommodate one-way traffic entering the site and will operate at LOS A during both the a.m. and p.m. peak hours.

Based on the traffic operations analysis presented in Table 7-10 and Table 7-11, the Project is not expected to have a significant impact upon traffic operations at the study area intersections. The existing roadway infrastructure will accommodate the minor increases in traffic volumes at the study area intersections expected to be generated by the Project. No additional capacity or operational improvements are necessary at the study area intersections to accommodate the Project-generated traffic volumes.

Parking

This section presents the Project's parking supply and an evaluation of the Project's parking demand. The Project will provide a total of 90 parking spaces on the site. A total of 48 parking spaces will be allocated for the 48 townhomes and a total of 42 parking spaces will be allocated for the 76 apartment units. No additional parking will be provided on-site for the retail uses. To accommodate the parking demand for the retail uses, a total of ten parallel parking spaces will be provided along Hyde Park Avenue southbound in front of the retail uses. The total parking ratio for the residential units is 0.73 parking spaces per units (1.0 parking spaces per townhome and 0.55 parking spaces per apartment unit). This parking ratio is consistent with the districtbased parking goals developed by BTD for the Forest Hills area (a maximum of 0.75 - 1.25 spaces per residential unit) and is also consistent with parking ratios proposed for nearby residential projects in the vicinity of the Forest Hills Station.

Public Transportation

Based on the transit mode shares presented in Table 7-7, the future transit trips associated with the Project were estimated and are summarized in Table 7-11.

Table 7-12. Project Transit Trips

Time Period	Direction	Apartments ¹	Townhomes ²	Retail ³	Total
	In	82	48	14	144
Daily	<u>Out</u>	<u>82</u>	48	<u>14</u>	<u>144</u>
	Total	164	96	28	288
	In	2	1	0	3
a.m. Peak Hour	<u>Out</u>	<u>16</u>	<u>12</u>	<u>1</u>	<u>28</u>
	Total	18	13	1	31
	In	15	11	2	28
p.m. Peak Hour	<u>Out</u>	<u>6</u>	<u>3</u>	<u>2</u>	<u>11</u>
	Total	21	14	4	39

Based on ITE LUC 220 – Apartments for 76 units. 1

Based on ITE LUC 230 – Condominium/Townhouse for 48 units. 2

Based on ITE LUC 820 – Shopping Center for 1,600 sf. 3

As shown in Table 7-11, approximately 288 new transit trips will occur over the course of an average weekday, with 31 new transit trips (3 alighting/28 boarding) during the weekday morning peak hour and 39 new transit trips (28 alighting/11 boarding) during the weekday evening peak hour. The transit trips will mostly be dispersed on the MBTA 32 bus route and the Orange Line at Forest Hills Station.

Pedestrians

Based on the bicycle/walk mode shares presented in **Table 7-7**, the future bicycle/walk trips were estimated and are summarized in Table 7-12.

Table 7-13. Project Pedestrian/Bicycle Trips

Time Period	Direction	Apartments ¹	Townhomes ²	Retail ³	Total
	In	43	25	10	78
Daily	<u>Out</u>	<u>43</u>	<u>25</u>	<u>10</u>	<u>78</u>
	Total	86	50	20	156
	In	2	1	0	3
a.m. Peak Hour	<u>Out</u>	<u>4</u>	<u>3</u>	<u>0</u>	<u>7</u>
	Total	6	4	0	10
	In	4	3	1	8
p.m. Peak Hour	<u>Out</u>	4	<u>2</u>	<u>1</u>	<u>7</u>
	Total	8	5	2	15

Based on ITE LUC 220 – Apartments for 76 units. 1

Based on ITE LUC 230 – Condominium/Townhouse for 48 units. 2

3 Based on ITE LUC 820 – Shopping Center for 1,600 sf.

Over the course of the day, the Project will generate 156 new pedestrian trips and an additional 288 transit trips that will require a walk to or from the site. This results in an additional 444 new pedestrian trips per day. Approximately 10 new pedestrian trips will occur during the a.m. peak hour and 15 new pedestrian trips will occur during the p.m. peak hour in addition to the transit trips that will also require a walk from the site. The pedestrian facilities surrounding the site have adequate capacity to accommodate the pedestrian trips generated by the Project.

Bicycle Accommodations

BTD has established guidelines requiring projects subject to Article 80 Large Project Review to provide secure covered bicycle parking for residents and employees and short-term bicycle racks for visitors. The Project will provide a total of 124 covered and secure bicycle storage spaces on-site. Additional storage will be provided by outdoor bicycle racks accessible to visitors to the site in accordance with BTD guidelines.

All bicycle racks, signs, and parking areas will conform to BTD guidelines and will be located in safe, secure locations. The Proponent will work with BTD to identify the most appropriate quantity and location for bicycle racks on the Project site as part of the Transportation Access Plan Agreement (TAPA) process.

Loading and Service Accommodations

Loading and service operations will occur on-site along the rear access road that runs parallel to Hyde Park Avenue. All trash truck activity and residential move-in/move-out activity will also take place on-site along the rear access road.

Residential units primarily generate delivery trips related to small packages and prepared food. Delivery trip estimates were based on data provided in the Truck Trip Generation Rates by Land Use in the Central Artery/Tunnel Project Study Area report⁷. Deliveries to the Project site will be limited to SU-36 trucks (single-unit moving and box trucks) and smaller delivery vehicles. Based on the CTPS report, residential uses generate approximately 0.01 light truck trips per 1,000 sf of gross floor area. The Project is expected to generate approximately one to two delivery trips per day. These numbers do not include trash truck trips. The low number of anticipated deliveries will have minimal impact on the vehicular operations along Hyde Park Avenue. All movein/move-out activity can occur on-site without impacting the public sidewalk, parking, or roadway.

⁷ Truck Trip Generation Rates by Land Use in the Central Artery/Tunnel Project Study Area; Central Transportation Planning Staff; September 1993

Transportation Mitigation Measures 7.4

While the traffic impacts associated with the new trips are minimal, the Proponent will continue to work with the City of Boston to create a Project that efficiently serves vehicle trips, improves the pedestrian environment, and encourages transit and bicycle use. The Project is proposing the following mitigation measures, some with the assistance of additional public finding which the Proponent is discussing with the BRA and city agencies:

- The Project proposes to upgrade all traffic signal equipment at the intersection of Hyde Park Avenue/Walk Hill Street in order to accommodate the proposed site driveway and will provide an optimal traffic signal timing and phasing plan.
- The Project will create eight (8) on-street parking spaces along Hyde Park Avenue to help support the proposed ground-floor retail use. This parking will also serve as a buffer between the roadway and the sidewalk.
- The Project proposes to extend the existing median on Hyde Park Avenue to physically preclude left-turns into the northern driveway.

The Proponent is responsible for preparation of the Transportation Access Plan Agreement (TAPA), a formal legal agreement between the Proponent and the BTD. The TAPA formalizes the findings of the transportation study, mitigation commitments, elements of access and physical design, travel demand management measures, and any other responsibilities that are agreed to by both the Proponent and the BTD. Because the TAPA must incorporate the results of the technical analysis, it must be executed after these other processes have been completed. The proposed measures listed above and any additional transportation improvements to be undertaken as part of this Project will be defined and documented in the TAPA.

The Proponent will also produce a Construction Management Plan (CMP) for review and approval by BTD. The CMP will detail the schedule, staging, parking, delivery, and other associated impacts of the construction of the Project. See Section 7.6 for additional information related to the CMP.

7.5 **Transportation Demand Management**

The Proponent is committed to implementing Transportation Demand Management (TDM) measures to minimize automobile usage and Project related traffic impacts. TDM will be facilitated by the nature of the Project (which does not generate significant peak hour trips) and its proximity to numerous public transit alternatives.

On-site management will keep a supply of transit information (schedules, maps, and fare information) to be made available to the residents of the site. The Proponent will work with the City to develop a TDM program appropriate to the Project and consistent with its level of impact.

The Proponent is prepared to take advantage of good transit access in marketing the site to future residents by working with them to implement the following TDM measures to encourage the use of non-vehicular modes of travel.

The TDM measures for the Project may include but are not limited to the following:

- transportation for new arrivals.
- entrances.
- bicycling, and walking opportunities.
- residents, workers, and visitors.
- charging stations on the site.
- promote the availability of this service to new residents and tenants.

 Orientation Packets: The Proponent will provide orientation packets to new residents and tenants containing information on available transportation choices, including transit routes/schedules and nearby vehicle sharing and bicycle sharing locations. On-site management will work with residents and tenants as they move in to help facilitate

 Bicycle Accommodation: The Proponent will provide bicycle storage in secure, sheltered areas for residents consistent with the City of Boston Bicycle Parking Guidelines. Subject to necessary approvals, public use bicycle racks for visitors will be placed near building

 Transportation Coordinator: The Proponent will designate a transportation coordinator to oversee transportation issues, including parking, service and loading, and deliveries, and will work with residents as they move in to raise awareness of public transportation,

Project Web Site: The web site will include transportation-related information for

• Electric Charging Stations: The Proponent will explore the feasibility of providing electric

Vehicle Sharing Program: Zipcar car sharing spaces currently exist in nearby locations including at Forest Hills Station and at Washington Street/Arborway, which are expected to be sufficient to meet the car sharing needs of the Proposed Project. The Project will

Evaluation of Short-Term Construction Impacts 7.6

Most construction activities will be accommodated within the current site boundaries. Details of the overall construction schedule, working hours, number of construction workers, worker transportation and parking, number of construction vehicles, and routes will be addressed in detail in a Construction Management Plan to be filed with BTD in accordance with the City's transportation maintenance plan requirements.

To minimize transportation impacts during the construction period, the following measures will be considered for the Construction Management Plan:

- Limited construction worker parking on-site;
- Encouragement of worker carpooling;
- Consideration of a subsidy for MBTA passes for full-time employees; and
- Providing secure spaces on-site for workers' supplies and tools so they do not have to be brought to the site each day.

The Construction Management Plan to be executed with the City prior to commencement of construction will document all committed measures.

COORDINATION GOVERNMEN AGENCIE

COORDINATION WITH GOVERNMENTAL AGENCIES 8.0

Architectural Access Board Requirements 8.1

This Project will comply with the requirements of the Architectural Access Board. The Project will also be designed to comply with the Standards of the Americans with Disabilities Act.

8.2 **Massachusetts Environmental Policy Act**

Based on information currently available, development of the Proposed Project is not expected to result in state permit/state agency action meeting thresholds requiring review by the MEPA Office of the Executive Office of Energy and Environmental Affairs.

8.3 **Boston Civic Design Commission**

The Proposed Project exceeds the 100,000 gross square feet size threshold requirement for review of the schematic plan(s) by the Boston Civic Design Commission.

PROJECT CERTIFICATION

9.0 **PROJECT CERTIFICATION**

This form has been circulated to the Boston Redevelopment Authority as required by Article 80B of the Boston Zoning Code.

Urbanica, Inc., Manager of JP Parcel U, LLC

-

Signature of Proponent Kamran Zahedi

8/1/2014		
Date		

Mitchell L. Fischman Consulting LLC

Signature of Preparer Mitchell L. Fischman

<u>8/1/2014</u>

Date

APPENDIX A LETTER OF INTENT

URBANICA DESIGN + DEVELOPMENT

May 1, 2014

BY HAND

Mr. Brian Golden. Acting Director & Executive Director/Secretary **Boston Redevelopment Authority** One City Hall Square Boston, MA 02201

Subject: Letter of Intent to File Project Notification Form (PNF) Parcel U, Hyde Park Avenue at Ukraine Way, Jamaica Plain

Dear Mr. Golden:

In accordance with Article 80B Large Project review requirements of the Boston Zoning Code (the "Code"), please consider this letter as a notification to the Boston Redevelopment Authority that JP Parcel U, LLC, managed by Urbanica, Inc, ("Project Proponent") intends to develop a new project with landscaping and open space that offers a mix of homeownership townhouses and rental apartment building which includes 24 Townhouses (48 condominium units +/-) and one block of 65-70 unit of Multifamily Mixed-income rental apartments totaling approximately 190,000 square feet of gross floor area (inclusive of parking and utility areas), which in total will contain approximately 118 dwelling units +/-, a ground floor retail space and a community room ('Proposed Project") on Parcel "U", with approximately 122,799 s.f. +/- of land in the Jamaica Plain neighborhood, and bounded by Hyde Park Avenue, Ukraine Way, Toll Gate Cemetery, and the MBTA Commuter Rail tracks on a surplus parcel currently owned by the MBTA and on part of the remaining land after completion of the Southwest Corridor project ("Project Site"). See attached Figure 1. Site Locus.

The Project Proponent also expresses an interest to file an Expanded PNF, as this approach is intended to identify and resolve critical project impact issues early on in the process, and would include detailed analyses of possible impacts in the Expanded PNF that are normally presented in the later Draft Project impact Report. It is also expected that the appropriate content and scope of the Expanded PNF will be developed in consultation with the BRA and City Department staffs.

The Proponent was selected by the Massachusetts Bay Transportation Authority [MBTA] through its real estate representative, Transit Realty Associates [TRA] from a two phase "Invitation to Bid" process that closed on November 15, 2012. Phase I was an eligibility prequalification round that included categories such as Experience and Qualification, Financial Capability, Diversity and M/WBE and Project Program Compatibility. Phase II was a review of financial bids whereby the highest offer was awarded the bid. JP Parcel U, LLC was highest qualified bidder and was designated by the MBTA as the designated developer of the Site.

The Proposed Project will also far exceed the requirements of the City's Inclusionary Development Policy by offering approximately 31 affordable units (approximately 35% of market rate units). The Proposed Project's program mix will include a mix of bedroom sizes from studios to three bedroom dwelling units.

As a Transit Oriented Development (T.O.D.) located only a five-minute walk from the Forest Hills MBTA Intermodal Transit Hub, and its close proximity to the Southwest Corridor - which contains a bike path running all the way to Back Bay - the Proposed Project will offer adequate bike storage and a lower automotive parking ratio in order to promote the use of alternative means of transportation. The townhouse component of the Proposed Project will offer a 1:1 dwelling unit to parking space ratio. The rental apartment component will offer a ratio of 1: 0.65 dwelling unit to parking space. There are also plans to provide a modest number of exterior curbside parking

www.urbanicaboston.com

142 Berkeley Street, NO. 402 Boston, Massachusetts 02116 T 617 654 8900 F 617 654 8901

spaces along Hyde Park Avenue to support the ground floor uses of retail and community space. The overall project-wide parking ratio will be at 1: 0.79 dwelling unit to parking spaces.

The Project Site was formerly located within the "Open Space-Parkland" Zoning Sub-district of Article 55: Jamaica Plain Neighborhood District. The Zoning Sub-district was amended on April 9, 2014 by the Boston Zoning Commission to "Multifamily Residential" following a petition by JP Parcel U, LLC. The Proposed Project still anticipates the need for zoning relief for the proposed use of retail and community space located at the ground floor of the rental apartment, as well as for a number of dimensional variances and parking variances. The Proposed Project will comply with the provisions of Boston Zoning Code Article 37: Green Buildings and with the City's Inclusionary Development Policy.

By closely adopting the comprehensive planning study of the 2008 Forest Hills Improvement Initiative, the Proposed Project aims to supply much needed additional housing for Jamaica Plain in close proximity to the Forest Hills MBTA Station while respecting the residential scale and unique feel of the Forest Hills area. The Proposed Project will also contribute towards meeting the City of Boston's goal of adding 30,000 new housing units by 2020.

Urbanica, Inc, in collaboration with The Community Builders, will lead a team of professional designers, planners, engineers and consultants with extensive experience in the development of mixed-use projects. The team has already conducted a number of pre-review planning meetings with the BRA staff members, and has undertaken significant outreach with abutters and relevant neighborhood groups. The team also has worked closely with the neighborhood groups and BRA staff members leading to the unanimous approval of the zoning map amendment by the Boston Zoning Commission on April 9, 2014.

Urbanica, Inc., looks forward to continuing working with you, your staff, elected officials, community leaders, and neighborhood groups to make a 21st century Transit Oriented Development (T.O.D.) project that will greatly benefit Jamaica Plain and the City of Boston. Thank you in advance for your consideration.

Sincerely,

Kamran Zahedi Principal of Urbanica, Inc Manager of JP Parcel U, LLC

Attachment: Figure 1: Site Locus

Kairos Shen, Boston Redevelopment Authority, Director of Planning CC Heather Campisano, Boston Redevelopment Authority, Chief of Staff Tyler Norod, Boston Redevelopment Authority, Senior Project Manager Eliza Datta and James Madden, The Community Builders, Inc. Mitchell Fischman, Mitchell L. Fischman Consulting LLC

URBANICA DESIGN + DEVELOPMENT

Erico Lopez, Boston Redevelopment Authority, Director of Development Review & Policy

FIGURE 1- Site Locus

PARCEL U

MA) PARCEL

 \bigcirc

APPENDIX B AIR QUALITY APPENDIX

APPENDIX B AIR QUALITY APPENDIX

PARCEL U PROJECT NOTIFICATION FORM

Pages Contents

- 2 3 MOBILE6.2 Output for Garage and CAL3QHC Analyses
- Garage Emissions Analysis Calculations AM and PM Peak Hour 4
- 5 7 AERMOD Model Output

* MOBILE6.2.03 (24-Sep-2003)
* Input file: 3764_14W.INP (file 1, run 1).

* *** Winter 2014
* Reading Registration Distributions from the following extended
* data file: 2005_REG.D
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
M 49 Warning:
0.998 MYR sum not = 1. (will normalize)
M 49 Warning:
0.998 MYR sum not = 1. (will normalize)
M 49 Warning:
0.998 MYR sum not = 1. (will normalize)
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
M 49 Warning:
0.999 MYR sum not = 1. (Will normalize)
M 19 Walling:
0.996 MIR Sum not = 1. (WIII normalize)
M 49 Waining:
M 49 Warning:
0.999 MYR sum not = 1. (will normalize)
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
M 49 Warning:
1.00 MYR sum not = 1. (will normalize)
* Reading I/M program description records from the following
* data file: 09NEWIM.D

- * da
- * 15 Year Exemption Age
- * New Annual OBD Exhaust I/M program for Light Duty MY 1996 through 2007 vehicles <=8,500 lb GVWR

- M601 Comment:

User has enabled STAGE II REFUELING.

* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external * data file: MA_LEV2.D

Reading User Supplied Tier2 Exhaust bin phase-in fractions

Data read from file: LEV2EXH.D

Reading User Supplied Tier2 EVAP phase-in fractions

```
*****
     *
     *
****
```

xternal

e)

ing external

* New Annual OBD Exhaust I/M program for Light Duty and Medium duty MY 2008 and later <=14,000 lb GVWR * New Annual OBD Evap I/M program for Light Duty MY 1996 through 2007 vehicles <=8,500 lb GVWR * New Annual OBD Evap I/M program for for Light Duty and Medium duty MY 2008 and later <=14,000 lb GVWR

Data read from file: LEV2EVAP.D	INDOOR GARAGE ANALYSIS PROG	GRAM
	PROJECT: PARCEL U PARKIN	IG GARAGE PE
Reading User Supplied Tier2 50K certification standards		
Data read from file: LEV2CERT.D	DISTANCE IN: DISTANCE OUT:	93.4 METE 93.4 METE
M616 Comment:		
User has supplied post-1999 sulfur levels.	NUMBER OF EXIT LANES:	1 LAN
M614 Comment:	TOTAL EXIT VOLUME:	34 VEH
User supplied diesel sale fractions.		14 00 6
* # # # # # # # # # # # # # # # # # # #	CO RATE:	14.82 0
^t 2014 - Winter at 5.0 mph	SPEED IN GARAGE:	50 M F
^t File 1, Run 1, Scenario 2.		5.0 11.1
· # # # # # # # # # # # # # # # # # # #	VENT CFM:	19,930 (
M583 Warning:		-
The user supplied arterial average speed of 5.0		
will be used for all hours of the day. 100% of VMT		
has been assigned to the arterial/collector roadway	TOTAL CO EMISSIONS = 0 .	972 GRAMS/N
type for all nours of the day and all vehicle types.	TOTAL VENTILATION =	564 CU. M/N
Wild Walning: Wintertime Reformulated Casoline Rules Apply		
M 48 Warning:		
there are no sales for vehicle class HDGV8b	PEAK I-HOUR CO CONCEN	NIRATION FRO
	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *
LEV phase-in data read from file MA_LEV2.D		
Calendar Year: 2014	PROJECT: PARCEL U PARKING	GARAGE PEAK
Month: Jan.		
Altitude: Low		
Minimum Temperature: 22.8 (F)	DISTANCE IN:	93.4 METE
Maximum Temperature: 38.3 (F)	DISTANCE OUT:	93.4 METE
ADSOLUTE Humidity: 75. grains/lb Fuel Sulfur Content: 30. ppm		
	NUMBED OF EVIT IANEC.	1 א ד ד ד
Exhaust I/M Program: Yes	TOTAL FYIT VOLUME.	L LAN 45 VEL
Evap I/M Program: Yes	TOTAL EXIL VOLUME:	40 461
ATP Program: No	CO RATE:	14.82 0
Reformulated Gas: Yes		
	SPEED IN GARAGE:	5.0 M.E
GVWR: < <0000 >0000 (ALL)	VENT CFM:	19,930 (
VMT Distribution: 0.2947 0.4151 0.1630 0.0364 0.0002 0.0015 0.0853 0.0037 1.0000		
composite Emission Factors (g/ml):	TOTAL CO EMISSIONS = 1 .	290 GRAMS/M

EAK AM HOUR - YEAR: 2014 ERS ERS NE(S) H/HOUR GRAMS CO/MILE P.H. CFM MIN = 0.0162 GRAMS/SEC MIN OM VEHICLES: 1.51 PPM AK PM HOUR - YEAR: 2014 ERS ERS NE(S) H/HOUR GRAMS CO/MILE P.H. CFM MIN = 0.0215 GRAMS/SEC MIN PEAK 1-HOUR CO CONCENTRATION FROM VEHICLES: 2.00 PPM

*** AERMOD - VERSION 14134 *** *** Parcel U Project ***	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
06/20/14	NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.
16:16:00	
PAGE	
i **MODELOPTs: NonDFAULT CONC FLAT NOCHKD SCREEN	*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***
*** MODEL CERTIN OUTONO CUMMADY ***	(HEIERS/SEC)
	1.54, 3.09, 5.14, 8.23, 10.80,
	06/20/14
Model Is Setup For Calculation of Average CONCentration Values.	* AERMET - VERSION 14134 *** *** Screening 1-hour CO Concentrations ***
	PAGE
**NO GAS DEPOSITION Data Provided.	
**NO PARTICLE DEPOSITION Data Provided.	**MODELOPIS: NORDFAULT CONC FLAT NOCHED SCREEN
Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F	* UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***
	Surface file: Urban.sfc Met Version: 14134
for Total of 1 Urban Area(s):	Profile file: Urban.PFL
Urban Population = 4398.0 ; Urban Roughness Length = 1.000 m	Profile format: FREE
**Model Allows User-Specified Options:	Surface station no.: 11111 Upper air station no.: 22222
1. Stack-tip Downwash.	Year: 2010 Year: 2010
2. Model Assumes Receptors on FLAT Terrain. 3. Use Calms Processing Routine.	First 24 hours of scalar data
4. Use Missing Data Processing Routine.	FIIST 24 HOURS OF SCHAF GALA YR MO DY JDY HR HO U* W* DT/DZ ZICNV ZIMCH M-O LEN ZO BOWEN ALBEDO REF WS WD HT REF TA HT
5. NO Exponential Decay. 6. Urban Roughness Length of 1.0 Meter Used.	
++Other Ortions Granified:	10 01 01 1 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 10. 10.0 255.2 2.0 10 01 02 2 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 20. 10.0 255.2 2.0
NOCHED OPTIONS Specified. NOCHED - Suppresses checking of date sequence in meteorology files	10 01 03 3 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 30. 10.0 255.2 2.0
SCREEN - Use screening option	10 01 05 5 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 40. 10.0 255.2 2.0
which forces calculation of centerline values	10 01 06 6 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 60. 10.0 255.2 2.0
**Model Assumes No FLAGPOLE Receptor Heights.	10 01 08 8 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 80. 10.0 255.2 2.0
**The User Specified a Pollutant Type of: OTHER	10 01 09 9 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 90. 10.0 255.2 2.0
**Model Calquiates 1 Short Term Average(s) of: 1-UP	10 01 11 11 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 100. 10.0 255.2 2.0
Mader carculated i bhort ferm Mytrage(b) of . I hk	10 01 12 12 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 120. 10.0 255.2 2.0 10 01 13 13 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 130. 10.0 255.2 2.0
**This Run Includes: 1 Source(s); 1 Source Group(s); and 478 Receptor(s)	10 01 14 14 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 140. 10.0 255.2 2.0
**Model Set To Continue RUNning After the Setup Testing.	10 01 15 15 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 150. 10.0 255.2 2.0 10 01 16 16 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 160. 10.0 255.2 2.0
**The AERMET Input Meteorological Data Version Date: 14134	10 01 17 17 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 170. 10.0 255.2 2.0
	$10 \ 01 \ 18 \ 18 \ 01 \ -1.2 \ 0.043 \ -9.000 \ 0.020 \ -999. \ 21. 5.5 \ 1.00 \ 1.62 \ 0.21 \ 0.50 \ 180. 10.0 \ 255.2 \ 2.0 \ 10 \ 0.100 \ 1.62 \ 0.21 \ 0.50 \ 190. 10.0 \ 255.2 \ 2.0 \ 10 \ 0.50 \ 10.0 \ 10.0 \ 255.2 \ 2.0 \ 10 \ 10.0$
Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)	10 01 20 20 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 200. 10.0 255.2 2.0
Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)	10 01 22 22 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 220. 10.0 255.2 2.0
Model outputs separate Summary file of High Kanked Varues (Sommfile Reyword)	10 01 23 23 01 -1.2 0.043 -9.000 0.020 -999. 21. 5.5 1.00 1.62 0.21 0.50 230. 10.0 255.2 2.0 10 01 24 24 01 -1 2 0.043 -9.000 0.020 -999. 21 5.5 1.00 1.62 0.21 0.50 240 10.0 255.2 2.0
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours	10 01 24 24 01 1.2 0.045 5.000 0.020 555. 21. 5.5 1.00 1.02 0.21 0.50 240. 10.0 255.2 2.0
b for Both Calm and Missing Hours	First hour of profile data
**Mise Inputs: Base Elev for Dot Temp Drofile (m MSL) = 5 00 : Decay Coef = 0 000 : Bot Angle =	YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
0.0	10 01 01 01 10.0 1 10. 0.50 255.3 99.0 -99.00 -99.00
Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3	F indicates top of profile (=1) or below (=0)
	*** AERMOD - VERSION 14134 *** *** Parcel U Project *** 06/20/14
Approximate Storage Requirements of Model = 3.6 MB of RAM.	* AERMET - VERSION 14134 *** *** Screening 1-hour CO Concentrations ***
**Input Runstream File: CO_5yrs_OTHER.DTA	16:16:00 PAGE
**Output Print File: CO_Syrs_OTHER.LST	
**File for Summary of Results: W:\Apps\aermod\3779\CO_5yrs_OTHER.SUM	""MODELOPIS. NOHDFAULI CONC FLAI NOCHKD SCREEN
06/20/14	*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***
*** AERMET - VERSION 14134 *** *** Screening 1-hour CO Concentrations ***	
PAGE	** CONC OF OTHER IN MICROGRAMS/M**3 **
2 **MODELOPTS: Nondealily Conc elat Nochkd Screen	DATE
	NETWORK GROUP ID AVERAGE CONC (YYMMDDHH) RECEPTOR (XR VR ZELEV ZHILL ZELAG) OF
*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES: 0=NO)	TYPE GRID-ID
(1-110) 0-10)	
$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	
	ALL HIGH 1ST HIGH VALUE IS 8.54731 ON 10112101: AT (200.20, 166.60, 5.00, 5.00, 0.00) DC
	HIGH 2ND HIGH VALUE IS 8.54731 ON 10112201: AT (200.20, 166.60, 5.00, 5.00, 0.00)
	DC

Appendix B – Air Quality Appendix

	*** RECEPTOR TYPES:	GC = GRIDCART		
		GP = GRIDPOLR		
		DC = DISCCART		
		DP = DISCPOLR		
	*** AERMOD - VERSION	14134 *** *** Parcel U Project	* * *	
C	6/20/14			
	*** AERMET - VERSION	14134 *** *** Screening 1-hour CO Concentrations	* * *	
1	.6:16:00			
				PAGE
5				
	**MODELOPTs: NonDF.	AULT CONC FLAT NOCHKD SCREEN		
	*** Meggage Summary	· AFRMOD Model Execution ***		
	Message Summary	· AERIOD MODEL EXECUTION		
	Summary of	f Total Messages		
	A Total of	(Fatal Error Message(s)		

2 Warning Message(s) 0 Informational Message(s) A Total of A Total of A Total of 18504 Hours Were Processed A Total of 0 Calm Hours Identified

A Total of 0 Missing Hours Identified (0.00 Percent)

******* FATAL ERROR MESSAGES ******* *** NONE ***

APPENDIX C NOISE APPENDIX

APPENDIX C NOISE APPENDIX

PARCEL U **PROJECT NOTIFICATION FORM**

Page Contents

- Figure 1: Sound Monitoring and Receptor Locations 2
- 3 Cadna Noise Modeling Results

Figure 1 Sound Monitoring and Receptor Locations For Parcel U Boston, MA

Cadna Noise Modeling Results

Name	ID	Sound	Octave Band Levels									Height		Coordinates		
		Level	31	63	125	250	500	1000	2000	4000	8000			х	Y	Z
		(dBA)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(m)		(m)	(m)	(m)
Hyde Park Ave 1	Third	38.6	47	45	44	39	38	33	26	16	0	11	r	231785.4	894229.5	27.4
Hyde Park Ave 2	Third	39.5	48	47	45	40	39	33	26	17	1	11	r	231771.7	894218.5	26.7
Hyde Park Ave 3	Third	40.9	50	48	47	42	40	34	28	19	4	11	r	231764.3	894204.3	28.0
Hyde Park Ave 4	Third	41.7	50	49	47	43	41	35	29	20	6	11	r	231760.9	894192.4	29.0
Hyde Park Ave 5	Third	41.6	51	49	48	43	41	35	28	20	6	11	r	231752.0	894178.5	28.1
Hyde Park Ave 6	Third	42.1	51	50	48	43	42	36	29	20	7	11	r	231745.0	894166.9	28.6
Hyde Park Ave 7	Third	42.5	51	49	48	43	42	37	30	21	7	11	r	231734.9	894151.8	29.2
Hyde Park Ave 8	Third	41.7	51	49	47	42	41	36	29	20	5	11	r	231726.0	894139.7	27.8
Hyde Park Ave 9	Third	41.6	50	48	46	42	41	36	30	21	5	11	r	231722.8	894123.0	28.5
Hyde Park Ave 10	Third	41.9	50	47	45	42	41	37	31	22	7	11	r	231713.8	894111.2	28.8
Hyde Park Ave 11	Third	42	49	46	44	41	41	37	32	23	8	11	r	231706.1	894099.2	29.2
Hyde Park Ave 12	Third	41.7	49	46	43	41	40	37	31	23	8	11	r	231696.3	894081.7	28.1
Hyde Park Ave 13	Third	41.4	49	45	43	41	40	37	31	23	8	11	r	231691.9	894072.9	27.9
Hyde Park Ave 14	Third	41.3	49	45	42	41	40	37	31	23	8	11	r	231684.2	894058.3	27.7
Hyde Park Ave 15	Third	40.4	48	44	42	40	39	36	30	21	5	11	r	231678.0	894035.1	27.2
Hyde Park Ave 16	Third	40.1	47	43	40	39	38	36	31	23	10	11	r	231637.1	893958.7	28.3
Hyde Park Ave 17	Third	39.5	47	42	39	38	37	35	30	22	9	11	r	231631.3	893945.8	28.3
Hyde Park Ave 18	Third	38.6	46	41	38	38	37	35	29	21	7	11	r	231625.5	893934.0	28.4
Hyde Park Ave 19	Third	37.5	45	40	37	37	36	33	28	19	4	11	r	231621.2	893921.0	28.5
Walk Hill Street 1	Third	39.8	47	43	41	39	38	35	30	21	3	11	r	231680.7	894014.8	28.3
Walk Hill Street 2	Third	39.4	46	42	40	38	38	35	29	20	2	11	r	231678.7	894001.0	28.7
Walk Hill Street 3	Third	38.7	45	42	39	38	37	35	29	20	3	11	r	231683.7	893987.3	30.1
Walk Hill Street 4	Third	39.5	46	42	39	38	38	35	30	21	6	11	r	231658.0	893973.4	28.9

Name	ID	Sound				Octav	e Bano	d Leve	s			Height		Coordinates			
		Level	31	63	125	250	500	1000	2000	4000	8000			х	Y	Z	
		(dBA)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(m)		(m)	(m)	(m)	
Hyde Park Ave 1	Third	42.5	51	49	48	43	42	37	30	21	7	11	r	231734.9	894151.8	29.2	
Hyde Park Ave 2	Third	42	49	46	44	41	41	37	32	23	8	11	r	231706.1	894099.2	29.2	
Hyde Park Ave 3	Third	41.3	49	45	42	41	40	37	31	23	8	11	r	231684.2	894058.3	27.7	
Hyde Park Ave 4	Third	40.1	47	43	40	39	38	36	31	23	10	11	r	231637.1	893958.7	28.3	
Walk Hill Street 1	Third	39.5	46	42	39	38	38	35	30	21	6	11	r	231658.0	893973.4	28.9	

APPENDIX D TRANSPORTATION APPENDIX

TRAFFIC COUNTS

TRANSPORTATION TECHNICAL APPENDIX

- TRAFFIC COUNTS
- TRIP GENERATION CALCULATIONS
- INTERSECTION CAPACITY ANALYSIS WORKSHEETS

File Name : 143861 A Site Code : 13038 Start Date : 5/1/2014 Page No : 1

N/S: Hyde Park Avenue E: Walk Hill Street City, State: Jamaica Plain, MA Client: HSH/ A. Fabiszewski

			Groups	Printed- Cars					
Hy Hy	/de Park Avenu	e		Walk Hill Street		H	yde Park Avenı	le	
	From North			From East			From South		
Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
110	21	0	97	5	0	3	236	0	472
92	44	0	71	3	1	9	264	0	484
121	65	0	89	7	0	7	240	1	530
94	36	0	78	5	1	6	189	0	409
417	166	0	335	20	2	25	929	1	1895
95	58	1	58	5	0	5	134	0	356
69	47	0	57	6	0	7	113	0	299
76	70	0	56	5	0	10	219	0	436
71	53	0	59	4	0	3	171	0	361
311	228	1	230	20	0	25	637	0	1452
728	394	1	565	40	2	50	1566	1	3347
64.8	35.1	0.1	93.1	6.6	0.3	3.1	96.8	0.1	
21.8	11.8	0	16.9	1.2	0.1	1.5	46.8	0	
	Hy Thru 110 92 121 94 417 95 69 76 71 311 728 64.8 21.8	Hyde Park Avenu From North Thru Left 110 21 92 44 121 65 94 36 417 166 95 58 69 47 76 70 71 53 311 228 728 394 64.8 35.1 21.8 11.8	Hyde Park Avenue From North Thru Left U-Turn 110 21 0 92 44 0 121 65 0 94 36 0 417 166 0 95 58 1 69 47 0 76 70 0 311 228 1 728 394 1 64.8 35.1 0.1 21.8 11.8 0	Groups Groups From North Thru Left U-Turn Right 110 21 0 97 92 44 0 71 121 65 0 89 94 36 0 78 417 166 0 335 95 58 1 58 69 47 0 57 76 70 0 56 71 53 0 59 311 228 1 230 728 394 1 565 64.8 35.1 0.1 93.1 21.8 11.8 0 16.9	Groups Printed- Cars Hyde Park Avenue From North Walk Hill Street From East Thru Left U-Turn Right Left 110 21 0 97 5 92 44 0 71 3 121 65 0 89 7 94 36 0 78 5 417 166 0 335 20 95 58 1 58 5 69 47 0 57 6 76 70 0 56 5 71 53 0 59 4 311 228 1 230 20 728 394 1 565 40 64.8 35.1 0.1 93.1 6.6 21.8 11.8 0 16.9 1.2	Groups Printed-Cars Hyde Park Avenue From North Walk Hill Street From East Thru Left U-Turn Right Left U-Turn 110 21 0 97 5 0 92 44 0 71 3 1 121 65 0 89 7 0 94 36 0 78 5 1 417 166 0 335 20 2 95 58 1 58 5 0 69 47 0 57 6 0 76 70 0 56 5 0 71 53 0 59 4 0 311 228 1 230 20 0 728 394 1 565 40 2 64.8 35.1 0.1 93.1 6.6 0.3 21.8 11.8	Groups Printed-Cars Hyde Park Avenue From North Walk Hill Street From East Hyde Park Avenue From East Hyde ParkAvenue From East Hyde Park Avenue Fr	Groups Primed-Cars Hyde Park Avenue From North Walk Hill Street From East Hyde Park Avenu From South Thru Left U-Turn Right Left U-Turn Right Thru 110 21 0 97 5 0 3 236 92 44 0 71 3 1 9 264 121 65 0 89 7 0 7 240 94 36 0 78 5 1 6 189 417 166 0 335 20 2 25 929 95 58 1 58 5 0 5 134 69 47 0 57 6 0 7 113 76 70 0 56 5 0 10 219 71 53 0 59 4 0 3 171 311	Groups Printed-Cars Hyde Park Avenue From North Walk Hill Street From East Hyde Park Avenue From South Thru Left U-Turn Right Left U-Turn Right Thru U-Turn 110 21 0 97 5 0 3 236 0 92 44 0 71 3 1 9 264 0 121 65 0 89 7 0 7 240 1 94 36 0 78 5 1 6 189 0 417 166 0 335 20 2 25 929 1 95 58 1 58 5 0 7 113 0 69 47 0 57 6 0 7 113 0 71 53 0 59 4 0 3 171 0 <t< td=""></t<>

		Hyde Par From	k Avenue North			Walk H From	ill Street			Hyde Pa From	rk Avenue South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	m 07:00 AM to	o 08:45 AM	- Peak 1 of 1										
Peak Hour for Entire	e Intersection	on Begins	at 07:00 A	۹M									
07:00 AM	110	21	0	131	97	5	0	102	3	236	0	239	472
07:15 AM	92	44	0	136	71	3	1	75	9	264	0	273	484
07:30 AM	121	65	0	186	89	7	0	96	7	240	1	248	530
07:45 AM	94	36	0	130	78	5	1	84	6	189	0	195	409
Total Volume	417	166	0	583	335	20	2	357	25	929	1	955	1895
% App. Total	71.5	28.5	0		93.8	5.6	0.6		2.6	97.3	0.1		
PHF	.862	.638	.000	.784	.863	.714	.500	.875	.694	.880	.250	.875	.894

	Hyd	e Park Avenue		Wall	k Hill Street		Hyde	Park Avenue		
Start Time	Thru		H-Turn	Right		LI-Turp	Right	Thru	H-Turn	Int Total
07:00 AM	125	21	0-1011	101	6	0-1411	A	248	0	505
07:15 AM	98	44	0	73	4	1	9	270	0	499
07:30 AM	127	67	0	91	7	0	7	250	1	550
07:45 AM	104	36	0	78	5	1	6	194	0	424
Total	454	168	0	343	22	2	26	962	1	1978
08:00 AM	100	61	1	58	5	0	7	152	0	384
08:15 AM	81	53	0	59	6	0	10	122	0	331
08:30 AM	86	77	0	57	5	0	10	229	0	464
08:45 AM	74	55	0	60	5	0	5	189	0	388
Total	341	246	1	234	21	0	32	692	0	1567
Grand Total	795	414	1	577	43	2	58	1654	1	3545
Apprch %	65.7	34.2	0.1	92.8	6.9	0.3	3.4	96.6	0.1	
Total %	22.4	11.7	0	16.3	1.2	0.1	1.6	46.7	0	
Cars	728	394	1	565	40	2	50	1566	1	3347
% Cars	91.6	95.2	100	97.9	93	100	86.2	94.7	100	94.4
Heavy Vehicles	67	20	0	12	3	0	8	88	0	198
% Heavy Vehicles	8.4	4.8	0	2.1	7	0	13.8	5.3	0	5.6

		Hyde Pa	rk Avenue			Walk H	ill Street			Hyde Pa	rk Avenue		
		From	North			Fron	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis Fro	m 07:00 AM to	o 08:45 AM	 Peak 1 of 	1									
Peak Hour for Entire	e Intersection	on Begins	at 07:00	AM									
07:00 AM	125	21	0	146	101	6	0	107	4	248	0	252	505
07:15 AM	98	44	0	142	73	4	1	78	9	270	0	279	499
07:30 AM	127	67	0	194	91	7	0	98	7	250	1	258	550
07:45 AM	104	36	0	140	78	5	1	84	6	194	0	200	424
Total Volume	454	168	0	622	343	22	2	367	26	962	1	989	1978
% App. Total	73	27	0		93.5	6	0.5		2.6	97.3	0.1		
PHF	.894	.627	.000	.802	.849	.786	.500	.857	.722	.891	.250	.886	.899
Cars	417	166	0	583	335	20	2	357	25	929	1	955	1895
% Cars	91.9	98.8	0	93.7	97.7	90.9	100	97.3	96.2	96.6	100	96.6	95.8
Heavy Vehicles	37	2	0	39	8	2	0	10	1	33	0	34	83
% Heavy Vehicles	8.1	1.2	0	6.3	2.3	9.1	0	2.7	3.8	3.4	0	3.4	4.2

File Name : 143861 A Site Code : 13038 Start Date : 5/1/2014 Page No : 1

File Name : 143861 A Site Code : 13038 Start Date : 5/1/2014 Page No : 1

N/S: Hyde Park Avenue E: Walk Hill Street City, State: Jamaica Plain, MA Client: HSH/ A. Fabiszewski

			(Groups Printed	I- Peds and Bicy	vcles				
	Hy	de Park Avenu	e		Walk Hill Street		H	yde Park Avenu	le	
		From North			From East			From South		
Start Time	Thru	Left	Peds	Right	Left	Peds	Right	Thru	Peds	Int. Total
07:00 AM	0	0	0	0	0	3	0	0	0	3
07:15 AM	0	0	0	0	0	3	0	0	1	4
07:30 AM	0	1	0	0	0	3	0	0	1	5
07:45 AM	0	0	0	0	0	10	0	0	1	11
Total	0	1	0	0	0	19	0	0	3	23
08:00 AM	0	1	0	0	0	6	0	0	1	8
08:15 AM	0	0	1	0	0	15	0	1	0	17
08:30 AM	0	0	0	0	0	12	0	0	0	12
08:45 AM	0	0	0	0	0	3	0	0	1	4
Total	0	1	1	0	0	36	0	1	2	41
Grand Total	0	2	1	0	0	55	0	1	5	64
Apprch %	0	66.7	33.3	0	0	100	0	16.7	83.3	
Total %	0	3.1	1.6	0	0	85.9	0	1.6	7.8	

		Hyde Par From	k Avenue North			Walk Hi From	II Street East			Hyde Par From	k Avenue South		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total
Peak Hour Analysis From	n 07:00 AM t	o 08:45 AM	- Peak 1 of 1						U				
Peak Hour for Entire	e Intersecti	on Begins	at 07:45 A	٨M									
07:45 AM	0	Õ	0	0	0	0	10	10	0	0	1	1	11
08:00 AM	0	1	0	1	0	0	6	6	0	0	1	1	8
08:15 AM	0	0	1	1	0	0	15	15	0	1	0	1	17
08:30 AM	0	0	0	0	0	0	12	12	0	0	0	0	12
Total Volume	0	1	1	2	0	0	43	43	0	1	2	3	48
% App. Total	0	50	50		0	0	100		0	33.3	66.7		
PHF	.000	.250	.250	.500	.000	.000	.717	.717	.000	.250	.500	.750	.706

				Groups Printe	ed- Heavy Vehic	les				
	Hy	de Park Avenue	e		Walk Hill Street	t	H	yde Park Avenu	e	
		From North			From East			From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
07:00 AM	15	0	0	4	1	0	1	12	0	33
07:15 AM	6	0	0	2	1	0	0	6	0	15
07:30 AM	6	2	0	2	0	0	0	10	0	20
07:45 AM	10	0	0	0	0	0	0	5	0	15
Total	37	2	0	8	2	0	1	33	0	83
08:00 AM	5	3	0	0	0	0	2	18	0	28
08:15 AM	12	6	0	2	0	0	3	9	0	32
08:30 AM	10	7	0	1	0	0	0	10	0	28
08:45 AM	3	2	0	1	1	0	2	18	0	27
Total	30	18	0	4	1	0	7	55	0	115
Grand Total	67	20	0	12	3	0	8	88	0	198
Appreh %	77	20	0	80	20	0	83	01 7	0	130
Appicit %	22.0	23	0	00	20	0	0.3	91.7	0	
I otal %	33.8	10.1	0	6.1	1.5	0	4	44.4	0	

		Hyde Par	k Avenue			Walk Hi	II Street			Hyde Par	rk Avenue		
		From	North			From	East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	m 07:00 AM to	08:45 AM	 Peak 1 of 1 										
Peak Hour for Entire	e Intersectio	on Begins	at 08:00 /	AΜ									
08:00 AM	5	3	0	8	0	0	0	0	2	18	0	20	28
08:15 AM	12	6	0	18	2	0	0	2	3	9	0	12	32
08:30 AM	10	7	0	17	1	0	0	1	0	10	0	10	28
08:45 AM	3	2	0	5	1	1	0	2	2	18	0	20	27
Total Volume	30	18	0	48	4	1	0	5	7	55	0	62	115
% App. Total	62.5	37.5	0		80	20	0		11.3	88.7	0		
PHF	.625	.643	.000	.667	.500	.250	.000	.625	.583	.764	.000	.775	.898

File Name : 143861 A Site Code : 13038 Start Date : 5/1/2014 Page No : 1

File Name : 143861 A Site Code : 13038 Start Date : 5/1/2014 Page No : 1

N/S: Hyde Park Avenue E: Walk Hill Street City, State: Jamaica Plain, MA Client: HSH/ A. Fabiszewski

	Hyd	de Park Avenue		N N	Walk Hill Street		Hy	/de Park Avenu	e	
		From North			From East			From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
04:00 PM	206	91	0	55	14	0	6	124	0	496
04:15 PM	266	116	0	59	7	0	7	138	1	594
04:30 PM	182	87	0	41	3	1	5	116	0	435
04:45 PM	253	93	0	55	6	0	8	165	0	580
Total	907	387	0	210	30	1	26	543	1	2105
			- 1		_					
05:00 PM	196	107	0	55	5	0	3	142	0	508
05:15 PM	181	84	0	36	3	0	1	151	0	456
05:30 PM	207	110	0	38	2	0	3	141	0	501
05:45 PM	229	106	0	41	14	0	9	150	0	549
Total	813	407	0	170	24	0	16	584	0	2014
Grand Total	1720	79/	0	380	54	1	12	1127	1	/110
	0.4	24.0	0	07.4	40.4	0 0		00.0		4113
Appren %	68.4	31.6	0	87.4	12.4	0.2	3.0	96.3	0.1	
I otal %	41.8	19.3	0	9.2	1.3	0	1	27.4	0	
Cars	1658	781	0	362	51	1	39	1068	0	3960
% Cars	96.4	98.4	0	95.3	94.4	100	92.9	94.8	0	96.1
Heavy Vehicles	62	13	0	18	3	0	3	59	1	159
% Heavy Vehicles	3.6	1.6	0	4.7	5.6	0	7.1	5.2	100	3.9

		Hyde Par	k Avenue			Walk Hi	II Street			Hyde Par	k Avenue		
		From	North			From	East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	m 04:00 PM to	05:45 PM	Peak 1 of 1										
Peak Hour for Entire	e Intersection	on Begins	at 04:15 F	PM									
04:15 PM	266	116	0	382	59	7	0	66	7	138	1	146	594
04:30 PM	182	87	0	269	41	3	1	45	5	116	0	121	435
04:45 PM	253	93	0	346	55	6	0	61	8	165	0	173	580
05:00 PM	196	107	0	303	55	5	0	60	3	142	0	145	508
Total Volume	897	403	0	1300	210	21	1	232	23	561	1	585	2117
% App. Total	69	31	0		90.5	9.1	0.4		3.9	95.9	0.2		
PHF	.843	.869	.000	.851	.890	.750	.250	.879	.719	.850	.250	.845	.891
Cars	873	398	0	1271	197	19	1	217	22	530	0	552	2040
% Cars	97.3	98.8	0	97.8	93.8	90.5	100	93.5	95.7	94.5	0	94.4	96.4
Heavy Vehicles	24	5	0	29	13	2	0	15	1	31	1	33	77
% Heavy Vehicles	2.7	1.2	0	2.2	6.2	9.5	0	6.5	4.3	5.5	100	5.6	3.6

		Hyde Par	k Avenue			Walk Hi	II Street			Hyde Pa	k Avenue		
		From	North			From	East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	n 07:00 AM to	08:45 AM ·	Peak 1 of 1										
Peak Hour for Entire	Intersectio	n Begins	at 07:00 AN	Λ									
07:00 AM	125	21	0	146	101	6	0	107	4	248	0	252	505
07:15 AM	98	44	0	142	73	4	1	78	9	270	0	279	499
07:30 AM	127	67	0	194	91	7	0	98	7	250	1	258	550
07:45 AM	104	36	0	140	78	5	1	84	6	194	0	200	424
Total Volume	454	168	0	622	343	22	2	367	26	962	1	989	1978
% App. Total	73	27	0		93.5	6	0.5		2.6	97.3	0.1		
PHF	.894	.627	.000	.802	.849	.786	.500	.857	.722	.891	.250	.886	.899
Cars	417	166	0	583	335	20	2	357	25	929	1	955	1895
% Cars	91.9	98.8	0	93.7	97.7	90.9	100	97.3	96.2	96.6	100	96.6	95.8
Heavy Vehicles	37	2	0	39	8	2	0	10	1	33	0	34	83
% Heavy Vehicles	8.1	1.2	0	6.3	2.3	9.1	0	2.7	3.8	3.4	0	3.4	4.2

File Name : 143861 AA Site Code : 13038 Start Date : 5/1/2014 Page No : 1

Groups Printed- Cars - Heavy Vehicle

Start Time 04:00 PM

04:15 PM

04:30 PM

04:45 PM

05:00 PM 05:15 PM

05:30 PM

05:45 PM

Grand Total

Apprch % Total %

Total

Total

Hyde Park Avenue From North

Left

81

402

19.7

J-Turn

Thru 188

41.9

Groups Printed- Cars Walk Hill Street From East Right Left

12.3 1.3

U-Turn

0.2 0

Right 54 50

35 35

87.4 9.1

File Name : 143861 AA Site Code : 13038 Start Date : 5/1/2014 Page No : 1

U-Turn

0

Int. Total 461

Hyde Park Avenue From South

96.5 27

Right

3.5

N/S: Hyde Park Avenue E: Walk Hill Street City, State: Jamaica Plain, MA Client: HSH/ A. Fabiszewski

				Groups Printe	ed- Heavy Vehic	les				
	Hy	/de Park Avenu	e		Walk Hill Street		H	yde Park Avenu	ie .	
		From North			From East			From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
04:00 PM	18	4	0	1	0	0	1	11	0	35
04:15 PM	7	4	0	9	1	0	0	10	1	32
04:30 PM	4	0	0	3	0	0	0	9	0	16
04:45 PM	8	0	0	1	0	0	1	8	0	18
Total	37	8	0	14	1	0	2	38	1	101
05:00 PM	5	1	0	0	1	0	0	4	0	11
05:15 PM	8	3	0	1	0	0	1	4	0	17
05:30 PM	5	0	0	3	0	0	0	4	0	12
05:45 PM	7	1	0	0	1	0	0	9	0	18
Total	25	5	0	4	2	0	1	21	0	58
Grand Total	62	13	0	18	3	0	3	59	1	159
Apprch %	82.7	17.3	0	85.7	14.3	0	4.8	93.7	1.6	
Total %	39	8.2	0	11.3	1.9	0	1.9	37.1	0.6	

		Hyde Park Avenue				Walk Hill Street			Hyde Park Avenue				
		From	North			From	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	m 04:00 PM t	o 05:45 PM	- Peak 1 of '	1									
Peak Hour for Entire	e Intersecti	on Begins	at 04:15 I	PM									
04:15 PM	259	112	0	371	50	6	0	56	7	128	0	135	562
04:30 PM	178	87	0	265	38	3	1	42	5	107	0	112	419
04:45 PM	245	93	0	338	54	6	0	60	7	157	0	164	562
05:00 PM	191	106	0	297	55	4	0	59	3	138	0	141	497
Total Volume	873	398	0	1271	197	19	1	217	22	530	0	552	2040
% App. Total	68.7	31.3	0		90.8	8.8	0.5		4	96	0		
PHF	.843	.888	.000	.856	.895	.792	.250	.904	.786	.844	.000	.841	.907

		Hyde Pa From	rk Avenue North			Walk Hi From	II Street East			Hyde Par From	k Avenue South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	n 04:00 PM to	05:45 PM	- Peak 1 of 1										
Peak Hour for Entire	Intersectio	on Begins	at 04:00 P	M									
04:00 PM	18	4	0	22	1	0	0	1	1	11	0	12	35
04:15 PM	7	4	0	11	9	1	0	10	0	10	1	11	32
04:30 PM	4	0	0	4	3	0	0	3	0	9	0	9	16
04:45 PM	8	0	0	8	1	0	0	1	1	8	0	9	18
Total Volume	37	8	0	45	14	1	0	15	2	38	1	41	101
% App. Total	82.2	17.8	0		93.3	6.7	0		4.9	92.7	2.4		
PHF	.514	.500	.000	.511	.389	.250	.000	.375	.500	.864	.250	.854	.721

File Name: 143861 AA Site Code : 13038 Start Date : 5/1/2014 Page No : 1

File Name : 143861 AA Site Code : 13038 Start Date : 5/1/2014 Page No : 1

N/S: Hyde Park Avenue E: Walk Hill Street City, State: Jamaica Plain, MA Client: HSH/ A. Fabiszewski

		Hyde Park Avenue				Walk H	ill Street			Hyde Pa	rk Avenue		
		From	North			From	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	n 04:00 PM to	05:45 PM -	Peak 1 of 1										
Peak Hour for Entire	e Intersection	on Begins	at 04:15 F	PM									
04:15 PM	266	116	0	382	59	7	0	66	7	138	1	146	594
04:30 PM	182	87	0	269	41	3	1	45	5	116	0	121	435
04:45 PM	253	93	0	346	55	6	0	61	8	165	0	173	580
05:00 PM	196	107	0	303	55	5	0	60	3	142	0	145	508
Total Volume	897	403	0	1300	210	21	1	232	23	561	1	585	2117
% App. Total	69	31	0		90.5	9.1	0.4		3.9	95.9	0.2		
PHF	.843	.869	.000	.851	.890	.750	.250	.879	.719	.850	.250	.845	.891
Cars	873	398	0	1271	197	19	1	217	22	530	0	552	2040
% Cars	97.3	98.8	0	97.8	93.8	90.5	100	93.5	95.7	94.5	0	94.4	96.4
Heavy Vehicles	24	5	0	29	13	2	0	15	1	31	1	33	77
% Heavy Vehicles	2.7	1.2	0	2.2	6.2	9.5	0	6.5	4.3	5.5	100	5.6	3.6

			Ģ	Froups Printed	- Peds and Bicy	cles				
	Hy	de Park Avenue			Walk Hill Street		Hy	/de Park Avenu	le	
		From North			From East			From South		
Start Time	Thru	Left	Peds	Right	Left	Peds	Right	Thru	Peds	Int. Total
04:00 PM	0	0	0	0	0	2	0	1	0	3
04:15 PM	2	1	0	0	0	2	0	1	1	7
04:30 PM	0	0	0	1	0	2	0	0	1	4
04:45 PM	2	0	0	1	0	7	1	0	1	12
Total	4	1	0	2	0	13	1	2	3	26
05:00 PM	0	1	0	0	0	1	1	1	1	5
05:15 PM	0	0	0	0	0	4	0	1	0	5
05:30 PM	1	0	0	0	0	3	0	3	3	10
05:45 PM	1	0	0	0	0	5	0	0	0	6
Total	2	1	0	0	0	13	1	5	4	26
Grand Total	6	2	0	2	0	26	2	7	7	52
Apprch %	75	25	0	7.1	0	92.9	12.5	43.8	43.8	
Total %	11.5	3.8	0	3.8	0	50	3.8	13.5	13.5	

		Hyde Park Avenue				Walk Hill Street				Hyde Park Avenue			
		From	North			From	East			From	South		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total
Peak Hour Analysis From	m 04:00 PM to	05:45 PM -	Peak 1 of 1										
Peak Hour for Entire	e Intersectio	n Begins	at 04:45 I	PM									
04:45 PM	2	0	0	2	1	0	7	8	1	0	1	2	12
05:00 PM	0	1	0	1	0	0	1	1	1	1	1	3	5
05:15 PM	0	0	0	0	0	0	4	4	0	1	0	1	5
05:30 PM	1	0	0	1	0	0	3	3	0	3	3	6	10
Total Volume	3	1	0	4	1	0	15	16	2	5	5	12	32
% App. Total	75	25	0		6.2	0	93.8		16.7	41.7	41.7		
PHF	375	250	000	500	250	000	536	500	500	417	417	500	667

File Name : 143861 AA Site Code : 13038 Start Date : 5/1/2014 Page No : 1

_

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 1

N/S: Washington Street E: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

	W	ashington Street			Ukraine Way		V	Vashington Street		
		From North			From East			From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
05:00 PM	94	132	0	70	35	0	56	93	0	480
05:15 PM	98	124	0	69	50	0	51	68	0	460
05:30 PM	106	132	0	72	43	0	43	92	0	488
05:45 PM	90	118	0	79	55	0	56	95	0	493
Total	388	506	0	290	183	0	206	348	0	1921
06:00 PM	111	95	0	59	44	0	51	91	0	451
06:15 PM	83	104	0	67	50	0	46	79	0	429
06:30 PM	90	74	0	46	30	0	45	88	0	373
06:45 PM	88	90	0	61	51	0	52	75	0	417
Total	372	363	0	233	175	0	194	333	0	1670
Grand Total	3518	3960	1	3878	1839	4	2378	3981	0	19559
Apprch %	47	52.9	0	67.8	32.1	0.1	37.4	62.6	0	
Total %	18	20.2	0	19.8	9.4	0	12.2	20.4	0	
Cars	3060	3797	1	3693	1721	4	2221	3478	0	17975
% Cars	87	95.9	100	95.2	93.6	100	93.4	87.4	0	91.9
Heavy Vehicles	458	163	0	185	118	0	157	503	0	1584
% Heavy Vehicles	13	4.1	0	4.8	6.4	0	6.6	12.6	0	8.1

		Washington Street From North				Ukraii	ne Way			Washingt	on Street		
Stort Time	Then	From	North LL Turn	Ann Total	Diaht	Fron	I East	Ann Total	Diaht	From	South	Ann Total	Int Total
Peak Hour Analysis From	07:00 AM to (Left	U-Turn	App. 1 otal	Right	Lett	U-Turn	App. 1 otai	Right	Inru	U-Turn	App. 1 otal	Int. 1 otal
Peak Hour for Entire	Intersection	Begins at	07.30 AM										
07.30 AM	61	63	07.307101	124	137	45	0	182	47	121	0	168	474
07:45 AM	73	72	0	145	141	28	0	162	54	104	0	158	472
08:00 AM	48	80	0	128	135	32	0	167	50	136	0	186	481
08:15 AM	62	62	0	120	145	44	0	189	53	107	0	160	473
Total Volume	244	277	0	521	558	149	0	707	204	468	0	672	1900
% App Total	46.8	53 2	0	521	78.9	21.1	0	707	30.4	69.6	0	072	1700
PHF	836	866	000	898	962	828	000	935	.944	.860	.000	.903	988
Cars	198	264	0	462	535	128	0	663	183	402	0	585	1710
% Cars	81.1	95.3	0	88.7	95.9	85.9	0	93.8	89.7	85.9	0	87.1	90.0
Heavy Vehicles	46	13	0	59	23	21	0	44	21	66	0	87	190
% Heavy Vehicles	18.9	4.7	0	11.3	4.1	14.1	0	6.2	10.3	14.1	0	12.9	10.0
Peak Hour Analysis F	From 10:00	AM to 01:4	45 PM - Pe	ak 1 of 1									
Peak Hour for Entire	Intersection	Begins at	12:45 PM										
12:45 PM	89	76	0	165	69	42	0	111	56	89	0	145	421
01:00 PM	58	69	0	127	56	33	0	89	54	73	0	127	343
01:15 PM	63	71	0	134	74	37	0	111	44	61	0	105	350
01:30 PM	58	60	0	118	87	28	0	115	42	71	0	113	346
Total Volume	268	276	0	544	286	140	0	426	196	294	0	490	1460
% App. Total	49.3	50.7	0		67.1	32.9	0		40	60	0		
PHF	.753	.908	.000	.824	.822	.833	.000	.926	.875	.826	.000	.845	.867
Cars	240	263	0	503	270	131	0	401	185	268	0	453	1357
% Cars	89.6	95.3	0	92.5	94.4	93.6	0	94.1	94.4	91.2	0	92.4	92.9
Heavy Vehicles	28	13	0	41	16	9	0	25	11	26	0	37	103
% Heavy Vehicles	10.4	4.7	0	7.5	5.6	6.4	0	5.9	5.6	8.8	0	7.6	7.1

		Washington Street From North				Ukrair	ne Way			Washingt	on Street		
Start Time	Thru	Left	II.Turn	App. Total	Pight	Left	LTurn	App. Total	Pight	Thru	U-Turn	App. Total	Int Total
Peak Hour Analysis From	07.00 AM to	09·45 AM - P	eak 1 of 1	App. Iotai	Right	Len	0-rum	App. 10tai	Right	Tinu	0-1011	App. Total	int. Totai
Peak Hour for Entire	Intersection	Begins at	07·30 AM										
07:30 AM	61	63	0	124	137	45	0	182	47	121	0	168	474
07:45 AM	73	72	Õ	145	141	28	0	169	54	104	Õ	158	472
08:00 AM	48	80	0	128	135	32	0	167	50	136	0	186	481
08:15 AM	62	62	0	124	145	44	0	189	53	107	0	160	473
Total Volume	244	277	0	521	558	149	0	707	204	468	0	672	1900
% App. Total	46.8	53.2	0		78.9	21.1	0		30.4	69.6	0		
PHF	.836	.866	.000	.898	.962	.828	.000	.935	.944	.860	.000	.903	.988
Cars	198	264	0	462	535	128	0	663	183	402	0	585	1710
% Cars	81.1	95.3	0	88.7	95.9	85.9	0	93.8	89.7	85.9	0	87.1	90.0
Heavy Vehicles	46	13	0	59	23	21	0	44	21	66	0	87	190
% Heavy Vehicles	18.9	4.7	0	11.3	4.1	14.1	0	6.2	10.3	14.1	0	12.9	10.0
Peak Hour Analysis F	From 10:00	AM to 01:4	45 PM - Pe	eak 1 of 1									
Peak Hour for Entire	Intersection	n Begins at	12:45 PM										
12:45 PM	89	76	0	165	69	42	0	111	56	89	0	145	421
01:00 PM	58	69	0	127	56	33	0	89	54	73	0	127	343
01:15 PM	63	71	0	134	74	37	0	111	44	61	0	105	350
01:30 PM	58	60	0	118	87	28	0	115	42	71	0	113	346
Total Volume	268	276	0	544	286	140	0	426	196	294	0	490	1460
% App. Total	49.3	50.7	0		67.1	32.9	0		40	60	0		
PHF	.753	.908	.000	.824	.822	.833	.000	.926	.875	.826	.000	.845	.867
Cars	240	263	0	503	270	131	0	401	185	268	0	453	1357
% Cars	89.6	95.3	0	92.5	94.4	93.6	0	94.1	94.4	91.2	0	92.4	92.9
Heavy Vehicles	28	13	0	41	16	9	0	25	11	26	0	37	103
% Heavy Vehicles	10.4	4.7	0	7.5	5.6	6.4	0	5.9	5.6	8.8	0	7.6	7.1

		In this stars for a star	Gro	oups Printed- Ca	ars - Heavy Vehicle	s		a him a ta m Canada		
	~ ~ ~	From North			Erom East		w	From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
07:00 AM	58	74	0	128	36	0	48	112	0	456
07:15 AM	58	57	0	156	33	0	44	107	0	455
07·30 AM	61	63	õ	137	45	õ	47	121	Õ	474
07:45 AM	73	72	ő	141	28	Ő	54	104	ő	472
Total	250	266	0	562	142	0	193	444	0	1857
08:00 AM	48	80	0	135	32	0	50	136	0	481
08:15 AM	62	62	Ő	145	44	0	53	107	Ő	473
08:30 AM	52	52	0	1/18	33	0	13	107	0	137
08:45 AM	57	74	0	140	33	0	43	105	0	437
Total	219	268	0	550	141	0	189	448	0	1815
00.00.434	50			0.1	20		17	07		275
09:00 AM	52	66	0	94	29	0	47	87	0	375
09:15 AM	64	54	0	113	36	0	52	90	0	409
09:30 AM	71	67	0	89	24	0	43	92	0	386
09:45 AM	58	46	0	63	45	0	35	74	0	321
Total	245	233	0	359	134	0	177	343	0	1491
10:00 AM	59	49	0	66	40	0	42	65	0	321
10:15 AM	66	61	0	77	22	0	42	68	0	336
10:30 AM	62	70	0	66	33	0	54	79	0	364
10:45 AM	60	65	1	49	41	Ő	50	62	ő	328
Total	247	245	1	258	136	0	188	274	0	1349
11:00 AM	61	63	0	52	52	0	42	81	0	351
11.00 AM	71	67	0	40	21	0	42	60	0	222
11.13 AM	71	56	0	49	21	0	40	09	0	323
11.30 AIVI	72	30	0	50	31	0	33	74	0	310
T1:45 AM Total	277	250	0	207	132	2	169	296	0	1333
									- 1	
12:00 PM	52	63	0	49	36	0	40	68	0	308
12:15 PM	69	56	0	62	25	0	52	62	0	326
12:30 PM	78	59	0	69	19	1	58	55	0	339
12:45 PM	89	76	0	69	42	0	56	89	0	421
Total	288	254	0	249	122	1	206	274	0	1394
01.00 PM	58	60	0	56	33	0	54	73	0	3/13
01.15 DM	50 63	71	0	74	33	0	44	61	0	345
01.15 FW	59	/1 60	0	07	20	0	44	71	0	330
01.30 FM	70	60	0	76	20	0	42	71	0	292
	249	269	0	293	135	0	195	280	0	1421
			~ 1	-/*		~ 1				
02:00 PM	68	63	0	72	44	0	48	80	0	375
02:15 PM	59	79	0	88	47	0	54	69	0	396
02:30 PM	74	83	0	82	32	0	45	91	0	407
02:45 PM	74	92	0	76	50	0	49	63	0	404
Total	275	317	0	318	173	0	196	303	0	1582
03:00 PM	87	118	0	65	33	0	71	71	0	445
03·15 PM	88	121	0	64	46	0	38	75	0	432
03·30 PM	90	122	ő	74	42	ŏ	66	81	ő	475
03:45 PM	84	129	ő	63	47	ő	58	81	õ	462
Total	349	490	0	266	168	0	233	308	0	1814
04.00 PM	77	102		50	40	1	70	70		122
04:00 PM	//	105	U	39	42	1	12	19	U	433
04:15 PM	99	125	U	83	53	U	61	/5	0	496
04:30 PM	105	128	U	69	46	U	54	103	0	505
04:45 PM	/8	143	0	82	5/	0	45	/3	0	478
Total	359	499	0	293	198	1	232	330	0	1912

File Name	: 122784 E
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	:2

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 3

N/S: Washington Street E: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

 				Groups Printe	ed- Cars					
	Washi	ngton Street		Uk	raine Way		Washi	ngton Street		
 G	Fr	om North	TT TT	E F	rom East		Fr	om South	LL T	T - 77 - 1
Start Time	1 hru	Left	U-Turn	Right	Left	U-Turn	Right	102	U-Turn	Int. Total
07:00 AM	44	69	0	123	34	0	40	102	0	418
07:15 AM	47	51	0	151	30	0	41	92	0	412
07:30 AM	47	60	0	134	39	0	44	108	0	432
 07:45 AM	59	71	0	130	25	0	50	86	0	421
Total	197	251	0	538	128	0	181	388	0	1683
08:00 AM	39	73	0	132	28	0	44	121	0	437
08:15 AM	53	60	0	139	36	0	45	87	0	420
08:30 AM	40	46	0	147	29	0	36	93	0	391
08:45 AM	43	62	0	119	30	0	36	80	0	370
 Total	175	241	0	537	123	0	161	381	0	1618
09.00 AM	40	62	0	89	27	0	45	72	0	335
09:15 AM	53	52	0	105	33	0	43	81	0	368
00:20 AM	64	62	0	86	21	0	28	70	0	350
09.30 AM	51	45	0	50	42	0	35	61	0	202
 U9.45 AM Total	208	221	0	330	123	0	162	202	0	1346
10tai	208	221	0	337	123	0	102	293	0	1540
10:00 AM	52	43	0	62	39	0	41	59	0	296
10:15 AM	56	56	0	73	22	0	37	61	0	305
10:30 AM	55	65	0	63	31	0	49	72	0	335
10:45 AM	54	63	1	47	40	õ	47	53	õ	305
 Total	217	227	1	245	132	0	174	245	0	1241
11:00 AM	56	61	0	47	48	0	38	72	0	377
11.15 AM	50	65	0	47	10	0	12	61	0	208
11.15 AW	64	54	0	40	20	0	43	67	0	290
11.30 AIVI	04	54	0	47	29	0	29	67	0	272
 Total	250	243	0	192	122	2	156	265	0	1230
Total	250	215		172	122	2	150	205	01	1250
12:00 PM	44	60	0	49	36	0	39	62	0	290
12:15 PM	65	54	0	62	25	0	50	56	0	312
12:30 PM	70	55	0	66	18	1	57	51	0	318
12:45 PM	83	73	0	67	41	0	51	83	0	398
 Total	262	242	0	244	120	1	197	252	0	1318
01.00 PM	51	67	0	54	29	0	53	69	0	323
01:15 PM	56	68	0	67	35	Ő	42	54	Ő	323
01:30 PM	50	55	0	82	26	0	30	62	0	314
01:45 PM	50	55	0	68	20	0	52	71	0	257
 Total	221	256	0	271	126	0	186	256	0	1316
				-	20			=-		
02:00 PM	56	57	0	67	38	0	45	72	0	335
02:15 PM	48	76	0	82	44	0	53	61	0	364
02:30 PM	60	80	0	76	31	0	42	85	0	374
 02:45 PM	59	89	0	73	44	0	47	50	0	362
Total	223	302	0	298	157	0	187	268	0	1435
03:00 PM	76	113	0	64	30	0	66	64	0	413
03:15 PM	78	116	0	61	43	0	38	60	0	396
03:30 PM	80	118	0	73	42	0	59	67	0	439
03·45 PM	72	127	0	58	42	0	51	63	0	413
 Total	306	474	0	256	157	0	214	254	0	1661
04.00 DM	<i>C A</i>	00		52	20	1	66	20		200
04.00 PM	04	98	0	33 75	39 52	1	00 57	08	0	389
04:15 PM	90	123	0	15	55	0	57	0/	0	405
04:30 PM	91	124	U	64	43	U	50	8/	U	459
 04:45 PM	66	140	0	- 15	53	0	42	58	0	434
Total	311	485	0	267	188	1	215	280	0	1747

		Washingto	on Street			Ukrair	ne Way			Washingt	ton Street		
		From	North			From	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	02:00 PM to 0	6:45 PM - Pe	ak 1 of 1										
Peak Hour for Entire	Intersection	Begins at	04:15 PM										
04:15 PM	99	125	0	224	83	53	0	136	61	75	0	136	496
04:30 PM	105	128	0	233	69	46	0	115	54	103	0	157	505
04:45 PM	78	143	0	221	82	57	0	139	45	73	0	118	478
05:00 PM	94	132	0	226	70	35	0	105	56	93	0	149	480
Total Volume	376	528	0	904	304	191	0	495	216	344	0	560	1959
% App. Total	41.6	58.4	0		61.4	38.6	0		38.6	61.4	0		
PHF	.895	.923	.000	.970	.916	.838	.000	.890	.885	.835	.000	.892	.970
Cars	333	514	0	847	280	182	0	462	203	294	0	497	1806
% Cars	88.6	97.3	0	93.7	92.1	95.3	0	93.3	94.0	85.5	0	88.8	92.2
Heavy Vehicles	43	14	0	57	24	9	0	33	13	50	0	63	153
% Heavy Vehicles	11.4	2.7	0	6.3	7.9	4.7	0	6.7	6.0	14.5	0	11.3	7.8

File Name	: 122784 E
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	: 1

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

N/S: Washington Street E: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

				Groups I	rinted- Cars					
	W	ashington Street			Ukraine Way		W	ashington Street		
		From North			From East			From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
05:00 PM	86	127	0	66	33	0	54	82	0	448
05:15 PM	84	122	0	65	47	0	50	55	0	423
05:30 PM	96	128	0	70	41	0	42	78	0	455
05:45 PM	81	118	0	77	51	0	55	86	0	468
Total	347	495	0	278	172	0	201	301	0	1794
06:00 PM	102	94	0	59	44	0	50	81	0	430
06:15 PM	79	103	0	66	50	0	44	70	0	412
06:30 PM	83	74	0	44	29	0	44	78	0	352
06:45 PM	79	89	0	59	50	0	49	66	0	392
Total	343	360	0	228	173	0	187	295	0	1586
Grand Total	3060	3797	1	3693	1721	4	2221	3478	0	17975
Apprch %	44.6	55.4	0	68.2	31.8	0.1	39	61	0	
Total %	17	21.1	0	20.5	9.6	0	12.4	19.3	0	

	Washington Street From North				Ukrain	e Way Fast		Washington Street From South					
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to 0	9:45 AM - P	eak 1 of 1	FF									
Peak Hour for Entire	Intersection	Begins at	07:30 AM										
07:30 AM	47	60	0	107	134	39	0	173	44	108	0	152	432
07:45 AM	59	71	0	130	130	25	0	155	50	86	0	136	421
08:00 AM	39	73	0	112	132	28	0	160	44	121	0	165	437
08:15 AM	53	60	0	113	139	36	0	175	45	87	0	132	420
Total Volume	198	264	0	462	535	128	0	663	183	402	0	585	1710
% App. Total	42.9	57.1	0		80.7	19.3	0		31.3	68.7	0		
PHF	.839	.904	.000	.888	.962	.821	.000	.947	.915	.831	.000	.886	.978
Peak Hour Analysis I Peak Hour for Entire 12:30 PM	Intersection	Begins at 55	12:30 PM 0	125	66 67	18	1	85	57	51 83	0	108	318
12:43 PM	51	13	0	150	54	41	0	100	52	60	0	134	222
01:00 PM	56	68	0	110	54	29	0	102	42	09 54	0	122	323
Total Voluma	260	262	0	522	254	122	1	278	202	257	0	460	1261
% App. Total	49.7	203 50 3	0	525	67.2	32.5	03	578	44.1	55.0	0	400	1501
	783	901	000	838	948	750	250	875	890	774	000	858	855
Peak Hour Analysis I Peak Hour for Entire 04:15 PM 04:30 PM 04:45 PM 05:00 PM	From 02:00 I Intersection 90 91 66 86	PM to 06:4 Begins at 123 124 140 127	5 PM - Pea 04:15 PM 0 0 0 0	ak 1 of 1 213 215 206 213	75 64 75 66	53 43 53 33	0 0 0 0	128 107 128 99	57 50 42 54	67 87 58 82	0 0 0 0	124 137 100 136	465 459 434 448
Total Volume	333	514	0	847	280	182	0	462	203	294	0	497	1806
% App. Total	39.3	60.7	0	017	60.6	39.4	0	.52	40.8	59.2	0		1000
PHF	.915	.918	.000	.985	.933	.858	.000	.902	.890	.845	.000	.907	.971

				Groups Printed- He	eavy Vehicles					
	Wash	nington Street		Uk	kraine Way		Wash	ington Street		
Cte et There	T1	rom North	U.T.	Piete	from East	LL Trans	Fr	rom South	U.T.	Let Tetel
	1.4	Left	U-Turn	Right	2	U-Turn	Right	10	0-1um	
07:00 AM	14	5	0	5	2	0	2	10	0	38
07:15 AM	11	6	0	2	3	0	3	15	0	43
07:30 AM	14	3	0	3	6	0	3	13	0	42
07:45 AM	14	1	0	11	3	0	4	18	0	51
Total	53	15	0	24	14	0	12	56	0	174
			. 1			. 1			. 1	
08:00 AM	9	7	0	3	4	0	6	15	0	44
08:15 AM	9	2	0	6	8	0	8	20	0	53
08:30 AM	12	6	0	1	4	0	7	16	0	46
08:45 AM	14	12	0	3	2	0	7	16	0	54
Total	44	27	0	13	18	0	28	67	0	197
				_						10
09:00 AM	12	4	0	5	2	0	2	15	0	40
09:15 AM	11	2	0	8	3	0	8	9	0	41
09:30 AM	7	5	0	3	3	0	5	13	0	36
09:45 AM	7	1	0	4	3	0	0	13	0	28
Total	37	12	0	20	11	0	15	50	0	145
10.00 AM		C		4	1		1	6		25
10:00 AM	10	6	0	4	1	0	1	0	0	25
10:15 AM	10	5	0	4	0	0	5	/	0	31
10:30 AM		5	0	3	2	0	5	/	0	29
10:45 AM	6	2	0	2	1	0		9	0	23
1 otal	30	18	0	13	4	0	14	29	0	108
11:00 AM	5	2	0	5	4	0	4	9	0	29
11:15 AM	5	2	õ	4	3	0	3	8	Ő	25
11:30 AM	8	2	ő	1	2	0	4	7	0	23
11:45 AM	9	1	ő	5	1	0	2	7	0	25
Total	27	7	0	15	10	0	13	31	0	103
12:00 PM	8	3	0	0	0	0	1	6	0	18
12:15 PM	4	2	0	0	0	0	2	6	0	14
12:30 PM	8	4	0	3	1	0	1	4	0	21
12:45 PM	6	3	0	2	1	0	5	6	0	23
Total	26	12	0	5	2	0	9	22	0	76
			. 1	-	_	~ 1	, i i i i i i i i i i i i i i i i i i i		~ 1	
01:00 PM	7	2	0	2	4	0	1	4	0	20
01:15 PM	7	3	0	7	2	0	2	7	0	28
01:30 PM	8	5	õ	5	2	Ő	3	9	0	32
01:45 PM	6	3	õ	8	1	Ő	3	4	0	25
Total	28	13	0	22	9	0	9	24	0	105
	1									
02:00 PM	12	6	0	5	6	0	3	8	0	40
02:15 PM	11	3	0	6	3	0	1	8	0	32
02:30 PM	14	3	0	6	1	0	3	6	0	33
02:45 PM	15	3	0	3	6	0	2	13	0	42
Total	52	15	0	20	16	0	9	35	0	147
00 00 PM		-					_	-		
03:00 PM	11	5	0	1	3	0	5	7	0	32
03:15 PM	10	5	0	3	3	0	0	15	0	36
03:30 PM	10	4	0	1	0	0	7	14	0	36
03:45 PM	12	2	0	5	5	0	7	18	0	49
Total	43	16	0	10	11	0	19	54	0	153
04.00 DM	12	5	0	6	2	0	6	11	0	A A
04.00 PM	15	5	0	0	5	0	4	11		44
04:15 PM	9	<u>∠</u>	0	8	0	U	4	8	U I	51
04:30 PM	14	4	0	5	3	U	4	10	0	46
04:45 PM	12		0		4	0		15	0	44
Total	48	14	0	26	10	0	17	50	0	165

File Name	: 122784 E
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	:1

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

N/S: Washington Street E: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

					ls and Bicycles	broups Printed- Pec									
		shington Street	Was		kraine Way	U		shington Street	Wa						
		From South	1		From East	1		From North	Start Time Thru Left						
Int. Total	Peds	Thru	Right	Peds	Left	Right	Peds	Left	Thru	Start Time					
11	0	3	0	5	0	0	1	1	1	07:00 AM					
17	0	3	0	12	0	0	1	1	1	07.15 AM					
17	0	4	0	13	0	0	0	0	0	07:15 AM					
14	0	5	1	5	1	0	0	1	1	07:30 AM					
16	0	5	0	10	0	0	0	1	0	07:45 AM					
58	0	17	1	33	1	0	1	3	2	Total					
14	0	6	0	7	0	1	0	0	0	08:00 AM					
13	0	3	0	8	0	1	0	0	1	08:15 AM					
11	0	4	0	6	0	0	0	0	1	08:30 AM					
10	0	4	0	4	0	2	0	0	0	08:45 AM					
48	0	17	0	25	0	4	0	0	2	Total					
12		2	0		0					00.00.434					
12	1	2	0	6	0	1	0	1	1	09:00 AM					
15	0	3	0	10	1	1	0	0	0	09:15 AM					
13	0	3	0	9	0	0	0	1	0	09:30 AM					
7	0	2	0	4	1	0	0	0	0	09:45 AM					
47	1	10	0	29	2	2	0	2	1	Total					
4	0	1	0	2	0	0	0	0	0	10.00 434					
4	U	1	0	5	0	0	U	0	0	10:00 AM					
8	0	1	0	5	0	2	0	U	0	10:15 AM					
9	1	4	0	4	0	0	0	0	0	10:30 AM					
10	0	3	0	5	0	0	1	0	1	10:45 AM					
31	1	9	0	17	0	2	1	0	1	Total					
5	0	0	0	5	0	0	0	0	0	11.00 AM					
5	0	2	0	5	0	0		0	0	11.00 AIVI					
9	U	3	0	0	0	0	U	0	U	11:15 AM					
4	0	1	0	2	0	1	0	0	0	11:30 AM					
3	0	0	0	3	0	0	0	0	0	11:45 AM					
21	0	4	0	16	0	1	0	0	0	Total					
0	0	0	0	Q	0	0	0	0	1	12.00 DM					
9	0	0	0	0	0	0	0	0	1	12.00 PM					
8	0	0	0	7	0	0	0	0	1	12:15 PM					
6	0	1	0	5	0	0	0	0	0	12:30 PM					
8	0	0	0	8	0	0	0	0	0	12:45 PM					
31	0	1	0	28	0	0	0	0	2	Total					
10	0	1	0	10	0	0	1	0	0	01.00 DM					
12	0	1	0	10	0	0	1	0	0	01:00 PM					
5	0	0	0	3	0	0	0	1	1	01:15 PM					
5	0	0	0	3	0	0	0	2	0	01:30 PM					
9	0	1	0	8	0	0	0	0	0	01:45 PM					
31	0	2	0	24	0	0	1	3	1	Total					
10		0	0	7	0	0	1	0	2	03.00 DM					
10	U	0	U	/	0	0	1	0	2	02:00 PM					
12	0	1	0	10	0	0	0	1	0	02:15 PM					
13	0	0	0	9	1	0	1	1	1	02:30 PM					
14	0	2	0	11	0	0	0	0	1	02:45 PM					
49	0	3	0	37	1	0	2	2	4	Total					
15	0	2	0	11	0	0	0	0	2	03:00 PM					
10	ñ	<u> </u>	Ő	6	ñ	1	ň	1	2	03-15 DM					
10	0	0	0	15	0	1		1	2 0	03.13 F MI					
15	U	U	0	15	U	0	0	U	0	03:30 PM					
15	0	2	1	10	2	0	0	0	1 5	03:45 PM					
55	0	3	1	42	2	1	0	1	3	1 otal					
13	2	0	0	10	0	0	1	0	0	04:00 PM					
23	0	1	0	18	0	0	0	1	3	04:15 PM					
21	ŏ	0	ŏ	19	õ	õ	õ	0	2	04:30 PM					
13	0	0	0	8	Ő	Ő	0	1	2 4	04·45 PM					
70	2	1	0	55	0	0	1	2		Total					
70	2	1	0	55	0	U	1	7	9	1 Otal					

				Groups Printed	- Heavy Vehicles					
	Wa	ashington Street			Ukraine Way		V	ashington Street		
		From North			From East			From South		
Start Time	Thru	Left	U-Turn	Right	Left	U-Turn	Right	Thru	U-Turn	Int. Total
05:00 PM	8	5	0	4	2	0	2	11	0	32
05:15 PM	14	2	0	4	3	0	1	13	0	37
05:30 PM	10	4	0	2	2	0	1	14	0	33
05:45 PM	9	0	0	2	4	0	1	9	0	25
Total	41	11	0	12	11	0	5	47	0	127
06:00 PM	9	1	0	0	0	0	1	10	0	21
06:15 PM	4	1	0	1	0	0	2	9	0	17
06:30 PM	7	0	0	2	1	0	1	10	0	21
06:45 PM	9	1	0	2	1	0	3	9	0	25
Total	29	3	0	5	2	0	7	38	0	84
	459	1.62		105	110	0	167	502		1504
Grand Total	458	163	0	185	118	0	157	503	0	1584
Apprch %	73.8	26.2	0	61.1	38.9	0	23.8	76.2	0	
Total %	28.9	10.3	0	11.7	7.4	0	9.9	31.8	0	

	Washington Street From North				Ukrain	e Way Fast			Washingt	on Street			
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to 0	9:45 AM - Pe	eak 1 of 1		6								
Peak Hour for Entire	Intersection	Begins at (08:00 AM										
08:00 AM	9	7	0	16	3	4	0	7	6	15	0	21	44
08:15 AM	9	2	0	11	6	8	0	14	8	20	0	28	53
08:30 AM	12	6	0	18	1	4	0	5	7	16	0	23	46
08:45 AM	14	12	0	26	3	2	0	5	7	16	0	23	54
Total Volume	44	27	0	71	13	18	0	31	28	67	0	95	197
% App. Total	62	38	0		41.9	58.1	0		29.5	70.5	0		
PHF	.786	.563	.000	.683	.542	.563	.000	.554	.875	.838	.000	.848	.912
Peak Hour Analysis F Peak Hour for Entire	From 10:00 A	AM to 01:4 Begins at	5 PM - Pe 10:15 AM	ak 1 of 1		0	0		-	7	0	10	21
10:15 AM	10	5	0	15	4	0	0	4	5	7	0	12	31
10:30 AM	1	5	0	12	3	2	0	5	5	7	0	12	29
10:45 AM	6	2	0	8	2	1	0	3	3	9	0	12	23
11:00 AM	20	2	0	/	5	4	0	9	4		0	13	29
I otal Volume	28	14	0	42	14	22.2	0	21	1/	52	0	49	112
<u>% App. 10tal</u>	700	200	000	700	700	33.3	000	592		05.5	000	042	002
Peak Hour Analysis Peak Hour for Entire	From 02:00 I	PM to 06:4 Begins at (5 PM - Pea	.700 1 1 1 1	.700	.438	.000	.383	.830	.009	.000	.942	.905
03.45 PM	12	2	0	14	5	5	0	10	7	18	0	25	49
04.00 PM	13	5	Ő	18	6	3	Ő	9	6	11	ő	17	44
04:15 PM	9	2	0	11	8	0	0	8	4	8	0	12	31
04·30 PM	14	4	Ő	18	5	3	Ő	8	4	16	ő	20	46
Total Volume	48	13	0	61	24	11	0	35	21	53	0	74	170
% App. Total	78.7	21.3	Õ		68.6	31.4	0		28.4	71.6	0		
PHF	.857	.650	.000	.847	.750	.550	.000	.875	.750	.736	.000	.740	.867

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 1

Washington Street

From North

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

Washington Street

From South

N/S: Washington Street E: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

		Washingto	on Street			Ukraiı	ne Way			Washing	ton Street		
		From	North			From	East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to (09:45 AM - Pe	eak 1 of 1										
Peak Hour for Entire	Intersection	Begins at	07:30 AM										
07:30 AM	61	63	0	124	137	45	0	182	47	121	0	168	474
07:45 AM	73	72	0	145	141	28	0	169	54	104	0	158	472
08:00 AM	48	80	0	128	135	32	0	167	50	136	0	186	481
08:15 AM	62	62	0	124	145	44	0	189	53	107	0	160	473
Total Volume	244	277	0	521	558	149	0	707	204	468	0	672	1900
% App. Total	46.8	53.2	0		78.9	21.1	0		30.4	69.6	0		
PHF	.836	.866	.000	.898	.962	.828	.000	.935	.944	.860	.000	.903	.988
Cars	198	264	0	462	535	128	0	663	183	402	0	585	1710
% Cars	81.1	95.3	0	88.7	95.9	85.9	0	93.8	89.7	85.9	0	87.1	90.0
Heavy Vehicles	46	13	0	59	23	21	0	44	21	66	0	87	190
% Heavy Vehicles	18.9	4.7	0	11.3	4.1	14.1	0	6.2	10.3	14.1	0	12.9	10.0

Int. Total 12 18 12 Start Time 05:00 PM Thru Left Peds Right Left Peds Right Thru Peds 05:15 PM 05:30 PM Ω 05:45 PM Total 0 12 11 06:00 PM 06:15 PM 06:30 PM 46 06:45 PM Total 95.4 Grand Total 24.7 3.5 9.1 1.3 Apprch % 66.2 2.8 1.8 3.7 90.1 6.2 Total % 9.3 1.3 67.9 0.5 13.3 0.9

Groups Printed- Peds and Bicycles Ukraine Way

From East

		Washingto	on Street			Ukraiı	ne Way			Washingto	n Street		
		From	North			From	ı East			From S	outh		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to	09:45 AM - Pe	ak 1 of 1										
Peak Hour for Entire	Intersection	n Begins at (07:15 AM										
07:15 AM	0	0	0	0	0	0	13	13	0	4	0	4	17
07:30 AM	1	1	0	2	0	1	5	6	1	5	0	6	14
07:45 AM	0	1	0	1	0	0	10	10	0	5	0	5	16
08:00 AM	0	0	0	0	1	0	7	8	0	6	0	6	14
Total Volume	1	2	0	3	1	1	35	37	1	20	0	21	61
% App. Total	33.3	66.7	0		2.7	2.7	94.6		4.8	95.2	0		
PHF	.250	.500	.000	.375	.250	.250	.673	.712	.250	.833	.000	.875	.897
Peak Hour Analysis F	From 10:00	AM to 01:4	5 PM - Pe	eak 1 of 1									

ŀ	eak Hour for Entire	Intersection	Begins at 1	12:15 PM										
	12:15 PM	1	0	0	1	0	0	7	7	0	0	0	0	8
	12:30 PM	0	0	0	0	0	0	5	5	0	1	0	1	6
	12:45 PM	0	0	0	0	0	0	8	8	0	0	0	0	8
_	01:00 PM	0	0	1	1	0	0	10	10	0	1	0	1	12
	Total Volume	1	0	1	2	0	0	30	30	0	2	0	2	34
_	% App. Total	50	0	50		0	0	100		0	100	0		
	PHF	.250	.000	.250	.500	.000	.000	.750	.750	.000	.500	.000	.500	.708

Peak Hour Analysis From 02:00 PM to 06:45 PM - Peak 1 of 1

Peak Hour for Entire	Intersection	Begins at (03:45 PM										
03:45 PM	1	0	0	1	0	2	10	12	1	1	0	2	15
04:00 PM	0	0	1	1	0	0	10	10	0	0	2	2	13
04:15 PM	3	1	0	4	0	0	18	18	0	1	0	1	23
04:30 PM	2	0	0	2	0	0	19	19	0	0	0	0	21
Total Volume	6	1	1	8	0	2	57	59	1	2	2	5	72
% App. Total	75	12.5	12.5		0	3.4	96.6		20	40	40		
PHF	.500	.250	.250	.500	.000	.250	.750	.776	.250	.500	.250	.625	.783

File Name	: 122784 E
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	:1

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

N/S: Washington Street E: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

		Washingt	on Street			Ukrain	e Way			Washingt	on Street		
		From	North			From	East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	02:00 PM to	06:45 PM - Pe	eak 1 of 1										
Peak Hour for Entire	Intersection	n Begins at	04:15 PM										
04:15 PM	99	125	0	224	83	53	0	136	61	75	0	136	496
04:30 PM	105	128	0	233	69	46	0	115	54	103	0	157	505
04:45 PM	78	143	0	221	82	57	0	139	45	73	0	118	478
05:00 PM	94	132	0	226	70	35	0	105	56	93	0	149	480
Total Volume	376	528	0	904	304	191	0	495	216	344	0	560	1959
% App. Total	41.6	58.4	0		61.4	38.6	0		38.6	61.4	0		
PHF	.895	.923	.000	.970	.916	.838	.000	.890	.885	.835	.000	.892	.970
Cars	333	514	0	847	280	182	0	462	203	294	0	497	1806
% Cars	88.6	97.3	0	93.7	92.1	95.3	0	93.3	94.0	85.5	0	88.8	92.2
Heavy Vehicles	43	14	0	57	24	9	0	33	13	50	0	63	153
% Heavy Vehicles	11.4	2.7	0	6.3	7.9	4.7	0	6.7	6.0	14.5	0	11.3	7.8

		Washingto	on Street			Ukraiı	ne Way			Washing	ton Street		
		From	North			From	ı East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	10:00 AM to	01:45 PM - Pe	eak 1 of 1										
Peak Hour for Entire	Intersectior	Begins at	12:45 PM										
12:45 PM	89	76	0	165	69	42	0	111	56	89	0	145	421
01:00 PM	58	69	0	127	56	33	0	89	54	73	0	127	343
01:15 PM	63	71	0	134	74	37	0	111	44	61	0	105	350
01:30 PM	58	60	0	118	87	28	0	115	42	71	0	113	346
Total Volume	268	276	0	544	286	140	0	426	196	294	0	490	1460
% App. Total	49.3	50.7	0		67.1	32.9	0		40	60	0		
PHF	.753	.908	.000	.824	.822	.833	.000	.926	.875	.826	.000	.845	.867
Cars	240	263	0	503	270	131	0	401	185	268	0	453	1357
% Cars	89.6	95.3	0	92.5	94.4	93.6	0	94.1	94.4	91.2	0	92.4	92.9
Heavy Vehicles	28	13	0	41	16	9	0	25	11	26	0	37	103
% Heavy Vehicles	10.4	4.7	0	7.5	5.6	6.4	0	5.9	5.6	8.8	0	7.6	7.1

File Name : 122784 E Site Code : 127-3946 Start Date : 2/28/2012 Page No : 3

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 1

N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

									0	
			C	roups Printed- C	Cars - Heavy Vehi	cles				
	Н	yde Park Avenue		I	Hyde Park Avenue	9		Ukraine Way		
		From North			From South	_		From West		
Start Time	Right	Thru	U-Turn	Thru	Left	U-Turn	Right	Left	U-Turn	Int. Total
05:00 PM	42	191	0	139	67	0	142	50	0	631
05:15 PM	51	262	0	174	67	0	129	36	0	719
05:30 PM	42	260	0	161	72	0	149	40	0	724
05:45 PM	53	242	0	142	82	0	127	37	0	683
Total	188	955	0	616	288	0	547	163	0	2757
06:00 PM	42	218	0	129	64	0	112	43	1	609
06:15 PM	55	206	0	116	58	0	110	36	0	581
06:30 PM	34	148	0	119	45	0	73	50	0	469
06:45 PM	54	170	0	92	54	0	93	44	0	507
Total	185	742	0	456	221	0	388	173	1	2166
Grand Total	1790	6409	0	6171	3924	1	4300	2051	6	24652
Apprch %	21.8	78.2	0	61.1	38.9	0	67.6	32.3	0.1	
Total %	7.3	26	0	25	15.9	0	17.4	8.3	0	
Cars	1629	5975	0	5728	3783	1	4119	1918	6	23159
% Cars	91	93.2	0	92.8	96.4	100	95.8	93.5	100	93.9
Heavy Vehicles	161	434	0	443	141	0	181	133	0	1493
% Heavy Vehicles	9	6.8	0	7.2	3.6	0	4.2	6.5	0	6.1

		Hyde Parl	k Avenue			Hyde Par	k Avenue			Ukrair	ne Way		
Start Time	Right	Thru	INORTH U-Turn	App Total	Thru	From Left	J-Turn	App. Total	Right	From	U-Turn	App Total	Int Total
Peak Hour Analysis From	07:00 AM to 0)9:45 AM - P	eak 1 of 1	App. Total	Tinu	Len	0-run	App. Total	Right	Lett	0-1um	App. Total	Int. Total
Peak Hour for Entire	Intersection	Begins at	07:30 AM										
07:30 AM	36	89	0	125	220	150	0	370	68	48	0	116	611
07:45 AM	29	115	0	144	189	142	0	331	75	50	0	125	600
08:00 AM	24	96	0	120	186	138	0	324	83	43	0	126	570
08:15 AM	46	121	0	167	193	152	0	345	74	44	0	118	630
Total Volume	135	421	0	556	788	582	0	1370	300	185	0	485	2411
% App. Total	24.3	75.7	0		57.5	42.5	0		61.9	38.1	0		
PHF	.734	.870	.000	.832	.895	.957	.000	.926	.904	.925	.000	.962	.957
Cars	119	385	0	504	732	556	0	1288	283	169	0	452	2244
% Cars	88.1	91.4	0	90.6	92.9	95.5	0	94.0	94.3	91.4	0	93.2	93.1
Heavy Vehicles	16	36	0	52	56	26	0	82	17	16	0	33	167
% Heavy Vehicles	11.9	8.6	0	9.4	7.1	4.5	0	6.0	5.7	8.6	0	6.8	6.9
Daala Hanna Amalania E	10.00	AM 4= 01.	45 DM D-	-l- 1 -f 1									
Peak Hour Analysis F	from 10:00 A	AM to U1:4	45 PIM - Pe	ak I of I									
D1.00 DM	22		01.00 PM	116	100	57	0	166	75	51	0	126	109
01.00 FM	33	100	0	122	109	57 77	0	100	75	25	1	115	408
01.13 FM	20	121	0	152	02	82	0	174	63	26	1	100	420
01.30 FM	29	107	0	140	112	04 91	0	1/4	78	42	1	120	424
Total Voluma	127	411	0	528	418	207	0	715	205	164	2	461	1714
10tal Volume	22.6	76.4	0	556	58.5	41.5	0	/15	293	25.6	0.4	401	1/14
70 App. 10tal	23.0	8/10	000	807	025	905	000	021	03/	804	500	015	044
Care	110	302	000	502	386	282	000	.921	281	150		.913	1612
% Cars	86.6	95.4	0	93.3	92.3	94.9	0	93.4	95.3	97.0	100	95.9	94.0
Heavy Vehicles	17	19	0	36	32	15	0	47	14	5	100	19	102
% Heavy Vehicles	13.4	4.6	0	6.7	7.7	5.1	0	6.6	4.7	3.0	0	4.1	6.0

		Hyde Par From	k Avenue			Hyde Parl From	k Avenue South			Ukrair	ie Way West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to	09:45 AM - F	Peak 1 of 1										
Peak Hour for Entire	Intersection	n Begins at	07:30 AM										
07:30 AM	36	89	0	125	220	150	0	370	68	48	0	116	611
07:45 AM	29	115	0	144	189	142	0	331	75	50	0	125	600
08:00 AM	24	96	0	120	186	138	0	324	83	43	0	126	570
08:15 AM	46	121	0	167	193	152	0	345	74	44	0	118	630
Total Volume	135	421	0	556	788	582	0	1370	300	185	0	485	2411
% App. Total	24.3	75.7	0		57.5	42.5	0		61.9	38.1	0		
PHF	.734	.870	.000	.832	.895	.957	.000	.926	.904	.925	.000	.962	.957
Cars	119	385	0	504	732	556	0	1288	283	169	0	452	2244
% Cars	88.1	91.4	0	90.6	92.9	95.5	0	94.0	94.3	91.4	0	93.2	93.1
Heavy Vehicles	16	36	0	52	56	26	0	82	17	16	0	33	167
% Heavy Vehicles	11.9	8.6	0	9.4	7.1	4.5	0	6.0	5.7	8.6	0	6.8	6.9
Peak Hour Analysis I	rom 10:00	AM to 01:	45 PM - Pe	eak I of I									
Peak Hour for Entire	Intersection	n Begins at	01:00 PM		100								100
01:00 PM	33	83	0	116	109	57	0	166	75	51	0	126	408
01:15 PM	32	100	0	132	104	77	0	181	79	35	1	115	428
01:30 PM	29	121	0	150	92	82	0	174	63	36	1	100	424
01:45 PM	33	107	0	140	113	81	0	194	78	42	0	120	454
Total Volume	127	411	0	538	418	297	0	715	295	164	2	461	1714
<u> </u>	23.6	76.4	0		58.5	41.5	0		64	35.6	0.4		
PHF	.962	.849	.000	.897	.925	.905	.000	.921	.934	.804	.500	.915	.944
Cars	110	392	0	502	386	282	0	668	281	159	2	442	1612
% Cars	86.6	95.4	0	93.3	92.3	94.9	0	93.4	95.3	97.0	100	95.9	94.0
Heavy Vehicles	17	19	0	36	32	15	0	47	14	5	0	19	102
% Heavy Vehicles	13.4	4.6	0	6.7	7.7	5.1	0	6.6	4.7	3.0	0	4.1	6.0

	1		Gr	oups Printed- Cars	s - Heavy Vehicl	es				
	Hy	/de Park Avenue		Hyd	le Park Avenue		1	Ukraine Way		
Start Time	Right	Thru	U-Turn	Thru	Left	U-Turn	Right	Left	U-Turn	Int. Total
07:00 AM	43	106	0	184	121	0	82	47	0	583
07:15 AM	30	102	0	203	152	0	57	43	0	587
07:30 AM	36	89	0	220	150	0	68	48	0	611
07:45 AM	29	115	0	189	142	0	75	50	0	600
Total	138	412	0	796	565	0	282	188	0	2381
	1									
08:00 AM	24	96	0	186	138	0	83	43	0	570
08:15 AM	46	121	0	193	152	0	74	44	0	630
08:30 AM	30	102	0	192	156	0	59	42	0	581
08:45 AM	36	80	0	157	112	0	71	44	0	500
Total	136	399	0	728	558	0	287	173	0	2281
00.00 AM	24	70	0	144	02	0	67	18	0	165
09:00 AM	25	19	0	144	100	0	58	40	0	403
00.20 AM	20	02	0	122	109	0	50 72	40	0	148
09:30 AM	45	92	0	133	65	0	55	40	0	448
Total	136	366	0	547	356	0	252	161	0	1818
Total	150	500	01	547	550	0	252	101	0	1010
10:00 AM	38	97	0	100	66	0	49	39	0	389
10:15 AM	27	88	0	94	77	0	66	42	0	394
10:30 AM	31	82	0	106	62	0	76	45	1	403
10:45 AM	43	70	0	80	53	0	67	44	0	357
Total	139	337	0	380	258	0	258	170	1	1543
	1								- 1	
11:00 AM	47	84	0	82	53	0	66	42	0	374
11:15 AM	21	78	0	85	52	0	67	44	0	347
11:30 AM	27	91	0	93	53	0	61	28	0	353
11:45 AM	28	88	0	107	60	0	- 75	34	0	392
1 otai	123	341	0	367	218	0	269	148	0	1466
12:00 PM	33	89	0	95	46	0	74	35	0	372
12:15 PM	20	89	ő	84	68	0	65	44	ő	370
12:30 PM	25	104	ő	107	66	Ő	68	48	ő	418
12:45 PM	32	98	0	100	78	0	79	50	Ő	437
Total	110	380	0	386	258	0	286	177	0	1597
01:00 PM	33	83	0	109	57	0	75	51	0	408
01:15 PM	32	100	0	104	77	0	79	35	1	428
01:30 PM	29	121	0	92	82	0	63	36	1	424
01:45 PM	33	107	0	113	81	0	78	42	0	454
Total	127	411	0	418	297	0	295	164	2	1714
02.00 DM	1 44	102		115	70	0		51		451
02:00 PM	44	102	0	115	/3	0	00	51	0	451
02:15 PM	42	115	0	98	92	0	88	47	0	482
02:30 PM	35	128	0	118	84	0	94	30	0	495
O2.43 FM	150	505	0	452	332	0	344	174	0	1966
Total	155	505	01	452	552	0	544	1/4	0	1700
03:00 PM	33	151	0	119	72	0	128	65	1	569
03:15 PM	35	170	0	135	66	1	125	32	0	564
03:30 PM	46	200	0	126	64	0	142	48	0	626
03:45 PM	47	202	0	134	63	0	139	42	0	627
Total	161	723	0	514	265	1	534	187	1	2386
			. 1			. 1			. 1	
04:00 PM	32	170	0	122	73	0	128	47	1	573
04:15 PM	51	204	0	148	83	0	136	44	0	666
04:30 PM	58	243	0	108	68	0	142	46	0	665
04:45 PM	47	221	0	133	84	0	152	36	0	6/3
Total	188	838	0	511	308	0	558	173	1	2577

: 122784 H
: 127-3946
: 2/28/2012
:2

_

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 3 N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

					nted- Cars	Groups Prin				
		Ukraine Way	1		de Park Avenue	Hyd		yde Park Avenue	H	
Let Tetal	II Toom	From West	Distri	U.T.	From South	These	U.T.	From North	Distr	for an Trimer
	U-Turn	Lent		0-Turn	120	171	U-Turn	1 nru	27	
534	0	43	70	0	120	1/1	0	0.0	37	07.00 AM
545	0	40	52	0	148	190	0	88	21	07:15 AM
580	0	44	05	0	140	211	0	83	31	07:30 AM
562	0	4/	/3	0	132	1/3	0	266	27	0/:45 AM
2221	0	1/6	200	0	546	/45	0	300	122	1 otai
518	0	39	75	0	133	165	0	84	22	08:00 AM
584	0	39	70	0	145	183	0	108	39	08:15 AM
542	0	39	50	0	153	179	0	91	30	08:30 AM
461	0	37	63	0	<u>108</u> 539	674	0	355	125	08:45 AM
2105	01	154	258	0	557	074	01	555	125	1000
419	0	44	63	0	88	127	0	67	30	09:00 AM
460	0	40	54	0	101	146	0	86	33	09:15 AM
404	0	34	66	0	87	122	0	78	17	09:30 AM
376	0	27	54	0	62	106	0	85	42	09:45 AM
1659	0	145	237	0	338	501	0	316	122	Total
348	0	37	43	0	65	86	0	85	32	10:00 AM
358	0	37	60	0	73	88	0	75	25	10:15 AM
384	1	42	71	0	60	102	0	79	29	10:30 AM
332	0	38	65	0	52	70	0	66	41	10:45 AM
1422	1	154	239	0	250	346	0	305	127	Total
343	0	40	63	0	48	75	0	75	42	11:00 AM
328	0	40	67	0	49	81	0	73	18	11:15 AM
327	0	26	57	Ő	52	84	Ő	85	23	11:30 AM
371	0	33	73	Ő	56	101	Ő	81	27	11:45 AM
1369	0	139	260	0	205	341	0	314	110	Total
360	0	35	71	0	46	01	0	84	33	12:00 PM
254	0	42	62	0	40	70	0	84	33	12.00 FM
202	0	43	64	0	65	10	0	04	20	12.13 PM
393	0	47	04	0	03	90	0	99	22	12.30 PM
1515	0	172	271	0	254	355	0	357	106	Total
205						100				04.00 514
385	0	51	73	0	55	100	0		29	01:00 PM
401	1	33	76	0	74	98	0	93	26	01:15 PM
398	1	35	57	0	78	84	0	118	25	01:30 PM
428	0	40	75	0	75	104	0	104	30	01:45 PM
1612	2	159	281	0	282	386	0	392	110	Total
413	0	47	60	0	71	107	0	93	35	02:00 PM
455	0	46	86	0	87	93	0	104	39	02:15 PM
461	0	34	91	0	81	104	0	121	30	02:30 PM
500	0	38	93	0	218	110	0	147	33	02:45 PM
1829	0	105	550	0	518	414	0	405	157	Total
533	1	60	123	0	70	108	0	140	31	03:00 PM
534	0	32	120	1	62	125	0	160	34	03:15 PM
598	0	42	138	0	64	115	0	193	46	03:30 PM
584	0	37	135	0	60	119	0	192	41	03:45 PM
2249	1	171	516	1	256	467	0	685	152	Total
526	1	41	122	0	69	114	0	153	26	04:00 PM
630	0	43	131	0	80	139	0	191	46	04:15 PM
630	0	44	137	0	67	97	0	234	51	04:30 PM
633	0	33	149	0	80	123	0	208	40	04:45 PM
2419	1	161	539	0	296	473	0	786	163	Total

		Hyde Parl	k Avenue			Hyde Par	k Avenue			Ukrair	ne Way		
		From	North			From	South			From	West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	02:00 PM to 06	5:45 PM - Pe	ak 1 of 1										
Peak Hour for Entire	Intersection	Begins at	05:00 PM										
05:00 PM	42	191	0	233	139	67	0	206	142	50	0	192	631
05:15 PM	51	262	0	313	174	67	0	241	129	36	0	165	719
05:30 PM	42	260	0	302	161	72	0	233	149	40	0	189	724
05:45 PM	53	242	0	295	142	82	0	224	127	37	0	164	683
Total Volume	188	955	0	1143	616	288	0	904	547	163	0	710	2757
% App. Total	16.4	83.6	0		68.1	31.9	0		77	23	0		
PHF	.887	.911	.000	.913	.885	.878	.000	.938	.918	.815	.000	.924	.952
Cars	173	925	0	1098	595	282	0	877	537	156	0	693	2668
% Cars	92.0	96.9	0	96.1	96.6	97.9	0	97.0	98.2	95.7	0	97.6	96.8
Heavy Vehicles	15	30	0	45	21	6	0	27	10	7	0	17	89
% Heavy Vehicles	8.0	3.1	0	3.9	3.4	2.1	0	3.0	1.8	4.3	0	2.4	3.2

File Name	: 122784 H
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	: 1

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

					eavy venicles	Groups Printed- He				
		kraine Way	Uk		Park Avenue	Hyde		Park Avenue	Hyde	
		From West	Fi		om South	Fr		rom North	Fr	
Int. Total	U-Turn	Left	Right	U-Turn	Left	Thru	U-Turn	Thru	Right	Start Time
49	0	2	6	0	1	13	0	21	6	07:00 AM
42	0	3	5	0	4	13	0	14	3	07:15 AM
21	ő	4	2	Ő		0	Ő	6	5	07:20 AM
51	0	4	5	0	4	,	0	0	5	07.30 AM
38	0	3	2	0	10	16	0	5	2	07:45 AM
160	0	12	16	0	19	51	0	46	16	Total
52	0	4	8	0	5	21	0	12	2	08:00 AM
46	0	5	4	0	7	10	0	13	7	08·15 AM
20	0	3	0	Ő	2	12	Ő	11	,	08:20 AM
39	0	3	2	0	3	13	0	11	0	08.30 AM
39	0	1	8	0	4	10	0	8	2	08:45 AM
176	0	19	29	0	19	54	0	44	11	Total
46	0	4	4	0	5	17	0	12	4	09:00 AM
43	0	6	4	0	8	11	0	12	2	09:15 AM
4.4	õ	6	6	Ő	2	11	õ	14	5	00:20 AM
44	0	0	0	0	2	11	0	14	5	09.30 AM
26	0	0	1	0	3	/	0	12	3	09:45 AM
159	0	16	15	0	18	46	0	50	14	Total
41	0	2	6	0	1	14	0	12	6	10:00 AM
36	0	5	6	0	4	6	0	13	2	10.15 AM
10	0	2	5	0	2	4	0	2	2	10.20 AM
19	0	3	5	0	2	4	0	3	2	10:30 AM
25	0	6	2	0	<u> </u>	10	0	4	2	10:45 AM
121	0	16	19	0	8	34	0	32	12	Total
31	0	2	3	0	5	7	0	9	5	11:00 AM
19	0	4	0	0	3	4	0	5	3	11.15 AM
26	ő	2	4	õ	1	0	õ	6	4	11:30 AM
20	0	1	-	0	1	,	0	0	4	11.50 AW
21	0	1	2	0	4	6	0	/	1	11:45 AM
97	0	9	9	0	13	26	0	27	13	Total
12	0	0	3	0	0	4	0	5	0	12:00 PM
16	õ	1	3	0	1	6	0	5	Õ	12:15 PM
10	0	1	3	0	1	11	0	5	0	12.15 I M 12.20 DM
25	0	1	4	0	1	11	0	5	3	12:30 PM
29	0	3	5	0	2	10	0	8	1	12:45 PM
82	0	5	15	0	4	31	0	23	4	Total
23	0	0	2	0	2	9	0	6	4	01:00 PM
27	ñ	2	- 3	<u> </u>	3	6	õ	7	6	01.15 PM
27	0	1	5	0	3	0	0	2	0	01.10 I M
20	0	1	0	0	4	8	0	3	4	01:30 PM
26	0	2	3	0	6	9	0	3		01:45 PM
102	0	5	14	0	15	32	0	19	17	Total
38	0	4	6	0	2	8	0	9	9	02:00 PM
27	0	1	2	0	5	5	0	11	3	02·15 PM
24	Ő	2	2	Ő	2	14	ő	7	5	02:20 PM
29	0	2	3	0	3	14	0	12	5	02.30 F M
137	0	9	14	0	14	38	0	40	22	U2:45 PM Total
157	01		14		14	50		40	22	Total
36	0	5	5	0	2	11	0	11	2	03:00 PM
30	0	0	5	0	4	10	0	10	1	03:15 PM
28	0	6	4	0	0	11	0	7	0	03:30 PM
43	0	5	4	0	3	15	0	10	6	03:45 PM
137	0	16	18	0	9	47	0	38	9	Total
	. 1									· · · · · · · · ·
47	0	6	6	0	4	8	0	17	6	04:00 PM
36	0	1	5	0	3	9	0	13	5	04:15 PM
35	0	2	5	0	1	11	0	9	7	04:30 PM
40	0	3	3	0	4	10	0	13	7	04:45 PM
158	0	12	19	Ő	12	38	0	52	25	Total
150	U I	14	19	U	12	50	U	54	45	1 otal

					Groups I	Printed- Cars					
		H	de Park Avenue		H	Iyde Park Avenue			Ukraine Way		
			From North			From South			From West		
	Start Time	Right	Thru	U-Turn	Thru	Left	U-Turn	Right	Left	U-Turn	Int. Total
	05:00 PM	37	180	0	134	65	0	138	46	0	600
	05:15 PM	46	255	0	170	66	0	128	35	0	700
	05:30 PM	39	254	0	154	71	0	144	39	0	701
	05:45 PM	51	236	0	137	80	0	127	36	0	667
	Total	173	925	0	595	282	0	537	156	0	2668
	06:00 PM	42	208	0	121	64	0	111	42	1	589
	06:15 PM	54	199	0	110	58	0	110	33	0	564
	06:30 PM	33	141	0	114	43	0	73	49	0	453
	06:45 PM	53	161	0	86	52	0	91	42	0	485
	Total	182	709	0	431	217	0	385	166	1	2091
Gi	and Total	1629	5975	0	5728	3783	1	4119	1918	6	23159
	Apprch %	21.4	78.6	0	60.2	39.8	0	68.2	31.7	0.1	
	Total %	7	25.8	0	24.7	16.3	0	17.8	8.3	0	

		Hyde Parl	k Avenue			Hyde Parl	c Avenue			Ukrair	ie Way		
Start Time	Pight	Thru	North LLTurn	App. Total	Thru	From	JL Turn	App. Total	Pight	From	U-Turn	App. Total	Int Total
Peak Hour Analysis From	07:00 AM to 0	9:45 AM - P	eak 1 of 1	App. Total	Tinu	Leit	0-1um	App. Total	Right	Lett	0-1um	App. Iotai	Int. Total
Peak Hour for Entire	Intersection	Begins at	07·30 AM										
07·30 AM	31	83	0	114	211	146	0	357	65	44	0	109	580
07:45 AM	27	110	Ő	137	173	132	0	305	73	47	0	120	562
08.00 AM	22	84	Õ	106	165	133	0	298	75	39	0	114	518
08:15 AM	39	108	Ő	147	183	145	Ő	328	70	39	0	109	584
Total Volume	119	385	0	504	732	556	0	1288	283	169	0	452	2244
% App. Total	23.6	76.4	Õ		56.8	43.2	0		62.6	37.4	0		
PHF	.763	.875	.000	.857	.867	.952	.000	.902	.943	.899	.000	.942	.961
Peak Hour Analysis F Peak Hour for Entire 01.00 PM	From 10:00 A Intersection	AM to 01:4 Begins at 77	45 PM - Pe 01:00 PM 0	ak 1 of 1 106	100	55	0	155	73	51	0	124	385
01.15 PM	26	93	Ő	119	98	74	0	172	76	33	1	110	401
01.30 PM	25	118	Ő	143	84	78	Ő	162	57	35	1	93	398
01:45 PM	30	104	Ő	134	104	75	Ő	179	75	40	0	115	428
Total Volume	110	392	0	502	386	282	0	668	281	159	2	442	1612
% App. Total	21.9	78.1	0		57.8	42.2	0		63.6	36	0.5		
PHF	.917	.831	.000	.878	.928	.904	.000	.933	.924	.779	.500	.891	.942
Peak Hour Analysis F Peak Hour for Entire 05:00 PM	From 02:00 I Intersection 37	PM to 06:4 Begins at 180	5 PM - Pea 05:00 PM 0	ık 1 of 1 217	134	65	0	199	138	46	0	184	600
05:15 PM	46	255	0	301	170	66	0	236	128	35	0	163	700
05:30 PM	39	254	0	293	154	71	0	225	144	39	0	183	701
05:45 PM	51	236	0	287	137	80	0	217	127	36	0	163	667
Total Volume	173	925	0	1098	595	282	0	877	537	156	0	693	2668
% App. Total	15.8	84.2	0	-	67.8	32.2	0	_	77.5	22.5	0	_	
PHF	.848	.907	.000	.912	.875	.881	.000	.929	.932	.848	.000	.942	.951

Page No : 2

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 1

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

				Groups Printed	- Heavy Vehicles					
	Hyd	de Park Avenue		H	yde Park Avenue			Ukraine Way		
		From North			From South			From West		
Start Time	Right	Thru	U-Turn	Thru	Left	U-Turn	Right	Left	U-Turn	Int. Total
05:00 PM	5	11	0	5	2	0	4	4	0	31
05:15 PM	5	7	0	4	1	0	1	1	0	19
05:30 PM	3	6	0	7	1	0	5	1	0	23
05:45 PM	2	6	0	5	2	0	0	1	0	16
Total	15	30	0	21	6	0	10	7	0	89
06:00 PM	0	10	0	8	0	0	1	1	0	20
06:15 PM	1	7	0	6	0	0	0	3	0	17
06:30 PM	1	7	0	5	2	0	0	1	0	16
06:45 PM	1	9	0	6	2	0	2	2	0	22
Total	3	33	0	25	4	0	3	7	0	75
Grand Total	161	434	0	443	141	0	181	133	0	1493
Apprch %	27.1	72.9	0	75.9	24.1	0	57.6	42.4	0	
Total %	10.8	29.1	0	29.7	9.4	0	12.1	8.9	0	

		Hyde Park	Avenue			Hyde Park	k Avenue			Ukrain	ie Way		
		From 1	North			From	South			From	West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	0/:00 AM to 0	9:45 AM - Pe	aklotl										
Peak Hour for Entire	Intersection	Begins at (08:00 AM	1		_	_	1	_		_		
08:00 AM	2	12	0	14	21	5	0	26	8	4	0	12	52
08:15 AM	7	13	0	20	10	7	0	17	4	5	0	9	46
08:30 AM	0	11	0	11	13	3	0	16	9	3	0	12	39
08:45 AM	2	8	0	10	10	4	0	14	8	7	0	15	39
Total Volume	11	44	0	55	54	19	0	73	29	19	0	48	176
% App. Total	20	80	0		74	26	0		60.4	39.6	0		
PHF	.393	.846	.000	.688	.643	.679	.000	.702	.806	.679	.000	.800	.846
Peak Hour for Entire	Intersection	Begins at 1	5 PM - Pea 10:00 AM	10	14		0	15	(2	0		41
10:00 AM	6	12	0	18	14	1	0	15	6	2	0	8	41
10:15 AM	2	13	0	15	6	4	0	10	6	5	0	11	36
10:30 AM	2	3	0	5	4	2	0	6	5	3	0	8	19
10:45 AM	2	4	0	6	10	1	0	11	2	6	0	8	25
Total Volume	12	32	0	44	34	8	0	42	19	16	0	35	121
<u>% App. Total</u>	27.3	72.7	0		81	19	0		54.3	45.7	0		
PHF	.500	.615	.000	.611	.607	.500	.000	.700	.792	.667	.000	.795	.738
Peak Hour Analysis F Peak Hour for Entire	From 02:00 I Intersection	PM to 06:4: Begins at (5 PM - Pea)3:45 PM	k 1 of 1									
03:45 PM	6	10	0	16	15	3	0	18	4	5	0	9	43
04:00 PM	6	17	0	23	8	4	0	12	6	6	0	12	47
04:15 PM	5	13	0	18	9	3	0	12	5	1	0	6	36
04:30 PM	7	9	0	16	11	1	0	12	5	2	0	7	35
Total Volume	24	49	0	73	43	11	0	54	20	14	0	34	161
% App. Total	32.9	67.1	0		79.6	20.4	0		58.8	41.2	0		
PHF	.857	.721	.000	.793	.717	.688	.000	.750	.833	.583	.000	.708	.856

			Gr	oups Printed- Peds	and Bicycles					
	Hyde	Park Avenue		- Hvde P	Park Avenue		Ukr	aine Way		
	Tiyde .	M		Tiyde I	Cardle		E.	and way		
	Fr	om North		Fro	om South		Fre	om West		
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total
07.00 AM	0	0	2	1	0	0	0	0	1	4
07.00 ANI	0	0	2	1	0	0	0	0	1	4
07·15 AM	0	0	1	1	0	0	0	0	2	4
07.10 11.1	ž			-	0	č	č	0		
07:30 AM	1	1	1	0	0	1	1	0	5	10
07.45 AM	0	0	0	1	0	1	1	0	7	10
07:45 AM	0	0	8	1	0	1	1	0	/	18
Total	1	1	12	3	0	2	2	0	15	36
Total	1		12	5	0	2	2	0	15	50
08.00 AM	0	2	2	1	1	0	0	0	6	12
08.00 AM	0	2	2	1	1	0	0	0	0	12
08·15 AM	0	0	0	3	1	1	0	0	4	9
00.1571101	0	0	U	5	1	1	0	0	-	
08:30 AM	0	0	1	0	0	0	0	0	0	1
00.45 434	0	0	2	1	1	0	0	0	1	
08:45 AM	0	0		1	1	0	0	0	1	6
Total	0	2	6	5	3	1	0	0	11	28
Total	0	4	0	5	5	1	0	0	11	20
00.00.434	0	0	-	1	1	1	0	0	1	0
09:00 AM	0	0	5	1	1	1	0	0	1	9
00.15 AM	0	0	0	3	1	0	0	0	5	0
07.15 ANI	0	0	0	5	1	0	0	0	5	,
09·30 AM	0	0	2	0	0	1	1	0	1	5
09.80 11.1	0	0	-	ě	0	-	-	0		
09:45 AM	0	0	3	2	0	0	0	0	1	6
Total	0	0	10	6	2	2	1	0	0	20
101a1	0	0	10	0	2	2	1	0	0	29
I		-	- 1	-	-	~ I	~	~	. 1	
10:00 AM	0	0	2	0	0	0	0	0	4	6
10.15 434	0	1	0	0	2	0	0	0	2	~
10:15 AM	0	1	0	0	2	0	0	0	3	0
10·30 AM	0	1	0	1	0	0	0	0	4	6
10.5071101	0	1	U	1	0	0	0	0	-	0
10:45 AM	0	0	1	0	0	0	0	0	3	4
T-4-1	0	2	2	1	2	0	0	0	1.4	22
1 otal	0	2	3	1	2	0	0	0	14	22
						. 1			. 1	
11:00 AM	0	0	2	1	0	1	0	0	1	5
11.15.136	0	0	0	0	0	0	0	0	~	
11:15 AM	0	0	0	0	0	0	0	0	5	5
11.20 AM	0	0	0	1	2	0	0	0	4	7
11.50 AW	0	0	0	1	2	0	0	0	4	/
11:45 AM	0	2	3	1	0	0	0	0	1	7
TH IS THAT	0	2	-	2	0	1	0	0	11	21
Total	0	2	5	3	2	1	0	0	11	24
						1			1	
12:00 PM	0	0	1	2	0	0	0	0	1	4
12.00 11.1			-	-					-	
12:15 PM	0	1	2	1	0	0	0	0	3	7
12.20 DM	0	0	2	0	0	0	0	0	2	(
12.30 PIVI	0	0	5	0	0	0	0	0	5	0
12.45 PM	0	0	7	0	0	0	0	0	5	12
12.451111	0	0	/	0	0	0	0	0		12
Total	0	1	13	3	0	0	0	0	12	29
01.00 PM	0	0	2	1	0	0	0	0	0	3
01.001.01	0	0	-	1	0	U	0	0	U	5
01:15 PM	0	1	3	0	0	1	1	0	4	10
01.20 DM	0	0	0	2	0	0	2	0	2	0
01:30 PM	0	0	0	5	0	U	2	0	5	8
01·45 PM	0	0	0	1	0	0	0	0	7	8
UI.+51 MI				-			-			
Total	0	1	5	5	0	1	3	0	14	29
						1				
02:00 PM	0	0	1	1	0	1	0	0	8	11
02.001111	~			-	~		-	~	ž	
02:15 PM	0	1	3	0	0	0	1	0	1	6
02.20 DM	0	Ο	1	1	1	1	1	1	7	12
02.30 F WI	0	0	1	1	1	1	1	1	/	15
02·45 PM	0	0	0	1	0	0	0	1	1	3
021101111	0						ő		17	
Total	0	1	5	3	1	2	2	2	17	- 33
									,	
03·00 PM	0	1	0	0	0	3	0	0	6	10
02.001101	~	:	ž	~	-	~		~	ž	10
03:15 PM	0	1	1	2	1	0	1	0	3	9
02.20 DM	0	0	0	0	0	0	0	0	2	2
05:50 PM	0	0	0	0	0	U	0	0	3	5
03·45 PM	2	2	0	1	0	1	0	1	2	Q
U	-	<u> </u>		-						7
Total	2	4	1	3	1	4	1	1	14	31
- 5444	-			-	-		-	-		
									,	
04.00 PM	0	Ο	3	0	Ο	0	1	Ο	2	6
07.00 I WI		-		0	0	U I	1	0	<i>±</i>	0
04:15 PM	0	2	1	1	0	1	1	0	4	10
04.20 PM	0	0		-	0		-	0		
04:30 PM	0	0	0	0	0	0	0	0	4	4
04-45 DM	0	1	0	2	Ο	0	0	0	5	0
04.45 f M	U	1	0	2	0	U	0	0	3	8
Total	0	3	4	3	0	1	2	0	15	2.8
1.5441	0	5		5	0	- 1	-		10	20

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 1

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

		Hyde Par	k Avenue			Hyde Par	k Avenue			Ukrair	ne Way		
		From	North			From	South			From	West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to 0	9:45 AM - P	eak 1 of 1										
Peak Hour for Entire	Intersection	Begins at	07:30 AM										
07:30 AM	36	89	0	125	220	150	0	370	68	48	0	116	611
07:45 AM	29	115	0	144	189	142	0	331	75	50	0	125	600
08:00 AM	24	96	0	120	186	138	0	324	83	43	0	126	570
08:15 AM	46	121	0	167	193	152	0	345	74	44	0	118	630
Total Volume	135	421	0	556	788	582	0	1370	300	185	0	485	2411
% App. Total	24.3	75.7	0		57.5	42.5	0		61.9	38.1	0		
PHF	.734	.870	.000	.832	.895	.957	.000	.926	.904	.925	.000	.962	.957
Cars	119	385	0	504	732	556	0	1288	283	169	0	452	2244
% Cars	88.1	91.4	0	90.6	92.9	95.5	0	94.0	94.3	91.4	0	93.2	93.1
Heavy Vehicles	16	36	0	52	56	26	0	82	17	16	0	33	167
% Heavy Vehicles	11.9	8.6	0	9.4	7.1	4.5	0	6.0	5.7	8.6	0	6.8	6.9

Total 1127 75

Out 675 42 717

Groups Printed- Peds and Bicycles Hyde Park Avenue Hyde Park Avenue Ukraine Way From North From South From West Int. Total 9 Start Time 05:00 PM Right Thru Peds Thru Left Peds Right Left Peds 0 0 2 0 0 0 3 - 1 05:15 PM 14 25 0 2 4 0 2 1 05:30 PM 0 0 0 0 0 0 4 6 05:45 PM 5 0 8 0 0 1 26 48 Total 6 0 6 2 2 4 1 5 5 06:00 PM 3 0 1 13 0 0 0 14 7 06:15 PM 5 0 2 0 0 2 0 0 06:30 PM 0 2 0 2 0 1 0 06:45 PM 7 0 0 0 3 14 41 10 Total 0 0 6 6 3 2 0 80 72.7 21.2 378 171 Grand Total 27 44 13 21 14 3 5 24.5 7.1 7.4 3.7 Apprch % 2.7 56.4 16.7 26.9 2.6 90 Total % 0.8 11.6 3.4 5.6 1.3 45.2

		Hyde Park	Avenue			Hyde Park	Avenue			Ukraine	e Way		
		From 1	North			From S	outh			From '	West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to 0	9:45 AM - Pe	ak 1 of 1										
Peak Hour for Entire	Intersection	Begins at (07:30 AM										
07:30 AM	1	1	1	3	0	0	1	1	1	0	5	6	10
07:45 AM	0	0	8	8	1	0	1	2	1	0	7	8	18
08:00 AM	0	2	2	4	1	1	0	2	0	0	6	6	12
08:15 AM	0	0	0	0	3	1	1	5	0	0	4	4	9
Total Volume	1	3	11	15	5	2	3	10	2	0	22	24	49
% App. Total	6.7	20	73.3		50	20	30		8.3	0	91.7		
PHF	.250	.375	.344	.469	.417	.500	.750	.500	.500	.000	.786	.750	.681
Peak Hour Analysis F	From 10:00 A	AM to 01:4	5 PM - Pe	ak 1 of 1									
Peak Hour for Entire	Intersection	Begins at 1	2:45 PM										

ł	Peak Hour for Entire 1	Intersection	Begins at	12:45 PM										
	12:45 PM	0	0	7	7	0	0	0	0	0	0	5	5	12
	01:00 PM	0	0	2	2	1	0	0	1	0	0	0	0	3
	01:15 PM	0	1	3	4	0	0	1	1	1	0	4	5	10
	01:30 PM	0	0	0	0	3	0	0	3	2	0	3	5	8
	Total Volume	0	1	12	13	4	0	1	5	3	0	12	15	33
_	% App. Total	0	7.7	92.3		80	0	20		20	0	80		
	PHF	.000	.250	.429	.464	.333	.000	.250	.417	.375	.000	.600	.750	.688

Peak Hour Analysis From 02:00 PM to 06:45 PM - Peak 1 of 1

Peak Hour for Entire	Intersection .	Begins at ()5:15 PM										
05:15 PM	0	1	2	3	4	0	1	5	1	2	14	17	25
05:30 PM	0	1	0	1	1	0	0	1	0	0	4	4	6
05:45 PM	0	1	1	2	1	0	0	1	0	0	5	5	8
06:00 PM	0	3	3	6	1	0	1	2	0	0	5	5	13
Total Volume	0	6	6	12	7	0	2	9	1	2	28	31	52
% App. Total	0	50	50		77.8	0	22.2		3.2	6.5	90.3		
PHF	.000	.500	.500	.500	.438	.000	.500	.450	.250	.250	.500	.456	.520

File Name	: 122784 H
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	:1

Peak Hour Data
N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

File Name : 122784 H Site Code : 127-3946 Start Date : 2/28/2012 Page No : 2

N/S: Hyde Park Avenue W: Ukraine Way City, State: Jamaica Plain, MA Client: Tetra Tech Rizzo/ N. Brackett

		Hyde Par	k Avenue			Hyde Par	k Avenue			Ukrair	ne Way		
		From	North			From	South			From	West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	02:00 PM to 0	6:45 PM - Pe	eak 1 of 1										
Peak Hour for Entire	Intersection	Begins at	05:00 PM										
05:00 PM	42	191	0	233	139	67	0	206	142	50	0	192	631
05:15 PM	51	262	0	313	174	67	0	241	129	36	0	165	719
05:30 PM	42	260	0	302	161	72	0	233	149	40	0	189	724
05:45 PM	53	242	0	295	142	82	0	224	127	37	0	164	683
Total Volume	188	955	0	1143	616	288	0	904	547	163	0	710	2757
% App. Total	16.4	83.6	0		68.1	31.9	0		77	23	0		
PHF	.887	.911	.000	.913	.885	.878	.000	.938	.918	.815	.000	.924	.952
Cars	173	925	0	1098	595	282	0	877	537	156	0	693	2668
% Cars	92.0	96.9	0	96.1	96.6	97.9	0	97.0	98.2	95.7	0	97.6	96.8
Heavy Vehicles	15	30	0	45	21	6	0	27	10	7	0	17	89
% Heavy Vehicles	8.0	3.1	0	3.9	3.4	2.1	0	3.0	1.8	4.3	0	2.4	3.2

		Hyde Parl From	Avenue North			Hyde Park From	Avenue South			Ukrain	e Way West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From	10:00 AM to 0	1:45 PM - Pe	ak 1 of 1						0.1				
Peak Hour for Entire	Intersection	Begins at	01:00 PM										
01:00 PM	33	83	0	116	109	57	0	166	75	51	0	126	408
01:15 PM	32	100	0	132	104	77	0	181	79	35	1	115	428
01:30 PM	29	121	0	150	92	82	0	174	63	36	1	100	424
01:45 PM	33	107	0	140	113	81	0	194	78	42	0	120	454
Total Volume	127	411	0	538	418	297	0	715	295	164	2	461	1714
% App. Total	23.6	76.4	0		58.5	41.5	0		64	35.6	0.4		
PHF	.962	.849	.000	.897	.925	.905	.000	.921	.934	.804	.500	.915	.944
Cars	110	392	0	502	386	282	0	668	281	159	2	442	1612
% Cars	86.6	95.4	0	93.3	92.3	94.9	0	93.4	95.3	97.0	100	95.9	94.0
Heavy Vehicles	17	19	0	36	32	15	0	47	14	5	0	19	102
% Heavy Vehicles	13.4	4.6	0	6.7	7.7	5.1	0	6.6	4.7	3.0	0	4.1	6.0

File Name	: 122784 H
Site Code	: 127-3946
Start Date	: 2/28/2012
Page No	: 3

Peak Hour Data

			Vehicula	ar Trip Generation		Conversion to	Person Trips				Mode	Share Split			Vehi	cular Trips	
L and Lise Size	Un Category Veh	adjusted I licle Trips	Internal trips	Pass-bv % Pass-Bv Tric	Less capture trips	Assumed national vehicle occupancy rate ¹	Converted to New Person trips	Transit Share ²	Transit Trips C	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Vehicle Share ²	Total Vehicle Pass-By vehicle Person Trips Share	Total Vehicle Pass-By Person Trips	Assumed local auto occupancy rate for autos ³	Total Adjusted /	Total Adjusted Auto Trips [Pass-Bv)
Daily	Ň																
Apartment ⁴ 76	Total	584			584	1.13	660		164		86		410		1.13	362	
Units	Ē	292			292	1.13	330	25%	82	13%	43	62%	205		1.13	181	
	Out	292			292	1.13	330	25%	82	13%	43	62%	205		1.13	181	
Condominium ⁵ 48	Total	340			340	1.13	384		96		50		238		1.13	211	
Units	Ē	170			170	1.13	192	25%	48	13%	25	62%	119		1.13	106	
	Out	170			170	1.13	192	25%	48	13%	25	62%	119		1.13	105	
Retai ^p	Total	68			68	1.78	122		28		20		74	0	1.78	42	0
KSF	<u>د</u>	34			8	1.78	61	23%	14	16%	9	61%	37	0	1.78	21	0
	Out	34			34	1.78	61	23%	14	16%	10	61%	37	0	1.78	21	0
Total	Total								288		156		722	0		615	0
	<u> </u>								144		82		361	0 0		308	• •
	In								144		8/		100	-		307	-
AM Peak Hour																	
Apartment ⁴ 76	Total	41			41	1.13	46		18		9		21		1.13	19	
Units	LI LI	8			8	1.13	6	26%	2	18%	2	56%	D.		1.13	4	
	Out	33			33	1.13	37	44%	16	12%	4	44%	16		1.13	15	
Condominium ⁵ 48	Total	29			29	1.13	33		13		4		15		1.13	14	
Units	LI LI	£			2	1.13	9	26%	-	18%	-	56%	3		1.13	3	
	Out	24			24	1.13	27	44%	12	12%	3	44%	12		1.13	11	
Retaif 1.6	Total	2			2	1.78	4		٠		0		2	0	1.78	-	0
KSF	LI LI	+			-	1.78	2	26%	0	20%	0	54%	1	0	1.78	-	0
	Out	1			+	1.78	2	42%	-	13%	0	45%	1	0	1.78	0	0
Total	Total	43							32		10		38	0		34	0
	ц.	6							3		e		6	0		8	0
	Out	34							29		8		29	0		26	•
PM Peak Hour																	
Apartment ⁴ 76	Total	59			59	1.13	59		21		8		29		1.13	26	
Units	Ē	38			38	1.13	35	44%	15	12%	4	44%	15		1.13	14	
	Out	21			21	1.13	24	26%	9	18%	4	56%	13		1.13	12	
Condominium ⁵ 48	Total	33			33	1.13	37		14		2		18		1.13	16	
Units	L.	22			22	1.13	25	44%	11	12%	e	44%	11		1.13	10	
	Out	11			11	1.13	12	26%	3	18%	2	56%	7		1.13	9	
Retail ⁶ 1.6	Total	9			9	1.78	10		4		2		5	0	1.78	3	0
KSF	LI LI	3			е	1.78	5	42%	2	13%	٢	45%	2	0	1.78	-	0
	Out	3			3	1.78	5	26%	2	20%	٢	54%	3	0	1.78	2	0
Total	Total								39		15		52	0		45	0
	LI LI								28		8		29	0		25	0
	Out								11		8		23	0		20	0
Summary																	
Net Trips Total																	
Net Trips In																	
Net Trips Out							1										1

Parcel U Trip Generation Assessm

TRIP GENERATION CALCULATIONS

 2.009 National vehicle occupancy rates - 1.1.3.thome to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational 2. Mode shares based on peak-hour BTD Data for Area 6.

Incode strates based on peak-hour bit bata for mea o.
 1 ocal vehicle occursancy rates based on 2009 National vehicle or

ITE Trip Generation Rate, 9th Edition, LUC 220 (Residential), Equation

TE Trip Generation Rate, 9th Edition, LUC 230 (Residential Condominium/Townhouse), E

Trin Generation, 9th Edition, 111C 820 (Shonning Center), Average Rate

INTERSECTION CAPACITY ANALYSIS WORKSHEETS

Lanes, Volumes, Timings 1: Ukraine Way & Washington

Ukraine Way & W	/ashingte	on St						
	•	•	Ť	1	*	ŧ		
ne Group	WBL	WBR	NBT	NBR	SBL	SBT	ø2	
eal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ne Width (ft)	13	13	10	10	11	11		
ading Detector (ft)	4.0	4.0	4.0	4.0	4.0	4.0		
ailing Detector (ft)	0	0	0	_	0	0		
Irning Speed (mph)	15	9	0.95	0.95	15	1.00		
t	1.00	0.850	0.953	0.00	1.00	1.00		
Protected	0.950		0000	0	0.950	4000		
Permitted	0.950	1444	2608	0	0.160	1366		
atd. Flow (perm)	1526	1444	2608	0	250	1366		
ght Turn on Red		Yes 611	56	Yes				
adway Factor	1.10	1.10	1.25	1.25	1.19	1.19		
nk Speed (mph)	30		30			30		
nk Distance (tt)	293		20.1			388		
plume (vph)	142	562	444	197	273	250		
ak Hour Factor	0.79	0.90	0.92	0.89	0.90	0.86		
di. Flow (vph)	180	4% 624	483	221	303	21%		
ne Group Flow (vph)	180	624	704	0	303	291		
Im Type	2	pt+ov	1		D.P+P	1 /	2	
ermitted Phases	5	54			1	14	2	
etector Phases	3	34	1		4	14		
nimum Initial (s)	8.0		10.0		8.0		4.0	
tal Split (s)	34.0	62.0	29.0	0.0	28.0	57.0	29.0	
tal Split (%)	28.3%	51.7%	24.2%	0.0%	23.3%	47.5%	24%	
aximum Green (s)	29.0		23.0		23.0		27.0	
-Red Time (s)	2.0		3.0		2.0		0.0	
ad/Lag	Lead		Lead		Lag		Lag	
ad-Lag Optimize?	2.0		2.0		2.0		2.0	
ecall Mode	None		C-Max		None		None	
alk Time (s)							7.0	
destrian Calls (#/hr)							20.0	
t Effct Green (s)	20.7	47.7	41.1		64.1	68.1		
tuated g/C Ratio	0.17	0.40	0.34		0.53	0.57		
ontrol Delav	64.5	6.4	41.9		51.1	19.1		
ueue Delay	0.4	9.3	0.4		0.2	0.0		
otal Delay	64.9	15.7	42.3		51.3	19.1		
proach Delay	26.7	D	42.3		U	35.6		
proach LOS	С		D			D		
th %ile Green (s)	28.9 Gan		23.1 Coord		23.0 Max		27.0 Ped	
th %ile Green (s)	21.7		30.3		23.0		27.0	
th %ile Term Code	Gap		Coord		Max		Ped	
th %ile Term Code	Gap		Coord		Z3.0 Max		Ped	
th %ile Green (s)	17.7		34.3		23.0		27.0	
th %ile Term Code	Gap		Coord 73.8		Max		Ped	
th %ile Term Code	Gap		Coord		Gap		Skip	
ops (vph)	118	114	457		175	134		
D Emissions (g/hr)	199	185	14		324	173		
Dx Emissions (g/hr)	39	36	196		63	34		
DC Emissions (g/hr)	46	43	233		75	40		
Jeue Length 50th (ft)	130	86	251		190	129		
ueue Length 95th (ft)	m116	m131	#454		#319	184		
ernal Link Dist (ft)	213		1202			308		
ase Capacity (vph)	382	944	931		381	775		
arvation Cap Reductr	n 35	286	0		0	0		
orage Cap Reductn	0	0	37		3	0		
educed v/c Ratio	0.52	0.95	0.79		0.80	0.38		
ersection Summary								
ea Type:	CBD							
cle Length: 120	120							
fset: 20 (17%), Refer	enced to p	hase 1:	NBSB, S	Start of 0	Green			
atural Cycle: 85	· · ·							
ontrol Type: Actuated- aximum v/c Ratio: 0.8	Coordinat	ted						
ersection Signal Dela	y: 34.4			-	ntersecti	ion LOS:	С	
ersection Capacity U	tilization 6	6.0%		1	CU Leve	el of Serv	vice C	
95th percentile volu	o me excee	ds capa	city, que	eue mav	be longe	er.		
Queue shown is max	kimum afte	er two cy	cles.		onge			
Volume for 95th pe	rcentile qu	ueue is r	netered	by upstr	ream sig	nal.		
lits and Phases: 1	Ukraine \	Nav & V	Vashina	ton St				
	¥1	-, ~ 1		>			N.	
I VI	29 s		34	ະ ø <u>ປ</u> ເ			▼ 04 28 s	

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\EXAM.sy7 HSH Associates 13083::Parcel U Existing AM Peak Hour

Lanes, Volumes, Tin 2: Ukraine Way & Hy	nings /de Par	k Ave					
	,uo rai ∳	~ ~		*	1	2	
	-	•		NDT	+	-	~
Lane Configurations	EBL	EBK	NBL		<u>−581</u> †1≽	SBK	ØZ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	13	13	11	5.0	11	11	
Leading Detector (ft)	20	20	4.0	5.0 100	5.0 100	4.0	
Trailing Detector (ft)	0	0	0	0	0		
Turning Speed (mph)	15	9	15			9	
Lane Util. Factor	1.00	1.00	0.95	0.95	0.95	0.95	
Frt Fit Desta start	0.050	0.850		0.000	0.959		
Satd Flow (prot)	1584	1417	0	2938	2707	0	
Flt Permitted	0.950			0.645			
Satd. Flow (perm)	1584	1417	0	1933	2707	0	
Right Turn on Red		Yes				Yes	
Satd. Flow (RTOR)	4.40	328	4.40	4.40	38	4.40	
Link Speed (mph)	30	1.10	1.19	30	30	1.19	
Link Distance (ft)	293			828	489		
Travel Time (s)	6.7			18.8	11.1		
Volume (vph)	188	282	565	796	412	139	
Peak Hour Factor	0.94	0.86	0.93	0.90	0.90	0.80	
Heavy Vehicles (%)	6%	6%	3%	6%	11%	12%	
Auj. Flow (vph)	200	328	808	584 1492	458	1/4	
Turn Type	200	pt+ov	D.P+P	1432	0.02	0	
Protected Phases	3	34	4	14	1		2
Permitted Phases			1				
Detector Phases	3	34	4	14	1		
Minimum Initial (s)	8.0		8.0		10.0		7.0
Minimum Split (s)	14.0	74.0	14.0	70.0	17.0	0.0	26.0
Total Split (S)	24.0	74.0 61.7%	5U.U 41 7%	70.0	20.0	0.0	20.0
Maximum Green (s)	18.0	01.770	44.0	30.378	14.0	0.070	24.0
Yellow Time (s)	3.0		3.0		3.0		2.0
All-Red Time (s)	3.0		3.0		3.0		0.0
Lead/Lag	Lead		Lag		Lead		Lag
Lead-Lag Optimize?							
Vehicle Extension (s)	2.0		2.0		2.0		3.0
Recall Mode	None		None		C-Max		None
Flash Dont Walk (s)							17.0
Pedestrian Calls (#/br)							20
Act Effct Green (s)	17.8	67.8		76.8	31.8		
Actuated g/C Ratio	0.15	0.56		0.64	0.26		
v/c Ratio	0.85	0.35		0.92	0.85		
Control Delay	65.6	11.8		21.0	52.3		
Total Delay	67.8	2.9		21.0	52.3		
LOS	57.5 E	.ч./		C	D		
Approach Delay	34.8			21.0	52.3		
Approach LOS	С			С	D		
90th %ile Green (s)	18.0		44.0		14.0		24.0
90th %ile Ferm Code	Max		Max		Coord		Ped
70th %ile Term Code	18.0 May		44.0 Max		14.0		24.0 Pod
50th %ile Green (s)	18.0		44.0		40.0		0.0
50th %ile Term Code	Max		Max		Coord		Skip
30th %ile Green (s)	17.4		44.0		40.6		0.0
30th %ile Term Code	Gap		Max		Coord		Skip
10th %ile Green (s)	12.6		44.0		45.4		0.0
Stops (yph)	470	146	Max	1022	207		экір
Fuel Used(gal)	179	140		20	10		
CO Emissions (a/hr)	275	149		1416	683		
NOx Emissions (g/hr)	53	29		275	133		
VOC Emissions (g/hr)	64	35		328	158		
Dilemma Vehicles (#)	0	0		0	0		
Queue Length 50th (ft)	167	66		580	205		
Queue Length 95th (ft)	m#213	m182		#703	#489		
Turn Bay Length (ft)	213			746	409		
Base Capacity (vph)	251	935		1614	745		
Starvation Cap Reductn	11	486		0	0		
Spillback Cap Reductn	0	0		0	0		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.83	0.73		0.92	0.85		
Intersection Summary							
Area Type:	CBD						
Cycle Length: 120							
Actuated Cycle Length:	120						
Offset: 10 (8%), Referen	iced to pl	nase 1:N	IBSB, St	art of G	reen		
Natural Cycle: 150	Coordin	tod					
Maximum v/c Ratio: 0.00	oordina	iea					
Intersection Signal Delay	: 31.2				ntersectiv	on LOS.	С
Intersection Capacity Uti	lization 8	34.3%			CU Leve	of Serv	ce E
Analysis Period (min) 15							
# 95th percentile volum	ne excee	ds capa	city, que	ue may	be longe	r.	
Queue shown is max	imum aft	er two c	ycles.				
m Volume for 95th per	centile qu	ueue is r	netered	by upstr	ream sigr	ial.	
Colito and Dharasa	Horeira	Mov. 0 •	lude Di	k A			
opins and P∩ases: 2:	okraine	vvay & F	iyde Par	K AVE			

₩ σ1 /£k σ2 ≪ σ3 ₩ σ4 20 σ 26 σ 24 σ 50 σ

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\EXAM.sy7 HSH Associates Syncrho 6 Report Page 2

ne Group ne Configurations ne Configurations ne Configurations ne Configurations ne Valth (i) 10 10 10 10 10 10 11 00 10 10 10 10 10 11 00 10 10 10 10 11 00 11 00 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 100 200 2	ne Group WeL WER NET NER SEL SET e2 ne Conjuguations N n		4	۲	t	*	1	ŧ	
ne Configurations networks in the configuration is not set of the	ne Configurations	ane Group	WBL	WBR	NBT	NBR	SBL	SBT	ø2
new Weth 100 100 <	ne Widh (f)) in 100 in 111 in 100 in 100 in 100 in 100 in 111 in 100 in	ane Configurations	1900	1900	1900	1000	1900	1900	
orage Langth (f) orage Langth (f) tal Lost Time (s) tal Lost Time Time Time Time Time Time Time Time	prage Langth (f) 0 0 0 200 tal Lost Time (s) 5.0 4.0 5.0 5.0 100 tal Lost Time (s) 5.0 4.0 5.0 5.0 100 aling Detector (t) 100 0 0 0 0 0 ming Speed (mph) 15 9 9 15 150	ane Width (ft)	10	10	10	10	10	11	
orage Lanes 1 1 1 0 0 1 initial Lost Time (s) 5.0 4.0 5.0 5.0 ading Detector (t) 20 20 100 20 100 initing Speed (mph) 15 9 9 9 15 initial Detector (t) 0 0 0 0 0 0 initing Speed (mph) 15 9 0 9 15 initial Detector (t) 0 0 0 0 0 0 0 initing Speed (mph) 15 9 0 9 15 initial Detector (t) 0 0 0 0 0 0 0 initing Speed (mph) 15 9 0 9 15 initial Detector (t) 0 0 0 0 0 0 0 initial Speed (mph) 15 9 0 9 15 initial Detector (t) 0 0 0 0 0 0 0 initial Speed (mph) 15 9 0 0 0 initial Speed (mph) 15 0 0 initial Speed (mph) 15 0 0 initial Speed (mph) 125 1197 2928 0 1501 2908 initial Speed (mph) 30 30 30 1501 2908 initial Speed (mph) 30 30 30 150 initial Speed (mph) 22 358 1003 26 188 506 initial Speed (mph) 22 358 1003 26 188 506 initial Speed (mph) 22 358 1003 26 188 506 initial Speed (mph) 22 358 1003 26 188 506 initial Speed (mph) 28 421 1127 36 288 569 initial Speed (mph) 20 53 34 50 0.00 28.0 73.0 22.0 114 Speed (mph) 20 53 34 50 0.00 28.0 73.0 22.0 114 Speed (mph) 20 53 34 50 0.00 28.0 73.0 22.0 114 Speed (mph) 20 53 34 50 0.00 28.0 73.0 22.0 114 Speed (mph) 20 50 53 0 0.0 28.0 73.0 22.0 114 Speed (mph) 20 50 53 0 0.0 28.0 73	strage Lanes 1 1 0 1 ading Detector (t) 20 20 100 20 100 ading Detector (t) 0 0 0 0 0 0 ming Speed (mph) 15 9 9 15 0	torage Length (ft)	0	0		0	200		
lan Los nine (s) lang Detector (h) aling De	at bots To To To To To at bots 1.00 1.00 0 0 0 0 0 ming Spector 0.100 0.95 0.95 1.00 0.95 ne Usi. Factor 1.00 1.00 0.95 0.950 0.950 dt. Flow (prot) 1.252 1197 292.8 0 1.501 290.8 protected 0.950 0.950 0.950 0.950 0.950 dt. Flow (prot) 1.252 1197 292.8 0 1.501 290.8 adway Factor 1.42 1.42 1.42 1.25 1.19 3.0	torage Lanes	5.0	1	5.0	0	5.0	5.0	
aling Detector (n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alling Detector (h) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eading Detector (ft)	20	20	100	4.0	20	100	
ming Speed (mph) 15 9 9 9 15 1 00 0.95 0.95 1.00 0.95 1 0.850 0.995 1 00 0.95 1 2908 1 501 2908	ming Speed (mph) 15 9 9 9 15 0.850 0.995 Protected 0.950 0.95 1.00 0.95 1.00 0.95 Protected 0.950 0.950 0.950 0.950 1.00 0.95 Protected 0.950 0.950 0.950 0.950 1.25 10.9 0.512 2908 9.40 0.950 0.950 1.42 1.25 1.25 1.25 1.25 1.25 1.19 4.5 paced (mph) 30 30 26 188 506 3.4 Hour Factor 0.79 0.85 0.89 0.72 0.63 0.39 ary Vehicles (%) 9% 2% 3% 4% 1% 8% fring (%hr) 0 0 1.500 Flow (vph) 28 421 1127 36 288 569 m Type p theov Protor 1.42 1.1127 3.6 288 569 m Type p theov Protor 1.42 1.1127 3.6 288 569 1.500 4.00 4.0 7.30 22.0 1.48 0.100 4.0 7.30 22.0 1.48 0.100 4.0 7.30 22.0 1.400 2.0 2.3% 60.8% 18% withing (%hr) 2.0 3.4 4.2% 37.5% 0.0% 2.3.% 60.8% 18% withing (%hr) 2.0 4.0 4.0 7.30 22.0 1.45 0.10 1.0 1.0 0.00 4.0 7.0 22.0 1.45 0.10 1.0 1.0 0.00 4.0 7.0 22.0 1.45 0.10 1.0 1.0 0.00 4.0 7.0 22.0 1.45 0.01 0.2.0 4.0 0.7 0.00 0.0 1.00 0.00 0.0 0.0 0.0 0.0 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.00 0.0 1.00 0.0 1	railing Detector (ft)	0	0	0		0	0	
Internation Into	ne Uii. num nu	urning Speed (mph)	15	9	0.05	9	15	0.05	
Protected 0.950 1000 0.950 Permited 0.950 197 2928 0 1501 2908 Permited 0.950 1501 2908 yes yes dt Flow (PTOR) 371 3 30 30 30 30 kit Spead (mph) 30 25 1.09 18.8 506 avel Time (s) 2.5 10.9 18.8 506 avel Time (s) 2.5 10.9 18.8 506 intme (vph) 28 38 4% 1% 8% intres (s) 0.79 28.569 9 77 36 298 569 introm Indiad (s) 8.0 10.0 4.0 7.0 22.0 1142 14 14 14 2 introm Namited (s) 8.0 10.0 4.0 7.0 22.0 1143 14.0 14.0 14.0 14.1 14 14 14 14 14 14 14.	Protected 0.950 0.050 0.950 Permited 0.950 0.950 0.950 Mark Flaw (Part) 1.252 1.197 2228 0 1501 2208 Permited 0.950 0.1501 2208 1.501 2208 Mark Flaw (RTOR) 30 30 30 30 30 Mark Space (mpn) 30 25 1.85 506 1.88 506 Ak Hour Factor 0.73 0.85 0.90 2.8 569 minum (nin) 20 288 569 minum (nin) 290 220 1.125 1.25 1.19 200	ane Util. Factor	1.00	0.850	0.95	0.95	1.00	0.95	
did Flow (prot) 1252 1197 2928 0 1501 2908 ndid Flow (perm) 1252 1197 2928 0 1501 2908 ndid Flow (perm) 1252 1197 2928 0 1501 2908 ndid Flow (PTOR) 371 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 1 4 3 3 4 3 3 4 1 4 3 3 4 1 4 1 4 2 5 6 9 9 7 0 5 6 9 9 7 0 3 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 <t< td=""><td>d. Flow (prot) 1252 1197 2928 0 1501 2908 d. Flow (perm) 1252 1197 2928 0 1501 2908 th Veron Red Yes Yes 122 125 125 125 125 119 k Speed (mph) 30 30 30 88 506 30 30 k bibstance (r) 111 142 125 125 126 30 88 wel Time (s) 2.5 10.9 88 506 98 99 94 94 116 98 569 97 98 569 97 98 99 99 94 97 98 569 98 98 99 97 98 569 97 98 569 98 98 97 97 98 569 98 98 97 90 220 130 4.0 4.0 2.0 140 14 2 97 120</td><td>It Protected</td><td>0.950</td><td></td><td></td><td></td><td>0.950</td><td></td><td></td></t<>	d. Flow (prot) 1252 1197 2928 0 1501 2908 d. Flow (perm) 1252 1197 2928 0 1501 2908 th Veron Red Yes Yes 122 125 125 125 125 119 k Speed (mph) 30 30 30 88 506 30 30 k bibstance (r) 111 142 125 125 126 30 88 wel Time (s) 2.5 10.9 88 506 98 99 94 94 116 98 569 97 98 569 97 98 99 99 94 97 98 569 98 98 99 97 98 569 97 98 569 98 98 97 97 98 569 98 98 97 90 220 130 4.0 4.0 2.0 140 14 2 97 120	It Protected	0.950				0.950		
Permitted 0.550 0.501 2080 id. Flow (RDR) 132 1197 2928 0 1501 2908 pht Turn on Red Yes Yes Yes Yes Yes Yes id. Flow (RDR) 30 30 30 30 Xes Yes	Partinities 0.350 0.350 0.350 AF Flow (Perm) 1252 1197 2928 0 1501 2908 Af Flow (RTOR) 371 3 3 3 3 3 adway Frator 1.42 1.42 1.25 1.25 1.19 k k Speed (mph) 30 30 30 30 30 k Distance (tt) 111 478 828 344 188 506 aky Vehicles (%) 9% 2% 3% 4% 1% 8% rtring (thr) 0 0 iring (thr) 0 0 12 1127 36 286 569 1 14 1	atd. Flow (prot)	1252	1197	2928	0	1501	2908	
ph Tum on Red Li Flow (RTOR) aadway Factor Li Flow (RTOR) 30 aadway Factor Li Flow (RTOR) 30 30 30 30 30 30 30 30 30 30	Turn on Rad Yes Yes id Flaw (TCOR) 371 3 adway Factor 1.42 1.42 1.25 1.25 1.15 ik Speed (mph) 30 30 30 80 wel Time (s) 2.5 10.9 18.8 506 ak Hour Factor 0.79 0.85 0.89 0.72 0.63 0.99 ring (hr) 0 0 7 36 298 569 11 intum (vph) 28 421 1127 36 298 569 intum Initial (s) 8.0 10.0 4.0 7.0 22.0 intum Initial (s) 8.0 10.0 4.0 7.0 22.0 ital Split (s) 12.0 1.0 1.0 20.0 23.0 3.0 ital Split (s) 12.0 4.0 4.0 7.0 22.0 ital Split (s) 12.0 4.0 7.0 22.0 3.0 3.0 ital Split (s) 20.0	atd. Flow (perm)	0.950	1197	2928	0	1501	2908	
Id. Flow (RTOR) 371 3 adeway Factor 1.42 1.42 1.25 1.25 1.25 1.15 wh Speed (mph) 30 30 30 30 30 hume (vph) 2.5 10.9 18.8 506 avel Time (s) 2.5 58 1003 25 88 506 avel Time (s) 2.5 58 1003 25 88 506 avel Time (s) 2.4 1127 36 298 569 mm ind Flow (vph) 2.8 421 1183 0 298 569 mm inimum Split (s) 1.3.0 1.5.0 9.0 22.0 1.3.3 60.8% 18% aximum Green (s) 2.0.0 44.0 4.0 2	did Flow (RTOR) 371 3 adway Factor 1.42 1.42 1.25	Right Turn on Red	1202	Yes	2020	Yes	1001	2000	
adway Factor 1.42 1.42 1.25 1.25 1.25 1.25 1.19 kk Speed (mph) 30 30 30 kk Distance (t) 111 478 8228 aver Vine(s) 2.5 10.9 18.8 hume (vph) 22 358 1003 26 188 506 aver Vichicles (%) 9% 2% 3% 4% 1% 8% wring (#/h) 0 0 g. Flow (vph) 28 421 1127 36 298 569 ne Group Flow (vph) 28 421 1163 0 298 569 ne Group Flow (vph) 28 421 1163 0 298 569 ne Group Flow (vph) 28 421 1163 0 298 569 ne Group Flow (vph) 28 421 1163 0 298 569 ne Group Flow (vph) 28 421 1163 0 298 569 ne Group Flow (vph) 28 421 1163 0 298 569 minum initial s) 8.0 10.0 4.0 7.0 nimum Split (s) 13.0 15.0 9.0 22.0 tal Split (s) 25.0 3.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 25.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 20.0 40.0 23.0 22.0 ad-Lag Optimize? which Extension (s) 2.0 2.0 3.0 3.0 ad-Lag Optimize? ad-Lag Optimize? which Extension (s) 2.0 2.0 3.0 3.0 ad-Lag Optimize? bick Extension (s) 2.0 4.0.47 0.19 0.70 S Ratio 0.22 0.64 0.84 1.03 0.22 ad-Lag Optimize? bick Extension (s) 2.0 4.0.7 0.0 ad Lag Optimize? bick Extension (s) 2.0 5.0 4.0 A T.0 9.2.2 6.2 bick Delay 0.0 0.0 0.0 ad Lag Optimize? bick Extension (s) 2.0 5.0 4.0 A T.0 9.2.2 6.2 bis proach Delay 12.0 3.7.7 3.58 proach Delay 12.0 3.7.7 3.58 proach Delay 12.0 3.7.7 3.58 proach Delay 12.0 4.7.7 bis Ratio 0.22 0.64 0.84 1.03 0.22 bis proach Delay 12.0 3.7.7 3.58 proach Delay 12.0 4.7.7 bis Proach Delay 12.7 bis proach Delay 12.7 bis proach Delay 12.7 bis	adway Pactor 1.42 1.42 1.25 1.25 1.25 1.25 1.19 k Speed (mph) 30 30 30 k Distance (t) 111 478 828 swy Vehicles (%) 9% 22 358 1003 26 188 506 adv Vehicles (%) 9% 27% 3% 4% 1% 8% ring (#/m) 0 0 j. Flow (vph) 28 421 1127 36 298 569 m Type ptov Prot Decked Phases 3 3.4 1 4 14 2 mitted Phase 3 3 3.2 2.0 2.0 4.0 2.0 3.0 2.0 2.0 4.0 2.0 2.0 4.0 2.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 4.0 2.0 4.0 4.0 4.0 2.0 4.0 4.0 2.0 4.0 4.0 4.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	atd. Flow (RTOR)		371	3				
in Distance (UP) 10 478 828 avel Time (s) 2.5 10.9 18.8 jume (vph) 22 358 1003 26 188 506 jak Hour Factor 0.79 0.85 0.89 0.72 0.63 0.89 jak Hour Factor 0.79 0.85 0.89 0.72 0.63 0.89 aavy Vehicles (%) 9% 2% 3% 4% 1% 8% je Row (vph) 28 421 1153 0 298 559 mm mitty innum Spite (\$) 20.0 115.0 9.0 700 700 700 ital Spite (\$) 20.5 53.0 45.0 0.0 28.0 73.0 22.0 ital Spite (\$) 20.6 44.2% 37.5 0.0% 20.0	Noise Noise <t< td=""><td>ieadway Factor</td><td>1.42</td><td>1.42</td><td>1.25</td><td>1.25</td><td>1.25</td><td>1.19</td><td></td></t<>	ieadway Factor	1.42	1.42	1.25	1.25	1.25	1.19	
avel Time (s) 2.5 10.9 18.8 194 194 194 194 194 194 195 195 28 28 3 0 28 195 28 28 3 28 28 28 28 28 2 28 2 28 2 2 28 2 2 28 2 2 28 2 2 28 2	avel Time (a) 2.5 10.9 18.8 bume (vph) 22 358 1003 26 188 506 ak Hour Factor 0.79 0.85 0.89 0.72 0.63 0.89 avy Vehicles (%) 9% 2% 3% 4% 188 506 p. Flow (vph) 28 421 1127 36 298 569 mm mited Phases 3 3 1 4 14 14 2 minum Split (s) 13.0 15.0 9.0 22.0 13.0 25.0 73.0 22.0 tal Split (%) 20.0% 44.2% 37.5% 0.0% 23.0% 60.8% 18% aximum Green (s) 20.0 40.0 23.0 22.0 10.0 1.0 0.0 ad-Lag Optime? 11.0 1.0 1.0 1.0 0.0 2.0 3.0 3.0 ad-Lag Optime? 12.3 41.3 56.5 2.3.0 84.5 7.0 ad-Lag Optime? 12.3 41.3 56.5 2.3.0	ink Distance (ft)	111		478			828	
Jume (vph) 22 38 1003 28 188 506 aaky Vehicles (%) 9% 2% 3% 4% 1% 8% vring (#/m) 0 0 0.85 0.89 0.72 0.63 0.89 ming (#/m) 0 0 0 0 0 0 ip Flow (vph) 28 421 1163 0 298 569 minum china (s) 8.0 10.0 4.0 7.0 nimum split (s) 13.0 15.0 9.0 22.0 attal Split (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 attal Split (s) 2.0 3.0 4.0 4.0 4.0 2.0 2.0 3.0 3.0 attal Split (s) 2.0 2.0 3.0 3.0 3.0 3.0 3.0 attal Split (s) 1.3 56.5 23.0 84.5 3.0 3.0 attal Split (s) 1.3 56.5	lume (vph) 22 3b8 1003 2b 188 506 avy Vehicles (%) 9% 25 0.85 0.89 0.72 0.63 0.89 irring (#/h7) 0 0 i. Flow (vph) 28 421 1127 36 298 559 m Type ptov (vph) 28 421 1163 0 298 559 m Type ptov Prot Decked Phases 3 3.4 1 4 14 2 mitted Phases 3 3.4 1 4 14 14 intrum initial (s) 8.0 10.0 4.0 7.0 inimum polit (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 25.0 53.0 40.0 23.0 22.0 ad-Lag Optime? hicle Extension (s) 2.0 40.0 23.0 20.0 ad-Lag Optime? hicle Extension (s) 2.0 2.0 3.0 3.0 call Mode None C-Max None None destrian Calls (#hr) 3.0 tarted U = 12.3 41.3 56.5 23.0 84.5 uated yC Rate (1, 1) 0.34 0.47 0.19 0.70 call Split (s) 12.3 41.3 56.5 23.0 84.5 uated yC Rate (1, 1) 0.34 0.47 0.19 0.70 call Mode None C-Max None None destrian Calls (#hr) 3.0 tarted U = 50.8 9.4 37.7 92.2 6.2 teue Delay 50.0 A0.0 23.0 20.0 th %ile Green (s) 15.0 A1.0 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 45 256 90 83 th %ile Green (s) 41.3 7 #688 233 m201 emmal Link Direcode Max Ped th %ile Green (s) 0.1 0.64 0.44 1.03 0.28 th %ile Green (s) 0.1 0.64 0.84 1.03 0.28 th %ile Green (s) 1.0 0.0 0 0 0 th %ile Green (s) 1.0 0.0 0 0 th %ile Green (s) 1.0 0.0	ravel Time (s)	2.5		10.9			18.8	
an indum factur 0.73 0.0	an Induit Patch 0.13 0.24 3% 4% 1% 8% rking (#hr) 0	/olume (vph)	0.70	358	1003	26	188	506	
trking (#hr) 0 0 §, Flow (vph) 28 421 1127 36 298 569 mn Type pt+ov Prot Prot prot prot prime Type pt+ov Prot Prot prot primum Split (s) 3 3 4 1 4 14 2 primum Split (s) 13.0 15.0 9.0 22.0 118.0 15.0 9.0 22.0 tal Split (%) 20.8% 44.2% 37.5% 0.0% 23.0% 60.8% 18% aximum Green (s) 20.0 40.0 23.0 22.0 10.0 1.0 0.0 23.0 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 24.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 23.0 24.0 1.3 3.4 1.3 7.0 23.6 2.0 1.4 3.4 1.3 3.4 1.3 7.0 23.6 2.0 <td< td=""><td>rking (whr) 0 0 , Flow (vph) 28 421 1127 36 298 569 m Type pt+0v Prot prot</td><td>leavy Vehicles (%)</td><td>9%</td><td>2%</td><td>3%</td><td>4%</td><td>1%</td><td>8%</td><td></td></td<>	rking (whr) 0 0 , Flow (vph) 28 421 1127 36 298 569 m Type pt+0v Prot	leavy Vehicles (%)	9%	2%	3%	4%	1%	8%	
μ. ricew (vpn) 28 421 1127 36 288 569 imm Type pt+ov Prot O 288 569 imm Type pt+ov Prot O 288 569 immitad Phases 3 3 1 4 1.4 2 immutal Phases 3 3 4 1 4 1.4 ietcor Phases 3 3.4 1 4 1.4 7.0 intrum Initial Spit (6) 25.0 53.0 40.0 22.0 7.0 22.0 isto Spit (7) 2.0 2.0 3.0 3.0 3.0 3.0 isto Spit (7) 1.0 1.0 1.0 0.0 2.0 2.0 3.0 3.0 isto Spit (7) 1.2.3 41.3 56.5 23.0 84.5 1.0 4.1 3.0 3.0 isto Spit (8) 1.2.3 41.3 56.5 23.0 84.5 1.0 1.0 1.0 1.0<	i. Took (vpn) 25 421 1127 36 298 569 m Type pt+ov Prot Prot Prot inced Phases 3 3 1 4 14 2 mitted Phases 3 3 1 4 14 2 mitted Phases 3 3 1 4 14 2 mitted Phases 3 3 1 4 14 2 itector Phases 3 3 4 1 4 14 2 itector Phases 3 3 4 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>arking (#/hr)</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>	arking (#/hr)	0	0					
line choop into (typi) 2.0 +2.1 (1103) 0 280 309 ptoov Prot otected Phases 3 3 4 1 4 14 2 ptector Phases 3 3 4 1 4 14 14 14 14 14 14 14 14 2 16 10 10 10 0 0 0 280 7.30 220 16 0 280 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.00 28.0 7.30 220 16 0 28.0 7.30 220 280 40.0 40.0 2.0 28.0 7.30 200 16 0 28.0 7.30 200 20.0 20.0 28.0 7.30 200 16 0 28.0 7.30 200 16 0 22.0 2 0.0 40.0 23.0 20.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		dj. Flow (vph)	28	421	1127	36	298	569	
otacical Phases 3 3.4 1 4 1.4 1.4 2 smitted Phases 3 3.4 1 4 1.4 1.4 nimum Initial (s) 8.0 10.0 4.0 7.0 22.0 testor Phases 3 3.4 1 4 1.4 7.0 22.0 tal Split (%) 20.8% 44.2% 37.5% 0.0% 23.0% 60.8% 18% tal Split (%) 20.8% 44.2% 37.5% 0.0% 23.0% 60.8% 18% tal Split (%) 20.0 40.0 4.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0	Discreted Phases 3 3 4 1 4 1 4 2 minited Phases 3 3 4 1 4 1 4 2 minum Split (s) 13.0 15.0 9.0 22.0 73.0 22.0 tal Split (%) 20.8% 44.2% 37.5% 0.0% 23.3% 60.8% 18% kirimum Green (s) 20.0 40.0 40.0 20.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 20.0 40.4 1.03 0.28 43.7.7 32.8 20.0 40.4 1.03 0.28 43.7.7 35.8 32.0 20.0 20.0 40.	fum Type	20	pt+ov	1103	U	Prot	209	
animum Initial (s) 3 3 1 4 1 nimum Initial (s) 8.0 10.0 4.0 7.0 22.0 atal Spit (s) 25.0 53.0 45.0 0.0% 23.0% 60.8% 12.0 atal Spit (s) 25.0 53.0 45.0 0.0% 23.0% 60.8% 12.0 atal Spit (s) 25.0 53.0 40.0 23.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 3.0 3.0 ad-Lag Optimize?	minum linitial (s) 8.0 10.0 4.0 1.4 ninum linitial (s) 8.0 10.0 4.0 7.0 22.0 Ial Split (s) 25.0 53.0 45.0 0.0% 23.0% 60.8% 18.0 Ial Split (s) 25.0 53.0 45.0 0.0% 23.0% 60.8% 18.0% Ial Split (s) 25.0 53.0 40.0 23.0 20.0 20.0 Ilow Time (s) 4.0 4.0 4.0 20.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 20.0 1.0 2.2 6.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	rotected Phases	3	34	1		4	14	2
interum Initials 3 3 3 1 4 14 nimum Nitial (s) 8.0 10.0 4.0 7.0 nimum Split (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 25.0 53.0 44.2% 37.5% 0.0% 28.0 73.0 22.0 low Time (s) 1.0 1.0 1.0 1.0 0.0 23.0 20.0 Red Time (s) 1.0 1.0 1.0 0.0 0.0 2.0 3.0 3.0 sah Dont Walk (s) 10.0 1.0 1.0 0.0 0.0 3.0 3.0 at Time (s) 1.2.3 41.3 56.5 23.0 84.5 1.0 3.0 atto dg C Ratio 0.10 0.34 0.47 0.19 0.70 5.8 procach Delay 50.8 9.4 37.7 92.2 6.2 2.0 Sproach Delay 12.0 37.7 35.8 D D D procach LOS B D Coord Max <td>use ture rule sets 3 3 4 1 4 14 nimum Initial (s) 8.0 10.0 4.0 7.0</td> <td>Permitted Phases</td> <td>~</td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td>	use ture rule sets 3 3 4 1 4 14 nimum Initial (s) 8.0 10.0 4.0 7.0	Permitted Phases	~		4				
Innum Split (s) 1:0:0:0 1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	International Control Disk Tool Too	Jetector Phases	3	34	10.0		4	14	7.0
Inial Split (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 taid Split (s) 20.8% 44.2% 37.5% 0.0% 23.3% 60.8% 18% aximum Green (s) 20.0 40.0 23.0 20.0 30.0	tal Split (s) 25.0 53.0 45.0 0.0 28.0 73.0 22.0 tal Split (s) 20.8% 44.2% 37.5% 0.0% 23.3% 60.8% 18% ximum Green (s) 20.0 40.0 23.0 20.0 flow Time (s) 4.0 4.0 4.0 2.0 Red Time (s) 1.0 1.0 1.0 0.0 ad/Lag Lead Lead Lag Lag Lag Lag Lead Lead Lag Lag Lag Lag Lead Lead Lag Lag Lag Lag Lag Lead Lead Lag Lag Lag Lag Lag Lag Lead Lead Lag Lag Lag Lag Lag Lag Lead Lead Lag	Ainimum Split (s)	13.0		15.0		9.0		22.0
tal spir (%) 20.8% 44.2% 37.5% 0.0% 23.3% 60.8% 18% 18% 141 Spir (%) 20.0 40.0 23.0 20.0 20.0 110w Time (s) 4.0 4.0 4.0 2.0 20.0 20.0 20.0 20.0 20.	tal spin (%) 20.8% 44.2% 37.5% 0.0% 23.3% 60.8% 18% 18% 12% 14% 10% 14% 14% 15% 60.8% 14% 14% 15% 60.5% 14% 14% 14% 15% 60.5% 14% 14% 15% 60.5% 14% 14% 15% 60.5% 14% 14% 15% 60.5% 14% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 15% 14% 14% 14% 15% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14	otal Split (s)	25.0	53.0	45.0	0.0	28.0	73.0	22.0
Answer Autom <	Annume Defen (s) 20.00 40.00 23.00 20.00 Red Time (s) 1.0 1.0 1.0 0.0 0.0 Red Time (s) 1.0 1.0 1.0 0.0 0.0 ad-Lag Optimize? Inicle Extension (s) 2.0 2.0 3.0 3.0 call Mode None C-Max None None akt Time (s) 7.0 3.0 3.0 destrian Calls (#hr) 3 56.5 23.0 84.5 Teffet Green (s) 0.12 3.4 1.3 56.5 23.0 84.5 restato 0.22 0.64 0.84 1.0 0.70 1.0	otal Split (%)	20.8%	44.2%	37.5%	0.0%	23.3%	60.8%	18%
Red Time (s) 1.0 1.0 1.0 1.0 0.0 adLag Lead Lead Lead Lag Lag adLag Lead Lead Lag Lag Lag hhole Extension (s) 2.0 2.0 3.0 3.0 ash Dont Walk (s) 70 70 70 call fide None C-Max None 70 stab Dont Walk (s) 13.0 3.0 3.0 3.0 idestinan Calls (#/hr) 30 32 30 30 30 ifEnt Green (s) 12.3 41.3 56.5 23.0 84.7 introi Delay 50.8 9.4 37.7 35.8 30 proach Delay 12.0 37.7 35.8 35.8 30 20.0 2	Red Time (s) 1.0 1.0 1.0 1.0 0.0 ad/Lag Lead Lead Lead Lag Lag bicle Extension (s) 2.0 2.0 3.0 3.0 bicle Extension (s) 2.0 2.0 3.0 3.0 ak Time (s) sin Dont Walk (s) 70 70 destrian Calls (#/hr) 30 30 30.0 30.0 tetfet Green (s) 12.3 41.3 56.5 23.0 84.5 tuated g/C Ratio 0.10 0.34 0.47 0.19 0.70 Ratio 0.22 0.64 0.84 1.03 0.28 introl Delay 50.8 9.4 37.7 32.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 50.3 23.0 20.0 th %ile Term Code Max Coord Max Net th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0	ellow Time (s)	4.0		40.0		4.0		20.0
ad/Lag Lead Lag	adLag Lead Lag Lag Lag hide Extension (s) 2.0 2.0 3.0 3.0 kil Time (s) C-Max None None None ski Time (s) 7.0 7.0 7.0 ski Time (s) 13.0 3.0 3.0 ski Time (s) 13.0 3.0 3.0 ski Time (s) 12.3 41.3 56.5 23.0 84.5 tuated g/C Ratio 0.10 0.44 0.47 0.19 0.70 Ratio 0.22 0.64 0.84 1.0.3 0.28 tuated g/C Ratio 0.10 0.4 0.47 0.19 0.70 reue Delay 0.0 0.0 0.0 0.0 0.0 0.0 S D A T F A proach Delay 12.0 37.7 35.8 proach LOS B D D D D D 0.0 th %ile Green (s) 9.7 50.3 23.0 20.0 0.0 0.0 0.0 0.0	All-Red Time (s)	1.0		1.0		1.0		0.0
Bar - Lag up (ptimizer call A grading of the period of	Bar Lag optimizer Solution Solution <td>.ead/Lag</td> <td>Lead</td> <td></td> <td>Lead</td> <td></td> <td>Lag</td> <td></td> <td>Lag</td>	.ead/Lag	Lead		Lead		Lag		Lag
Line (f) Line (f) Line (f) None C-Max None To alk Time (s) The (f) The (f) The (f) The (f) The (f) alk Time (s) The (f) The (f) The (f) The (f) The (f) alk Time (s) The (f) The (f) The (f) The (f) The (f) The (f) alk Time (s) The (f) The (f) The (f) The (f) The (f) The (f) alk Time (s) The (f) The (f) The (f) The (f) The (f) The (f) alk Time (s) The (f) The (f) The (f) The (f) The (f) The (f) alk Time (s) The (f)	Control None C-Max None None alk Time (s) none C-Max None 7.0 alk Time (s) 7.0 7.0 7.0 destrian Calls (#/hr) 30 30 34.1 56.5 23.0 84.5 traited Calls (#/hr) 2.2 0.64 0.44 1.03 0.28 ntrol Delay 50.8 9.4 37.7 92.2 6.2 reue Delay 0.0 0.0 0.0 0.0 0.0 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 41.0 23.0 20.0 40.0 23.0 20.0 th %ile Term Code Max Coord Max Ped 41.%/lie Green (s) 8.0 74.0 23.0 0.0 th %ile Term Code Min Coord Max	eau-Lag Optimize? (ehicle Extension (s)	2.0		2.0		3.0		3.0
alk Time (s) 7.0. ash Dont Walk (s) 12.3 41.3 56.5 23.0 84.5 13.0 tataled g/C Ratio 0.10 0.34 0.47 0.19 0.70 14. Effct Green (s) 12.3 41.3 56.5 23.0 84.5 tataled g/C Ratio 0.10 0.34 0.47 0.19 0.70 S Ratio 0.22 0.64 0.84 1.03 0.28 Introi Delay 50.8 9.4 37.7 92.2 6.2 Iseue Delay 0.0 0.0 0.0 0.0 0.0 0.0 procech Delay 12.0 37.7 35.8 procech Delay 12.0 37.7 35.8 procech LOS B D A D F A procech Delay 12.0 37.7 35.8 procech LOS B D D D D th %ile Green (s) 16.0 44.0 23.0 20.0 40.0 23.0 20.0 40.0 23.0 20.0 40.0 31.7 30.23.0 20.0 40.0 23.0 20.0 40.0 23.0 20.0 40.0 31.6 6 5 50.0 74.0 23.0 0.0 40.0 31.6 6 5 50.0 74.0 23.0 0.0 40.0 31.6 6 5 50.0 74.4 148 221 el Used(gal) 0 3 16 6 5 50.2 Cemissions (g/hr) 6 338 215 76 70 50.2 Emissions (g/hr) 6 338 215 76 70 50.2 Emissions (g/hr) 7 45 256 90 8.3 41.8 241 ermal Link Dist (H) 41 87 #688 233 m201 ermal Link Dist (H) 41 87 #688 233 m201 Ersection Signal Delay 32.4 Intersection LOS: C Ersection Signal Delay 32.4 Intersection LOS: C Er	alk Time (s) (s) 7.0 destrian Calls (#/hr) 30 1 Effct Green (s) 12.3 41.3 56.5 23.0 84.5 Uated g/C Ratio 0.10 0.34 0.47 0.19 0.70 (Ratio 0.22 0.64 0.84 1.03 0.28 (s) 0.0 0.0 0.0 0.0 0.0 0.0 (Ratio 0.22 0.64 0.84 1.03 0.28 (s) 0.0 0.0 0.0 0.0 0.0 0.0 (s) 0.0 0.0 0.0 0.0 0.0 (s) 0.0 0.0 0.0 (s) 0.0 0.0 (s) 0.0 0.0 (s) 0.0 0.0 (s) 0.0 0.0 (s) 0.0 (s) 0.0 0.0 (s) 0.0 (s) 0.0 0.0 (s) 0.0 (Recall Mode	None		C-Max		None		None
astri Lorin Walk (b) 13.0 12 Effic Green (s) 12.3 41.3 56.5 23.0 84.5 12 Effic Green (s) 12.3 41.3 56.5 23.0 84.5 12 Mark (b) 0.22 0.64 0.44 10.3 0.70 12 Ratio 0.10 0.34 0.47 0.19 0.70 13 Ratio 0.22 0.64 0.44 10.3 0.28 13 Delay 50.8 9.4 37.7 92.2 6.2 14 Delay 50.8 9.4 37.7 35.8 D D D 15 S D A D F A No Ped 16 Wile Green (s) 20.0 40.0 23.0 20.0 20.0 16 Wile Green (s) 20.7 76.0 32.0 20.0 20.0 16 Wile Green (s) 9.7 50.3 23.0 20.0 0.0 16 Wile Green (s) 8.0 74.0 23.0 0.0 0.0 16 Wile Green (s) 8.0 74.0 23.0 0.0 0.0	ISIT U-ORI Weak (5) 13.0 15IT U-ORI Weak (5) 30 15 Effect Green (s) 12.3 41.3 56.5 23.0 84.5 15 Effect Green (s) 0.23 41.3 56.5 23.0 84.5 Introl Delay 50.8 9.4 37.7 92.2 6.2 Introl Delay 50.8 9.4 37.7 92.2 6.2 Is S D A D F A proach Delay 12.0 37.7 35.8 D proach Delay 12.0 37.7 35.8 D proach COS B D D D D b %ile Term Code Gap Coord Max Ped th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 <tr< td=""><td>Valk Time (s)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.0</td></tr<>	Valk Time (s)							7.0
Later of the set of the	Listed Green (s) 12.3 41.3 56.5 23.0 84.5 Itated g/C Ratio 0.10 0.34 0.47 0.19 0.70 Ratio 0.22 0.64 0.64 1.03 0.28 Introl Delay 50.8 9.4 37.7 92.2 6.2 ueue Delay 0.0 0.0 0.0 0.0 0.0 tal Delay 50.8 9.4 37.7 92.2 6.2 tal Delay 50.8 9.4 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.3 D D D th %ile Green (s) 16.0 44.0 23.0 20.0 40.0 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 0 0 20.0 0.0 0 0.0 0 0.0 0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0.0 0 0 0	edestrian Calls (#/br)							13.0
tuated g/C Ratio 0.10 0.34 0.47 0.19 0.70 statio 0.22 0.64 0.84 1.03 0.28 shorted 0.8 1.03 0.28 shorted 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	tuated g/C Ratio 0.10 0.34 0.47 0.19 0.70 reatio 0.22 0.64 0.64 1.03 0.28 introl Delay 50.8 9.4 37.7 92.2 6.2 introl Delay 50.8 9.4 37.7 92.2 6.2 introl Delay 50.8 9.4 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 12.0 37.7 35.8 proach Delay 20.0 40.0 23.0 20.0 th %ile Green (s) 16.0 44.0 23.0 20.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 0.0 th %ile Green (s) 8.0 74.4 <td>Act Effct Green (s)</td> <td>12.3</td> <td>41.3</td> <td>56.5</td> <td></td> <td>23.0</td> <td>84.5</td> <td>50</td>	Act Effct Green (s)	12.3	41.3	56.5		23.0	84.5	50
r ratio 0.22 0.64 0.84 1.03 0.28 introl Delay 50.8 9.4 37.7 92.2 6.2 ieue Delay 50.8 9.4 37.7 92.2 6.2 DS D A D F A Dyroach Delay 12.0 37.7 35.8 D ht% lie Green (s) 20.0 40.0 23.0 20.0 th% lie Green (s) 20.0 40.0 23.0 20.0 th% lie Green (s) 16.0 44.0 23.0 20.0 th% lie Green (s) 9.7 50.3 23.0 20.0 0.0 th% lie Green (s) 9.7 50.3 23.0 20.0 0.0 th% lie Green (s) 9.7 50.3 23.0 20.0 0.0 th% lie Green (s) 8.0 7.4.0 23.0 0.0 0.0 th% lie Green (s) 8.0 7.4.0 23.0 0.0 0.0 th% lie Green (s) 8.0 7.4.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0	ratio 0.22 0.64 0.64 1.03 0.28 introl Delay 50.8 9.4 37.7 92.2 6.2 ieue Delay 0.0 0.0 0.0 0.0 0.0 istal Delay 50.8 9.4 37.7 92.2 6.2 istal Delay 12.0 37.7 35.8 proach LOS B D D A proach LOS B D 20.0 40.0 23.0 20.0 20.0 th %ile Green (s) 16.0 44.0 23.0 20.0	Actuated g/C Ratio	0.10	0.34	0.47		0.19	0.70	
Intersection Deck Deck <thdeck< th=""> Deck Deck</thdeck<>	Intellight of the series o	/c Ratio	0.22	0.64 Q /	0.84		1.03	0.28	
tal Delay 50.8 9.4 37.7 92.2 6.2 S D A D F A proach Delay 12.0 37.7 35.8 proach LOS B D D D D th %ile Green (s) 20.0 40.0 23.0 20.0 th %ile Green (s) 20.0 40.0 23.0 20.0 th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 Coord Max Ped th %ile Green (s) 8.0 74.0 23.0 0.0 Coord Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 D Emissions (g/hr) 31 196 1104 389 358 D2 Emissions (g/hr) 6 38 215 76 70 D2 Emissions (g/hr) 6 38 215 76 70 D2 Emissions (g/hr) 7 45 256 90 83 D2 Emissions (g/hr) 7 45 266 90 83 D2 Emissions (g/hr) 11 1 398 7748 Eveu Length 50th (th) 21 27 448 -202 52 Eveu Length 50th (th) 21 27 448 -202 52 Eveu Length 50th (th) 21 27 748 mr Bay Length (th) 31 398 7748 trim Bay Length (th) 41 87 #698 233 m201 terma Link Dist (th) 31 398 7748 trim Bay Length (th) 41 87 #698 233 m201 terma Link Dist (th) 31 398 7748 trim Bay Length (th) 41 87 #698 230 m201 tersection Summary Early E CBD crise(clargth: 120 truated Cycle Length: 120	tal Delay 50.8 9.4 37.7 92.2 6.2 IS D A D F A proach Delay 12.0 37.7 35.8 D D proach LOS B D D D D th %ile Green (s) 20.0 40.0 23.0 20.0 th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.4 23.0 0.0 th %ile Green (s) 8.0 74.4 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0	ueue Delay	0.0	0.0	0.0		0.0	0.2	
D A D F A proach Delay 12.0 37.7 35.8 D	S D A D F A proach Delay 12.0 37.7 35.8 D A D A D	otal Delay	50.8	9.4	37.7		92.2	6.2	
prodection Cellary 12.0 37.7 35.8 provection Costs B D 0 0 th %ile Green (s) 20.0 40.0 23.0 20.0 th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 <td>prodecti Delay 12.0 37.7 35.8 prodect LOS B D 20.0 40.0 23.0 20.0 th %ile Green (s) 20.0 40.0 23.0 20.0 Max Coord Max Ped th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 Demissions (g/hr) 20 56 734 148 221 el Used(gal) 0 3 16 6 5 5 De Emissions (g/hr) 7 45 266 90 83 ermal vehicles (#) 0 0 0 0 0 0 De Emissions (g/hr) 7 45 266 90 83 ermal vehicles (#) 0 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 or arage Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 or arage Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 or arage Cap Reductin 0 0 0 0 se Capacity (vph) 10 se Capacity (vph) 10 se Capacity (vph) 10 se Capacity Uph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity Utization 63.9% ICU Level of Service B adviced vice Atio 0.13 0.64 0.84 1.03 0.28 ersection Signal Delay: 32.4 Intersection LOS: C Icus eshown is maximum after two cycles. Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum</td> <td>OS</td> <td>D</td> <td>A</td> <td>D</td> <td></td> <td>F</td> <td>A 25.0</td> <td></td>	prodecti Delay 12.0 37.7 35.8 prodect LOS B D 20.0 40.0 23.0 20.0 th %ile Green (s) 20.0 40.0 23.0 20.0 Max Coord Max Ped th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 9.7 50.3 23.0 20.0 th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 Demissions (g/hr) 20 56 734 148 221 el Used(gal) 0 3 16 6 5 5 De Emissions (g/hr) 7 45 266 90 83 ermal vehicles (#) 0 0 0 0 0 0 De Emissions (g/hr) 7 45 266 90 83 ermal vehicles (#) 0 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 or arage Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 or arage Cap Reductin 0 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 or arage Cap Reductin 0 0 0 0 se Capacity (vph) 10 se Capacity (vph) 10 se Capacity (vph) 10 se Capacity Uph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 se Capacity Utization 63.9% ICU Level of Service B adviced vice Atio 0.13 0.64 0.84 1.03 0.28 ersection Signal Delay: 32.4 Intersection LOS: C Icus eshown is maximum after two cycles. Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum	OS	D	A	D		F	A 25.0	
h %ile Green (s) 20.0 40.0 23.0 20.0 th %ile Term Code Max Coord Max Ped th %ile Term Code Gap Coord Max Ped th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 23.0 0.0 pos (ph) 20 56 734 148 221 ell Used(gal) 0 3 16 6 5 D Emissions (g/hr) 7 45 256 90 83 ferman Link Dist (ht) 21 27 448 -202 52 eue Length 50th (ft) 21 27 448 -202 52 eue Length 50th (ft) 21 27 448 -202 52 eue Length 50th (ft) 21 27 448 -202 52<	h %ile Green (s) 20.0 40.0 23.0 20.0 40.0 23.0 20.0 40.0 23.0 20.0 40.0 23.0 20.0 40.0 23.0 20.0 40.0 1h %ile Term Code Max Coord Max Ped 40.0 23.0 20.0 40.0 1h %ile Term Code Gap Coord Max Ped 50.0 74.0 23.0 20.0 40.0 1h %ile Term Code Gap Coord Max Ped 50.0 74.0 23.0 0.0 0 40.0 1h %ile Term Code Min Coord Max Skip 50.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oproach Delay	12.0 B		37.7 D			35.8 D	
th %ile Term Code Max Coord Max Ped th %ile Term Code Gap Coord Max Ped th %ile Green (s) 16.0 44.0 23.0 20.0 th %ile Term Code Gap Coord Max Ped th %ile Green (s) 9.7 50.3 23.0 20.0 Max Ped th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Data Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Data Skip ops (yph) 20 56 734 148 221 el Used(gal) 0 3 16 6 5 Demissions (ghr) 31 196 1104 389 358 CZ Emissions (ghr) 6 38 215 76 70 CZ Emissions (ghr) 7 45 256 90 83 Demma Vehicles (#) 0 0 0 0 0 0 Demissions (ghr) 7 45 256 90 83 Transler (h) 11 27 448 -202 52 teue Length 50th (ft) 21 27 448 -202 52 teue Length 95th (ft) 41 87 #698 233 m201 termal Link Dist (ft) 31 398 748 und Link Dist (ft) 31 398 748 to a 200 Defermant Vehicles (#) 0 0 0 0 0 Defermation Carbon (ft) 20 656 1379 288 2047 arvation Carb Reductn 0 0 0 Defermation Carbon (ft) 20 0 carge Carb Reductn 0 0 Defermation Carbon (ft) 20 0 carbon 0 carbon 0 carbon 0 carbon 0 carbon 0 Defermation Carbon 0 Defermation Carbon (ft) 20 CBD created Link Dist (ft) 31 0.64 0.84 1.03 0.28 tersection Signal Delay: 32.4 Intersection LOS: C Low Length: 120 tutated Cycle Length: 120 Total Length: 120 Total Carbon 20 Soluce 40 (r Ratio: 1.03 tersection Carbon 150 For Length: 120 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95h percentile volume exceeds capacity, queue may be longer. Outure abon is maximum after two cycles. 95h percentile volume exceeds capacity, queue may be longer. Outure of Sth percentile queue is metered by upstream signal. Sitis and Phases: 3: Hyde Park Ave & Walk Hill St at 1 20 10 10 10 10 10 10 10 10 10 10 10 10 10 1	th %ile Term Code Max Coord Max Ped th %ile Term Code Gap Coord Max Ped th %ile Green (s) 16.0 44.0 23.0 20.0 Max Ped th %ile Green (s) 9.7 50.3 23.0 20.0 Max Ped th %ile Green (s) 8.0 74.0 23.0 0.0 Max Ped th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 0.0 0 0 th %ile Green (s) 8.0 74.0 0.0 0 th Wale Cength Sth (t) 21 27 448 -202 52 teue Length Sth (t) 21 27 448 -202 52 teue Length Sth (t) 31 398 748 conge Cap Reductn 0 0 0 0 0 th Green Sth (t) 209 656 1379 288 2047 arvation Cap Reductn 0 0 0 0 th duced Vc Ratio 0.13 0.64 0.84 1.03 0.28 ersection Summary Ear Type: CBD CBD col Length: 120 tuated Cycle Length: 120 tuated Cycle Length: 120 tuated Cycle 1.0 turol Type: Acutade/Coordinated tximum v/c Ratio: 1.03 ersection Signal Delay: 32.4 Intersection LOS: C Ersection Capacity Utilization 63.9% ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Its and Phases: 3: Hyde Park Ave & Walk Hill St al 28 28 28 28 28 28 28 28 28 28 28 28 28	0th %ile Green (s)	20.0		40.0		23.0	0	20.0
nn "wie Green (s) 16.0 44.0 23.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 45 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	n *wile Green (s) 16.0 44.0 23.0 20.0 45 45 45 45 45 45 45 45 45 45 45 45 45	Oth %ile Term Code	Max		Coord		Max		Ped
International Code Code Output Peed Int wile Green (s) 9.7 50.3 23.0 20.0 th wile Green (s) 8.0 74.0 23.0 0.0 th wile Green (s) 8.0 74.1 1.48 221 th States (ghr) 3 1.96 110.4 389 358 Xb Emissions (ghr) 7 4.5 256 90 83 terma Vaholics (ft) 2.1 2.7 4.48 -202 5.2 tereul Lin Dist (ft)	Intermediate Description Description Description Peed Int %elle Green (s) 9.7 50.3 23.0 20.0 th %elle Green (s) 8.0 74.0 23.0 0.0 th %elle Green (s) 8.0 74.4 23.0 0.0 th Statistics (ghr) 0 3 16 6 5 th Emissions (ghr) 7 45 256 90 83 termal Vehicles (#) 0 0 0 0 0 0 0 tere Length 50th (ft) 11 87 768 <	Oth %ile Green (s)	16.0 Gan		44.0		23.0 Max		20.0
th %ile Term Code Gap Coord Max Ped th %ile Term Code Min Coord Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip Coord Max Skip Coord Max Skip Coord Max Skip Coord Max Skip Coord Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip Coord Max Skip Coord M	th %ile Term Code Gap Coord Max Ped th %ile Term Code Gap Coord Max Ped th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip Skip th %ile Green (s) 8.0 74.0 23.0 0.0 Max Skip th %ile Green (s) 8.0 74.0 23.0 0.0 O Cord Max Skip O Cord O	i0th %ile Green (s)	9.7		50.3		23.0		20.0
th % lie Green (s) 8.0 74.0 23.0 0.0 0 0 0 th % lie Green (s) 8.0 74.0 23.0 0.0 0 th % lie Green (s) 8.0 74.0 23.0 0.0 th % lie Green (s) 8.0 74.0 23.0 0.0 th % lie Green (s) 8.0 74.0 23.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 0.0 th % lie Green (s) 8.0 74.0 123.0 th % lie Green (s) 8.0 124.0 th % lie Green (s) 9.0 124.0 th % l	th %ile Green (s) 8.0 74.0 23.0 0.0 th %ile Green (s) 8.0 74.0 148 74.0 20 teue Length 50th (ft) 21 27 44.8 -202 52 ternal vehicles (#) 0 0 0 0 0 0 0 teue Length 50th (ft) 21 27 44.8 -202 52 ternal th Sist (ft) 31 39.8 74.8 200 se Capacity (vph) 209 656 137.9 28.8 204.7 avation Cap Reductn 0 0 0 0 0 0 thace do 0 0 0 0 0 0 that the format of the format	Oth %ile Term Code	Gap		Coord		Max		Ped
Min CO0rd Mix Skp Min Co0rd Max Skp Min Coord Max Skp Min Coord Max Skp Dysk Min Coord Max Skp Dysk Min Coord Max Skp Demissions (ghr) 3 16 6 5 Demissions (ghr) 31 196 1104 389 358 Demissions (ghr) 7 45 256 90 83 Iernma Vehicles (#) 0 0 0 0 0 0 Leue Length Stift (1) 21 27 448 -202 52 ueue Length Stift (1) 398 748 maxion 200 tesse Capacity (vph) 200 656 1379 288 2047 arvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>min CO070 Mix Skp min Second Min Co070 Max Skp ht %elic Feren (s) 8.0 7.4.0 23.0 0.0 ps(vph) 20 56 734 1.48 221 el Used(gal) 0 3 16 6 5 5 D Emissions (g/hr) 6 38 215 76 70 <td< td=""><td>10th %ile Green (s)</td><td>8.0</td><td></td><td>74.0</td><td></td><td>23.0</td><td></td><td>0.0</td></td<></td>	min CO070 Mix Skp min Second Min Co070 Max Skp ht %elic Feren (s) 8.0 7.4.0 23.0 0.0 ps(vph) 20 56 734 1.48 221 el Used(gal) 0 3 16 6 5 5 D Emissions (g/hr) 6 38 215 76 70 0 <td< td=""><td>10th %ile Green (s)</td><td>8.0</td><td></td><td>74.0</td><td></td><td>23.0</td><td></td><td>0.0</td></td<>	10th %ile Green (s)	8.0		74.0		23.0		0.0
Initial Code Min Coord Max Skip ops (vph) 20 56 734 148 221 ops (vph) 20 56 734 148 221 ell Used(gal) 0 3 16 6 5 D Emissions (g/hr) 31 196 1104 389 358 DX Emissions (g/hr) 7 45 256 90 83 lemma Vehicles (#) 0 0 0 0 0 D2 Emissions (g/hr) 7 45 256 90 83 lemma Vehicles (#) 0 0 0 0 0 ueue Length 50th (tt) 21 27 448 -202 52 ueue Length 50th (tt) 21 27 448 -202 52 ueue Length 50th (tt) 21 27 448 -202 52 ueue Length 50th (tt) 209 656 1379 288 2047 arvation Cap Reductn 0 0 0 0 0 0 uead Start	Initial Term (b) Initial Term (b) <thinitial (b)<="" term="" th=""> <thinitial (b)<="" <="" td="" term=""><td>Oth %ile Green (s)</td><td>Min</td><td></td><td>74 0</td><td></td><td>23 0</td><td></td><td>Skip</td></thinitial></thinitial>	Oth %ile Green (s)	Min		74 0		23 0		Skip
ops (vph) 20 56 734 148 221 lel Used(gal) 0 3 16 6 5 lel Used(gal) 0 3 16 6 5 Demissions (ghr) 3 196 1104 389 358 CE missions (ghr) 6 38 215 76 70 CE missions (ghr) 7 45 256 90 83 lemma Vehicles (#) 0 0 0 0 0 0 ueue Length 50th (ft) 1 27 448 -202 52 ueue Length 50th (ft) 11 398 748 200 ranal Link Dist (ft) 31 398 748 200 rese Capacity (vph) 209 656 1379 288 2047 arxation Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 0	pape (vph) 20 56 734 148 221 el Used(gal) 0 3 16 6 5 Demissions (g/hr) 31 196 1104 389 358 Xz Emissions (g/hr) 6 38 215 76 70 V2 Emissions (g/hr) 7 45 256 90 83 emma Vehicles (#) 0 0 0 0 0 eue Length 50th (ft) 21 27 448 ~202 52 eue Length 50th (ft) 21 27 448 ~202 52 eue Length 50th (ft) 20 656 1379 288 2047 zavation Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 0 of Length: 120 tset: 66 (55%), Referenced to phase 1:NBSB, Start of Green trant Oryte: Aduated-Coordinated trant Oryte: Aduated-Coordinated trant Oryte: Aduated-Coor	Oth %ile Term Code	Min		Coord		Max		Skip
let Useq(gai) 0 3 16 6 5 Demissions (g/hr) 31 196 1104 389 358 Dx Emissions (g/hr) 6 38 215 76 70 DC Emissions (g/hr) 7 45 256 90 83 leterations (g/hr) 7 448 -202 52 leterations (g/hr) 21 27 448 -202 52 leterations (g/hr) 31 398 748 leterations (g/hr) 121 27 448 -202 52 leterations (g/hr) 31 398 748 leterations (g/hr) 209 656 1379 288 2047 arvation Cap Reductn 0 0 0 0 0 0 liback Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 liback Cap Reductn 0 0 liback Cap Reductn 0 0 0 liback C	et Used(gai) 0 3 16 6 5 b missions (g/hr) 3 196 1104 389 358 bx Emissions (g/hr) 6 38 215 76 70 CC Emissions (g/hr) 7 45 256 90 83 emma Vehicles (#) 0 0 0 0 0 0 eue Length 50th (tt) 21 27 448 -202 52 eue Length 50th (tt) 21 27 448 -202 52 eue Length 50th (tt) 31 398 748 m Bay Length (tt) 209 566 1379 288 2047 avardan Cap Reductn 0 0 0 0 0 0 elilback Cap Reductn 0 0 0 0 0 0 erage Cap Reductn 0 0 0 0 0 0 ouced vic Ratio 0.13 0.64 0.84 1.03 0.28 erasection Summary Bay Length, Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 tural Cycle: 100 tural Cycle: 103 tural Cycle: 104 tural Cycle: 103 tural Cycle: 103 tural Cycle: 103 tural Cycle: 104 tural Cycle: 104 tural Cycle: 105 tural Cycle: 104 tural Cycle: 105 tural Cycle: 104 tural Cycle: 10	stops (vph)	20	56	734		148	221	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	De Langeours (g/m) 0 1 194 389 308 De Emissions (g/m) 7 45 256 90 83 emma Vehicles (#) 0 0 0 0 0 leve Length 50th (ft) 21 27 448 -202 52 eve Length 50th (ft) 21 27 448 -202 52 eve Length 50th (ft) 21 27 448 -202 52 eve Length 50th (ft) 31 398 748 m Bay Length (ft) 3 398 748 m Bay Length (ft) 0 0 0 0 0 se Capacity (vph) 209 656 1379 228 2047 avation Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 eve Length 50th (ft) 41 87 #688 ersection Summary Bay Length (ft) set: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 Introl Type: Actuaded-Coordinated tural Cycle: 100 Introl Type: Actuaded-Coordinated tural Cycle: 103 ersection Signal Delay: 52.4 Intersection LOS: C ersection Capacity Utilization 63.9% ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. its and Phases: 3: Hyde Park Ave & Walk Hill St of \$20 0 223 0 223 0 223 0 223 0 223 0 223 0 223 0 223 0 233 0 243 0 243 0 243 0 243 0 243 0 244 0 245 0	uel Used(gal)	0	3	1101		6	5	
DC Emissions (g/h) 7 45 266 90 83 lemma Vehicles (#) 0 0 0 0 0 0 lemma Vehicles (#) 0 0 0 0 0 lewe Length 50th (ft) 21 27 448 -202 52 lewe Length 50th (ft) 209 566 1379 288 2047 arvation Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 protect 20 0 0 0 0 0 lewe scenary lewe Length: 120 truated Cycle Length: 120 Stet: 66 (55%), Referenced to phase 1:NBSB, Start of Green truated Cycle Length: 120 Stet: 66 (55%), Referenced to phase 1:NBSB, Start of Green truated Cycle Length: 120 Stet: 66 (55%), Referenced to phase 1:NBSB, Start of Green truated Cycle Length: 120 Stet: 66 (55%), Referenced to phase 1:NBSB, Start of Green truated Cycle Length: 120 Stet: 66 (55%), Referenced to phase 1:NBSB, Start of Green truated Cycle using the store true and the store tr	C Emissions (g/hr) 7 45 226 90 83 emma Vehicles (#) 0 0 0 0 0 0 enue Length 50th (ft) 21 27 448 -202 52 eve Length 95th (ft) 41 87 #698 233 m201 emal Link Dist (ft) 31 398 748 m m Bay Length (ft) 200 656 1379 288 2047 arration Cap Reductn 0 0 0 0 0 0 yrage Cap Reductn 0 0 0 0 0 0 0 yrage Cap Reductn 0 0 0 0 0 0 0 0 a Type: CBD cle Length: 120 set: 66 (55%), Referenced to phase 1:NBSB, Start of Green 1tral Cycle: 110 1tral Cycle: 110 1tral Type: Actuated-Coordinated xiximur v/c Ratio: 1.03 ersection Capacity Utilization 63.9% ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds cap	O Emissions (g/nr)	31	196	215		389	358	
lemma Vehicles (#) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	emma Vehicles (#) 0 0 0 0 0 teue Length 50th (ft) 21 27 448 202 52 eue Length 95th (ft) 41 87 #698 233 m201 emma Link Dist (ft) 31 398 748 748 emma Link Dist (ft) 1 398 748 748 m Bay Length (ft) 209 656 1379 288 2047 secapacity (vph) 209 656 1379 288 2047 arxation Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 0 a Type: CBD celength: 120 setties (55%), Referenced to phase 1:NBSB, Start of Green 1tural Cycle: 110 1tural Cycle: 110<	/OC Emissions (g/hr)	7	45	256		90	83	
Leue Length 50th (ft) 21 27 448 -202 52 Leue Length 50th (ft) 31 398 748 Im Bay Length (ft) 31 398 748 Im Bay Length (ft) 0 0 0 0 arvation Cap Reductn 0 0 0 0 orage Cap Reductn 0 0 0 0 orage Cap Reductn 0 0 0 0 ea Type: CED CED cersection Summary ea Type: CED CED cersection Summary referenced to phase 1:NBSB, Start of Green startaral Cycle: 1:10 startaral Cycle: 1:10 Intersection Signal Delay: 32.4 Intersection LOS: C cersection Capacity Utilization 63.9% Idysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue show is maximum after two cycles. 95th percentile volume exceeds capacity, queue is metered by upstream signal. volume for 95th percentile queue is metered by upstream signal. volume for 95th percentile queue is metered by upstream signal.	leue Length 50th (ft) 21 27 448 -202 52 leue Length 50th (ft) 21 87 #688 233 m201 ernal Link Dist (ft) 31 398 748 may Length (ft) 200 se Capacity (vph) 209 656 1379 288 2047 arvation Cap Reductin 0 0 0 0 0 0 orage Cap Reductin 0 0 0 0 0 0 setting to the setting to the settin	vilemma Vehicles (#)	0	0	0		0	0	
Label Eoring 1 3011 (U) +1 07 P090 233 m201 mr Bay Length (It) 200 se Capacity (vph) 209 656 1379 288 2047 anvation Cap Reducth 0 0 0 0 0 0 orage Cap Reducth 0 0 0 0 0 0 cresection Summary ea Type: CBD cresection Summary Ea Type: CBD cresection Summary Ea Type: CBD CBD Type: Actuated C-Coordinated Sammar V/c Ratio: 1.03 ersection Capacity Utilization 63.9% Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume to r95th percentile queue is metered by upstream signal. bits and Phases: 3: Hyde Park Ave & Walk Hill St attemed the state of the	Bits Bits <thbits< th=""> Bits Bits <th< td=""><td>ueue Length 50th (ft)</td><td>21</td><td>27</td><td>448</td><td></td><td>~202</td><td>52 m201</td><td></td></th<></thbits<>	ueue Length 50th (ft)	21	27	448		~202	52 m201	
Im Bay Length (ft) 209 656 1379 288 2047 Isee Capacity (vph) 209 656 1379 288 2047 Isee Capacity (vph) 209 656 1379 288 2047 Sarvation Cap Reductn 0 0 0 0 0 0 Orage Cap Reductn 0 0 0 0 0 0 0 Orage Cap Reductn 0 0 0 0 0 0 0 estreaction Summary ea Type: CBD cBD cBe (65%), Referenced to phase 1:NBSB, Start of Green stural Cycle: 110 Thtersection LOS: C CE resection Capacity Utilization 63.9% ICU Level of Service B Totalysis Period (min) 15 Yolume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Sth percentile volume exceeds capacity, queue may be longer. Ostime ashirum after two cycles. Yolume is 75 shth percentile queue is metered by upstream signal. Sth and Phases: 3: Hyde Park Ave & Walk Hill St et #1 #2 2 2 a 5 a	m Bay Length (ft) 209 656 1379 288 2047 se Capacity (vph) 209 656 1379 288 2047 avation Cap Reductn 0 0 0 0 0 illback Cap Reductn 0 0 0 0 0 duced v/c Ratio 0.13 0.64 0.84 1.03 0.28 ersection Summary a Type: CBD cle Length: 120 cle Leng	nternal Link Dist (ft)	41	87	#098 398		233	748	
sec Capacity (vph) 209 656 1379 288 2047 anvalion Cap Reductn 0 0 0 0 0 0 billback Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 orage Cap Reductn 0 0 0 0 0 0 studed v/c Ratio 0.13 0.64 0.84 1.03 0.28 ersection Summary ea Type: CBD CBD fact: 66 (65%), Referenced to phase 1:NBSB, Start of Green stural Cycle: 10 Intersection Signal Delay; 32.4 Intersection LOS: C ersection Signal Delay; 32.4 Intersection LOS: C Gueue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Oueue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. bits and Phases: 3: Hyde Park Ave & Walk Hill St at the seceed scapacity the	se Capacity (vph) 209 656 1379 288 2047 avaidin Cap Reductin 0 0 0 0 0 0 0 illback Cap Reductin 0 0 0 0 0 0 0 orage Cap Reductin 0 0 0 0 0 0 0 ersection Summary set to 10.1 0.64 0.84 1.03 0.28 ersection Summary CBD colored V, Relation 1.08 set 16 (55%), Referenced to phase 1.NBSB, Start of Green tural Cycle: 110 tural Cycle: 110 tural Cycle: 110 tural Cycle: 110 tural Cycle: 110 Set 16 (55%), Referenced to phase 1.NBSB, Start of Green tural Cycle: 110 tural Cy	urn Bay Length (ft)			,		200		
arvation: Jap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	arrauon cap Reductin 0 0 0 0 0 0 prage Cap Reductin 0 0 0 0 0 0 duced vic Ratio 0.13 0.64 0.84 1.03 0.28 exerction Summary as Type: CBD cle Length: 120 Set: 66 (55%), Referenced to phase 1:NBSB, Start of Green turatal Cycle: 110 ntrol Type: Actuated-Coordinated Liximum vic Ratio: 1.03 resection Capacity Utilization 63.9% Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Its and Phases: 3: Hyde Park Ave & Walk Hill St of s	ase Capacity (vph)	209	656	1379		288	2047	
arge Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trage Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Spillback Cap Reducto	0	0	0		0	0	
educed v/c Ratio 0.13 0.64 0.84 1.03 0.28 ersection Summary ea Type: CBD croce code Length: 120 truated Cycle: Length: 120 struated Cycle: Length: 120 struated Cycle: 110 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 1.03 ersection Signal Delay: 32.4 Intersection LOS: C intersection Capacity Utilization 63.9% ICU Level of Service B laysis Period (min) 15 Volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. bits and Phases: 3: Hyde Park Ave & Walk Hill St of	duced v/c Ratio 0.13 0.64 0.84 1.03 0.28 ersection Summary as Type: CBD Cde Length: 120 Cde Le	storage Cap Reductn	0	0	0		0	0	
ersection Summary ca Type: CBD CBD (role Length: 120 truated Cycle Length: 120 fset: 66 (65%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 Introl Type: Actuated-Coordinated aximum v/c Ratic: 1.03 ersection Signal Delay: 32.4 intersection LOS: C ersection Capacity Utilization 63.9% ICU Level of Service B valysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. vits and Phases: 3: Hyde Park Ave & Walk Hill St of <u>Fig. 2</u> at <u>Fig. 2</u> a	ersection Summary bar Type: CBD coll Length: 120 tuated Cycle Length: 120 tuated Cycle Length: 120 set: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 introl Type: Actuated-Coordinated ximum vic Ratio: 1.03 ersection Signal Delay: 32.4 Intersection LOS: C resection Capacity Utilization 63.9% ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percontile volume for Softh percontile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percontile volume is metered by upstream signal. its and Phases: 3: Hyde Park Ave & Walk Hill St of	educed v/c Ratio	0.13	0.64	0.84		1.03	0.28	
ea Type: CBD rde Length: 120 Set: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 100 Introl Type: Actuated-Coordinated aximum v/c Ratio: 1.03 ersection Signal Delay: 32.4 Intersection LOS: C Intersection LOS: C I	ea Type: CBD cle Length: 120 Set: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 introl Type: Actuated-Coordinated iximum vic Ratio: 1.03 ersection Capacity Utilization 63.9% alysis Period min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Softh percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St of \$228 258	tersection Summarv							
rde Length: 120 truated Cycle Length: 120 fset: 66 (65%), Referenced to phase 1:NBSB, Start of Green stural Cycle: 110 introl Type: Actuated-Coordinated aximum v/c Ratic: 1.03 tersection Capacity Utilization 63.9% ICU Level of Service B ladysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile queue is metered by upstream signal. bits and Phases: 3: Hyde Park Ave & Walk Hill St et al.	de Length: 120 tuated Cycle Length: 120 set: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 nitrol Type: Actuated-Coordinated ximum v/c Ratio: 1.03 ersection Capacity Utilization 63.9% alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. 95th percentile volume acceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St of s 22 s 25 s 23 s 23 s 23 s 23 s 3 s 3 s 3 s 3 s 3	rea Type:	CBD						
nuareo cycre Lengin: 120 fest: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 1.03 tersection Signal Delay: 32.4 intersection LOS: C ICU Level of Service B ladysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Oueue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Oueue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. bits and Phases: 3: Hyde Park Ave & Walk Hill St of	tuates cycle Lengin: 120 isse: 66 (55%), Referenced to phase 1:NBSB, Start of Green tural Cycle: 110 introl Type: Actuated-Coordinated iximum v/c Ratio: 1.03 ersection Capacity Utilization 63.9% ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: at the second second to the second to	ycle Length: 120	100						
Attral Cycle, 110 Introl Type: Actuated-Coordinated aximum vic Ratic: 1.03 Iersection Signal Delay: 32.4 Intersection LOS: C Iresection Capacity Utilization 63.9% ICU Level of Service B Idustry Se	tural Cycle : 110 Introl Type: Actuated-Coordinated Iximum vic Ratio: 1.03 ersection Signal Delay: 32.4 ersection Signal Delay: 32.4 Intersection LOS: C ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percontile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Iits and Phases: 3: Hyde Park Ave & Walk Hill St al al al al al al al al al al	ffset: 66 (55%) Refere	120 Inced to r	hase 1	NRSR S	Start of (Green		
antrol Type: Actuated-Coordinated aximum v/c Ratic: 1.03 ersection Signal Delay: 32.4 Intersection LOS: C ersection Capacity Utilization 63.9% ICU Level of Service B ladysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queues shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Volume tor 95th percentile queue is metered by upstream signal.	Introl Type: Actuated-Coordinated iximum v/c Ratio: 1.03 ersection Signal Delay: 32.4 Intersection LOS: C ersection Capacity Utilization 63.9% ICU Level of Service B alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Softi percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St of <u>Security 228</u> 242 <u>228</u> 25 <u>28</u> 283	atural Cycle: 110		11400 1.			00011		
aximum vic Ratio: 1.03 eresection Signal Delay: 32.4 Eresection Capacity Utilization 63.9% ICU Level of Service B lalysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Jits and Phases: 3: Hyde Park Ave & Walk Hill St of <u>Face</u> 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2	xxmum vic Ratio: 1.03 ersection Signal Delay: 32.4 ersection Capacity Utilization 63.9% alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St of \$22 \$ 25 \$ 28 \$ 28 \$ 28 \$ 28 \$ 28 \$ 28	ontrol Type: Actuated-	Coordinat	ted					
Intersection Capacity Utilization 63.9% ICU Level of Service B Indepsection LOS: C Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Jits and Phases: 3: Hyde Park Ave & Walk Hill St of	Precedun Suglial Delay, 32:4 Intersection CDS: C Applied Delay, 32:4 Intersection CDS: C Intersection CDS	Maximum v/c Ratio: 1.03	32.4				otorcost	ion LOC:	C
Alysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Vits and Phases: 3: Hyde Park Ave & Walk Hill St of	alysis Period (min) 15 To be beneficially infinite. Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Volume for 95th percentile queue is metered by upstream signal. its and Phases: 3: Hyde Park Ave & Walk Hill St of #\$ a2 s 22 s	ntersection Signal Dela	ilization 6	3.9%		l	CU Leve	el of Serv	vice B
Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Notices and Phases: 3: Hyde Park Ave & Walk Hill St of <u>sea</u>	Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. Sift percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St of \$\$ 02 \$\$ 03 \$\$ 02 \$\$ 03 \$\$ 00 \$\$\$ 00 \$\$\$ 00 \$\$ 00 \$\$\$ 00 \$\$ 00 \$\$ 00 \$\$ 00 \$\$\$ 00 \$\$ 00 \$\$\$ 00 \$\$\$ 00							2, 001	
Cueue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Oueue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. blits and Phases: 3: Hyde Park Ave & Walk Hill St of	Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St of	nalysis Period (min) 15	acity du	eue is th	neoretica	lly infini	te.		
Outeue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Jits and Phases: 3: Hyde Park Ave & Walk Hill St ø1	Soar percentile volume exceeds capacity (deter filey de foriger. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St o1 #A o2 s 22 s 22 s 25 s	nalysis Period (min) 15 Volume exceeds cap	aony, qu						
Volume for 95th percentile queue is metered by upstream signal. vitis and Phases: 3: Hyde Park Ave & Walk Hill St of	Volume for 95th percentile queue is metered by upstream signal. lits and Phases: 3: Hyde Park Ave & Walk Hill St o1 #£ o2 o1 #£ o2 s 22 s	Analysis Period (min) 15 Volume exceeds cap Queue shown is max	imum afte	er two c	city and		ho lon-	or	
viits and Phases: 3: Hyde Park Ave & Walk Hill St ø1	lits and Phases: 3: Hyde Park Ave & Walk Hill St o1 ∮≸ o2 ∲ o3 ∲ o s 122s 125 s 128s	nalysis Period (min) 15 Volume exceeds cap Queue shown is max 95th percentile volur Queue shown is max	imum afte ne excee imum afte	er two c ds capa er two c	city, que vcles	ue may	be long	er.	
al Al and the second se	inis driu Friases: 3: riyde Park AV& & Waik Hill St al #K a2 2 a3 2 a s 22 s 25 s 28 s	nalysis Period (min) 15 Volume exceeds cap Queue shown is max 95th percentile volur Queue shown is max Volume for 95th per	imum afte ne excee imum afte centile qu	er two c ds capa er two c ueue is r	city, que city, que ycles. netered	ue may by upstr	be long eam sig	er. nal.	
ø1 → 🕅 🕅 👫 ø2 🖌 🖓 ø3	s 22 s 25 s 28 s	Nalysis Period (min) 15 Volume exceeds cap Queue shown is max 95th percentile volur Queue shown is max Volume for 95th per	imum afte ne excee imum afte centile qu	er two c ds capa er two c Jeue is r	city, que city, que ycles. metered	ue may by upstr	be long eam sig	er. nal.	
	s 22 s 25 s 28 s	Alysis Period (min) 15 Volume exceeds cap Queue shown is max 95th percentile volur Queue shown is max Volume for 95th per volume for 95th per	imum afte ne excee imum afte centile qu Hyde Pa	er two c ds capa er two c Jeue is r rk Ave 8	city, que city, que ycles. metered Walk H	ue may by upstr ill St	be long eam sig	er. Inal.	K.

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\EXAM.sy7 HSH Associates 13083::Parcel U Existing AM Peak Hour

Lanes, Volumes, Tin	nings	CT					
1. UKIAINE WAY & W	asningt	un 51 ▲			· ·	,	
	1	۲.	Ī	*	*	ŧ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	ø2
Ideal Flow (vphpl)	1900	1900	Ti≯ 1900	1900	ר 1900	T 1900	
Lane Width (ft)	13	13	10	10	11	11	
Leading Detector (ft)	4.0	4.0	4.0	4.0	4.0	4.0	
Trailing Detector (ft)	0	0	0		0	0	
Turning Speed (mph)	15	9	0.05	9	15	1.00	
Frt	1.00	0.850	0.95	0.95	1.00	1.00	
Fit Protected	0.950	4004	050 (-	0.950	4.400	
Satu. FIOW (prot) Flt Permitted	0.950	1391	2564	0	0.235	1489	
Satd. Flow (perm)	1599	1391	2564	0	377	1489	
Right Turn on Red Satd, Flow (RTOR)		Yes 334	84	Yes			
Headway Factor	1.10	1.10	1.25	1.25	1.19	1.19	
Link Speed (mph)	30		30			30	
Travel Time (s)	6.7		29.1			388	
Volume (vph)	193	307	344	217	531	376	
Peak Hour Factor	0.84	0.92	0.83	0.89	0.92	0.90	
Adj. Flow (vph)	230	334	414	244	577	418	
Lane Group Flow (vph)	230	334	658	0	577	418	
Protected Phases	3	pt+ov 3 4	1		U.P+P 4	14	2
Permitted Phases					1		
Detector Phases	10.0	34	10.0		8.0	14	7.0
Minimum Split (s)	17.0		19.0		20.0		29.0
Total Split (s)	32.0	70.0	21.0	0.0	38.0	59.0	29.0
Maximum Green (s)	20.7%	30.3%	15.0	0.0%	33.0	49.2%	24%
Yellow Time (s)	3.0		3.0		3.0		2.0
All-Red Time (s)	2.0 Lead		3.0 Lead		2.0 Lag		U.0 Lag
Lead-Lag Optimize?	Loud		Loud		Lug		Lug
Vehicle Extension (s)	2.0 None		2.0		2.0		2.0
Walk Time (s)	NOTE		0-iviaX		NOTIC		7.0
Flash Dont Walk (s)							20.0
Act Effct Green (s)	22.0	60.0	34.6		68.6	72.6	30
Actuated g/C Ratio	0.18	0.50	0.29		0.57	0.60	
v/c Ratio Control Delay	0.78	0.39	0.82		1.07	0.46	
Queue Delay	4.7	6.4	1.9		5.3	0.1	
Total Delay	59.7	22.3	49.2		98.2 F	19.3 R	
Approach Delay	37.6	U	49.2			65.1	
Approach LOS	27.0		15 O		33.0	E	27.0
90th %ile Term Code	Max		Coord		Max		Ped
70th %ile Green (s)	25.0		17.0		33.0		27.0
50th %ile Green (s)	Gap 21.7		20.3		Max 33.0		27.0
50th %ile Term Code	Gap		Coord		Max		Ped
30th %ile Green (s)	18.0		53.0		33.0 Max		0.0 Skip
10th %ile Green (s)	13.3		57.7		33.0		0.0
10th %ile Term Code	Gap		Coord		Max	400	Skip
Stops (vpn) Fuel Used(gal)	192	131	304		317	192	
CO Emissions (g/hr)	256	169	887		937	256	
NOx Emissions (g/hr)	50	33	173		182	50	
Dilemma Vehicles (#)	0	0	0		0	0	
Queue Length 50th (ft)	191	123	~298		~484	213	
Internal Link Dist (ft)	213	COLIII	1202		#087	∠84 308	
Turn Bay Length (ft)							
Base Capacity (vph) Starvation Cap Reducto	373	859	799		541	901	
Spillback Cap Reductn	0	-04	53		7	0	
Storage Cap Reductn	0	0 95	0		0	0 50	
Reduced we Ratio	0.80	0.85	0.88		1.08	0.50	
Area Type:	CBD						
Cycle Length: 120							
Actuated Cycle Length:	120 ed to pho	000 1-NIC	SCR Sta	rt of Gro	en		
Natural Cycle: 145	eu io pha	abe TINE	JOD, 318	n or Gre	e11		
Control Type: Actuated-	Coordina	ted					
Maximum v/c Ratio: 1.07	/ 53.4			L.	tereaction	on LOS-	D
Intersection Capacity Ut	ilization 7	2.9%		10	CU Leve	l of Serv	ice C
Analysis Period (min) 15	and the second		ooretic	lly infinit	0		
 Volume exceeds cap Queue shown is max 	imum afte	eue is th er two ci	veoretica	ary minit	e.		
# 95th percentile volur	ne excee	ds capa	city, que	ue may	be longe	r.	
Queue shown is max m Volume for 95tb per	rmum afte	er two cy	voles.	by unstr	eam sio	nal.	
	- since qu			- , apoli	- ann orgi		
Splits and Phases: 1:	Ukraine \	Way & V	Vashingt	on ST		14	
↓↓ ₀1 ↓↓ ₀2			₹₀3			₽ ₀4	

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\EXPM.sy7 HSH Associates

Syncrho 6 Report Page 1

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\EXPM.sy7 HSH Associates

Lanes, Volumes, Timings 2: Ukraine Way & Hyde Park Ave

Lane Group Lane Configurations Ideal Flow (vphpl) Lane Width (ft)

Lane Width (tt) Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt

Flt Protected Satd. Flow (prot) Flt Permitted

Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft)

Permitted Phases Detector Phases

Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%)

Maximum Green (s) Yellow Time (s) All-Red Time (s)

Lead-Lag Optimize? Vehicle Extension (s) Recall Mode

Pedestrian Calls (#/hr) Act Effct Green (s)

Actuated g/C Ratio v/c Ratio Control Delay

Queue Delay Total Delay LOS

Approach Delay Approach LOS

Approach LOS 90th %ile Green (s) 90th %ile Term Code 70th %ile Green (s) 70th %ile Green (s)

50th %ile Term Code 30th %ile Green (s) 30th %ile Term Code

10th %ile Green (s) 10th %ile Term Code

 Toth wile ferm Code
 Gap

 Stops (vph)
 157
 263

 Fuel Used(gal)
 4
 5

 CO Emissions (g/hr)
 267
 380

 NOx Emissions (g/hr)
 52
 74

 VOC Emissions (g/hr)
 62
 88

 Oce
 Linisations (grint)
 O2
 O3

 Dilemma
 Vehicles (#)
 0
 0

 Queue Length 50th (ft)
 147
 188

 Queue Length 95th (ft)
 m149
 m88

 Cubeu Lengin Sou (u)
 mins and the bit (ft)
 213

 Turm Bay Length (ft)
 Base Capacity (vph)
 356
 727

 Starvation Cap Reductn
 55
 209

 Spillback Cap Reductn
 0
 0

 Storage Cap Reductn
 0
 0

 Storage Cap Reductn
 0
 0

 Reduced v/c Ratio
 0.66
 1.18

Intersection Summary Area Type: CBD

Walk Time (s) Flash Dont Walk (s)

Lead/Lag

イット トレイ

 EBL
 EBR
 NBL
 NBT
 SBT
 SBR

 1°
 -1°
 -1°
 +1°
 +1°

 1900
 1900
 1900
 1900
 1900

 13
 13
 11
 11
 11

 5.0
 5.0
 4.0
 5.0
 5.0
 4.0

 20
 20
 20
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 <td

0.850 0.971 0.950 0.982 1584 1458 0 2922 2868 0

0.950 0.558 1584 1458 0 1660 2868 0

20

C-Max

68.7 58.7

 68.7
 58.7

 0.57
 0.49

 1.66dl
 0.85

 36.7
 36.9

 1.2
 0.9

 37.8
 37.8

 D
 D

37.8 37.8 D D

41.0

Coord 46.2 Coord

46.2

Coord 75.3

Coord 79.9

Coord

943 729 17 16 1172 1118 228 218 272 259

748 409 1056 1417 33 58

0.91 0.89

Intersection LOS: D ICU Level of Service E

15 s

0 ~394 ~534 #567 #699

 Zen
 Size
 Fize
 Size
 Gize
 <thG

2.0

9.0

Max 9.0

Max

Max

9.0

9.0

Max 9.0

Max

None

Yes 418 1.10 1.10 1.19 1.19 1.19 1.19

 Headway Factor
 1.10
 1.10
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19

Lead

20.7 35.7

 0.17
 0.30

 0.73
 0.84

 71.3
 23.0

 1.5
 81.9

72.8 104.9 E F

97.0

26.0

Gap 20.8

Gap

Gap 13.1

Area Type: CBD Cycle Length: 120 Actuated Cycle Length: 120 Offset: 117 (98%), Referenced to phase 1:NBSB, Start of Green Natural Cycle: 130 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.88

Intersection Signal Delay: 54.0 Intersection Signal Delay: 54.0 Intersection Capacity Utilization 82.7% ICU L Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite.

Volume exceeds capacity, queue is uncertainly immitte. Queue shown is maximum after two cycles.
 Sh percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 2: Ukraine Way & Hyde Park Ave

Gap 157 263

Max 20.8

2.0

None

Yes 27

24.0 2.0 0.0

Lag

3.0

7.0 17.0

35

24.0

Ped 24.0 Ped

24.0

Ped 0.0

Skip 0.0

Skip

None

13083::Parcel U Existing PM Peak Hour

Lane Group Lane Configurations (ideal Flow (vphpt)) Lane Widht (th) Storage Lanes ideal Flow (vphpt)) Lane Bidts Storage Lanes Total Lost Time (s) Leading Detector (th) Trailing Detector (th) Trailing Speed (mph) Lane Util, Factor Frt Frt Portected Satd. Flow (pern) Satd. Flow (pern) Satd. Flow (pern) Satd. Flow (RTOR) Headway Factor Ink Speed (mph) Link Distance (th) Travel Time (s) Volume (vph) Parking (#/hr) Adj, Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Parking (#/hr) Adj, Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Parking (#/hr) Adj, Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Parking (#/hr) Adj, Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Cost Phases Detector Phases Adj, Flow (vph) Cotal Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Control Delay Lead-Lag Optimize7 Vehicle Extension (s) Recail Mode Walk Time (s) LoS Actuated yC Ratio VoC Emissions (g/hr) NoX Emissions (g/hr) NoX Emissions (g/hr) NoX Emissions (g/hr) NoX Emissions (g/hr) Dilemm Vehicles (#) Dilemma Vehicles (#) Dil	3: Walk Hill St & Hyd	de Park	Ave					
Lane Group Lane Corfigurations Ideal Flow (vphpl) Lane Width (th) Storage Length (th) Storage Length (th) Storage Length (th) Lane Storage Length (th) Trailing Detector (th) Storage Langth (th) Storage Langth (th) Stato. Flow (perm) Right Turn on Red Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (th) Travel Time (s) Parking (#hr) Ad; Flow (vph) Lane Group Flow (vph) Protected Phases Detector Phases		1	•	+	*	~	1	
June Configurations Ideal Flow (vphpl) Lane Width (th) Storage Length (th) Storage Length (th) Storage Length (th) Storage Length (th) Storage Length (th) Trailing Detector (th) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Detector (th) Travel Time (s) Volume (vph) Parking (#hrt) Add, Flow (vph) Lane Group Flow (vph) Add, Flow (vph) Contal Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Control Delay Lead-Lag Optimize? Vehicle Extension (s) Actuated yC Ratio Ve Ratio Control Delay Control Delay Combine Green (s) Solth %ile Term Code Stops (yh) Fuel Used(gal) CO Emissions (ghr) NOX Emissions (ghr) NOX Emissions (ghr) NOX Emissions (ghr) NOX Emissions (ghr) NOX Entisons (ghr) Dilemma Link Dotti (th) Turm Bay Length (th) Combine Stop (th) Dilemma Code Stops (yh) Starvation Capacity (uph) Starvation Capacity	Lane Group	WBI	WBR	NBT	NBR	SBI	SBT	a2
Ideal Flow (vphpl) Lane Width (th) Storage Lanes Critical Lost Time (s) Laading Detector (th) Turning Detector (th) Turning Speed (mph) Lane Util, Factor Frt Frt Protected Satd. Flow (prot) Frt Protected Satd. Flow (prot) Frt Protected Satd. Flow (prot) Frt Protected Satd. Flow (prot) Headway Factor Link Speed (mph) Link Distance (th) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Adj. Flow (vph) Lane Group Flow (vph) Detector Phases Minimum Split (s) Total Split (s) Control Delay Queue Length Split (th) Ture May Length (th) Bare Copacity (vph) Starvation Cap Reductn Reduced vic Ratio Toth %ile Term Code Stops (vph) Dilemma Vehicles (ft) Ture May Length (th) Ture May	Lane Configurations	vvoL	WDR		NDR	JDL	1001 101	102
Lane Unit (I) Storage Length (II) Storage Length (II) Storage Length (II) Storage Length (II) Storage Length (II) Storage Length (II) Fatal Lost Time (s) Laan Util, Factor (II) Turning Speed (mph) Lane Util, Factor (II) FR Permitted Stat. Flow (port) FR Permitted Stat. Flow (port) Headway Factor Link Speed (mph) Link Distance (II) Travel Time (s) Volume (vph) Headway Factor Link Speed (mph) Lane Group Flow (vph) Tarwel Time (s) Volume (vph) Deak Hour Factor Heavy Vehicles (%) Parking (#hn) Ad, Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Spitl (s) Total Spitl (s) Total Spitl (%) Maximum Green (s) Vehice Extension (s) Detector Phases Minimum Spitl (s) Total Spitl (%) Maximum Green (s) Yellow Time (s) Lead-Lag Optimize? Vehicle Extension (s) Pedestrian Calls (#hn) Act Effct Green (s) Soth %ile Green (Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Lanes Total Lost Time (s) Leading Detector (tt) Trailing Detector (tt) Lane Util, Factor Fit Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Fit Portected Pases Permitted Phases Permitted Phases Pertocted Phases Pert	Storage Length (ft)	0	0	10	0	200	11	
Trailing Detector (ft) Trailing Detector (ft) Trailing Detector (ft) Trailing Detector (ft) Frt Fit Permitted Satd. Flow (part) Fit Permitted Satd. Flow (part) Fit Permitted Satd. Flow (part) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Peak Hour Factor Headway Vehicles (%) Peak Hour Factor Heavy Vehicles (%) Protected Phases Detector P	Storage Lanes	1	1	5.0	0	1	5.0	
Trailing Detector (t) Turning Speed (mph) Lunning Speed (mph) Lane Util, Factor Frt Frt Portected Satd. Flow (prot) Frt Pormitted Satd. Flow (perm) Kight Turn on Red Satd. Flow (RTOR) Headway Factor Link Distance (th) Travel Time (s) Volume (vph) Parking (#hn) Adj, Flow (vph) Lane Group Flow (vph) Parking (#hn) Adj, Flow (vph) Parking (#hn) Adj, Flow (vph) Parking (#hn) Adj, Flow (vph) Lane Group Flow (vph) Attimum Spilt (s) Total Spilt (s) Total Spilt (s) Total Spilt (s) Total Spilt (s) Recail Mode Walk Time (s) Lead-Lag Lead-Lag Optimize? Vehicle Extension (s) Recail Mode Walk Time (s) Lead-Lag Lead-Lag Optimize? Vehicle Streen (s) Soth %iel Green (s) Soth %iel	Leading Detector (ft)	5.0 20	4.0 20	5.0 100	4.0	5.0 20	5.0 100	
I uning speed (mph) EIP Protected Satd. Flow (port) Fit Promitted Satd. Flow (perm) Right Turn on Red Satd. Flow (perm) Right Turn on Red Satd. Flow (perm) Right Turn on Red Satd. Flow (perm) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Adj. Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Detector Phases Detector Phases	Trailing Detector (ft)	0	0	0	-	0	0	
The Sector of Sector Se	Lane Util, Factor	15	9	0.95	0.95	15	0.95	
Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (Part) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%) Parking (Hrh) Adj. Flow (vph) Lane Group Flow (vph) Tum Type Protected Phases Permitted Phases Permitted Phases Detector Detec	Frt	1.00	0.850	0.994	0.80	1.00	0.90	
Satu. Flow (pf0) Fit Permitted Satu. Flow (perm) Kight Turn on Red Satu. Flow (RTOR) Headway Factor Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Adj. Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Adj. Flow (vph) Adj. Flow (vph) Adj. Flow (vph) Adj. Flow (vph) Protected Phases Detector Phases Detector Phases Detector Phases Detector Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Maximum Green (s) Adl. Red Time (s) Ead/Lag Lead/Lag Lead/Lag (Catio Vehicle Extension (s) Recall Mode Walk Time (s) Flesh Dont Walk (s) Pedestrian Calls (#hr) Pedestrian Calls (#hr) Acturated y/C Ratio Vor Ratio Control Delay Dueue Delay Total Delay Approach LOS Soth %ile Term Code Stoth %ile Green (s) 30th	Fit Protected	0.950	1075	0040	0	0.950	2040	
Said. Flow (perm) Right Turn on Red Said. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (tt) Travel Time (mph) Link Distance (tt) Travel Time (s) Volume (vph) Parking (wph) Lane Group Flow (vph) Lane Group Flow (vph) Protected Phases Detector Ph	Sata. Flow (prot)	0.950	1275	2846	0	0.950	3049	
Right Turn on Red Stad. Flow (RTOR) Headway Factor Link Distance (tt) Travel Time (s) Volume (uph) Link Distance (tt) Travel Time (s) Volume (uph) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Ad, Flow (uph) Lane Group Flow (uph) Lane Group Flow (uph) Lane Group Flow (uph) Lane Group Flow (uph) Detector Phases Permitted Phases Permitted Phases Detector Phases Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Al-Red Time (s) Lead-Lag Optimize? Vehicle Extension (s) Actuated giC Ratio Actuated giC Ratio Actuated giC Ratio Actuated giC Ratio Actuated giC Ratio Vic Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Coth %ile Green (s) 30th %ile Gr	Satd. Flow (perm)	1373	1275	2846	0	1501	3049	
Jenes 1, 1997 (March 1997) Link Speed (mph) Link Distance (th) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Adj. Flow (vph) Lam Group Flow (vph) Tum Type Protected Phases Detector	Right Turn on Red		Yes 254	2	Yes			
Link Speed (mph) Link Distance (tt) Travel Time (ts) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Adj. Flow (vph) Tum Type Protected Phases Permitted Phases Detector Details Detector Details Details Term Code Stops (vph) Eval Evant Code Stops (vph) Eval Evant Code Dith %ile Term Code Stops (vph) Eval Evant Code Dith %ile Term Code Stops (vph) NOX Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) Dilemma Vehicles (H) Dilemma Vehicles (H) Dil	Headway Factor	1.25	1.254	1.25	1.25	1.25	1.19	
Link Usilance (II) Travel Time (s) Volume (vph) Parking (#/hr) Adj, Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Protected Phases Detector Detay Detector Detay Detector Detay Detector Detay Detector Detay Detector Detay Deta Detector Detay Deta Deta Deta Deta Deta Deta Deta Deta	Link Speed (mph)	30		30			30	
Valume (p) Valume (p) Peak Hour Factor Heavy Vehicles (%) Parking (#hr) Ad; Flow (vph) Lane Group Flow (vph) Lane Group Flow (vph) Tum Type Protected Phases Permitted Phases Permitt	Travel Time (s)	111 25		478 10 9			828 18.8	
Peak Hour Factor Heavy Vehicles (%) Parking (#/hr) Adj. Flow (vph) Tum Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Detector Phases Minimum Initial (s) Maximum Green (s) Yellow Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recail Mode Walk Time (s) Elash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio Ve Ratio Control Delay Oueue Delay Total Delay LSS Mproach LOS 90th %ile Term Code Stops (yph) ELSS Mb %ile Term Code Stops (yph) Tud Iber (s) Stoth %ile Term Code Stops (yph) Tud Iber (s) Stoth %ile Term Code Stops (yph) Tud Iber (s) Stoth %ile Term Code Stops (yph) Tud Iber (s) Dth %ile Term Code Stops (yph) Storage Cap Reductn Reduced v/c Ratio Co Emissions (g/hr) Dilemma Vehicles (#) Co Emissions (g/hr) Dilemma Vehicles (#) Co Emissions (g/hr) Dilemma Vehicles (#) Co Emissions (g/hr) Dilemma Vehicles (#) Co Emissions (g/hr) Dilemma Vehicles (#) Cortrol Type: Actuated Maximum v/c Ratio 110 Control Type: Actuated V/c Rati	Volume (vph)	2.0	226	604	23	444	987	
Ineary verticities (%) Adj. Flow (vph) Adj. Flow (vph) Lum Type Protoctad Phases Permitted	Peak Hour Factor	0.38	0.89	0.85	0.72	0.87	0.84	
Adj. Flów (vpń) Lane Group Flow (vph) Lane Group Flow (vph) Turm Type Protected Phases Detector Phases Detector Phases Detector Phases Detector Phases Detector Phases Detector Phases Detector Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Ead-Lag Optimize? Veliclo Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Valk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Acturated y/C Ratio Ver Ratio Control Delay Oueue Delay Total Delay Approach LOS Obth %ile Green (s) 30th %ile Term Code 50th %ile Green (s) 30th %ile Green (s) 30	Parking (#/hr)	0	0%	0%	4%	1%	3%	
Lane Group Flow (vph) Tum Type Protected Phases Detector Phases Detect	Adj. Flow (vph)	55	254	711	32	510	1175	
Protected Phases Permitted Phases Permitted Phases Permitted Phases Permitted Phases Minimum Initial (s) Minimum Spitl (s) Total Spitl (s) Total Spitl (s) Total Spitl (s) Total Spitl (s) Read-Lag Optimize? Vehicle Extension (s) Recall Mode Recall Recall Recall Recall Mode Recall Mode Recall Mode Recall Mode Recall Mode Recall Mode Recall Recall Rec	Lane Group Flow (vph)	55	254	743	0	510 Prot	1175	
Permitted Phases Detector Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) All-Red Time (s) Lad-Lag Lead-Lag Optimize? Vehicle Extension (s) Recail Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (<i>Ahr</i>) Act Effct Green (s) Actuated g/C Ratio V/C Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Gueue Delay Total Delay LOS Approach Careen (s) Soth %ile Term Code Soth %ile Term Code Soth %ile Term Code Stops (yhh) Fuel Used(gal) CO Emissions (g/hr) Uht %ile Term Code Stops (yhh) VOC Emissions (g/hr) Dilemma Vehicles (<i>H</i>) UNC Emissions (g/hr) Dileman Vehicles (<i>H</i>) Dileman Vehicles (<i>H</i>)	Protected Phases	3	3 4	1		4	14	2
Juetector Phases Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) All-Red Time (s) Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Actuated g/C Ratio v(c Ratio Control Delay Control Delay Approach Delay Control Delay Oth %ile Green (s) 30th %ile Term Code 30th %ile Green (s) 30th %ile Green	Permitted Phases							
Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Ladul-Lag Lead-Lag Optimize? Vehicle Extension (s) Recail Mode Walk Time (s) Lead-Lag Optimize? Vehicle Extension (s) Recail Mode Walk Time (s) Lead-Lag Optimize? Nather (s) Lead-Lag Optimize? Vehicle Strens (s) Actuated yC Ratio v(c Ratio Control Delay Queue Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Oth %ile Green (s) Soth %ile Green (s)	Detector Phases	8.0	34	10.0		4.0	14	7.0
Total Split (6) Total Split (6) Maximum Green (s) Yellow Time (s) Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Recall Mode Recall Mode Recall Mode Recall Mode Recall Mode Statio Control Delay Control Mile Green (s) Solth %ile Green (s)	Minimum Split (s)	13.0		15.0		9.0		22.0
Ivad spin (%) Maximum Green (s) Yellow Time (s) Lead/Lag Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) Actuated g/C Ratio v/c Ratio Queue Delay Control Delay Queue Delay Control Delay Queue Delay Control Delay Queue Delay Control Delay Queue Delay Control Delay Queue Delay Control Delay Queue Delay Control Delay Control Delay Control Delay Control Delay Control Delay Control Delay Control Control Control Soft %ile Green (s) Soft %ile Term Code Stops (ych) Tuth %ile Term Code Stops (ych) Tuth %ile Term Code Stops (ych) Tuth %ile Term Code Stops (ych) Dilemma Vehicles (#) Queue Length Stoh (ft) Queue Length Stoh (ft) Queue Length Stoh (ft) Queue Length Stoh (ft) Dilemma Vehicles (#) Queue Length Stoh (ft) Dilemana Vehicles (#) Storage Cap Reductn Reduced v/c Ratio Intersection Signal Dela Intersection Signal Dela Intersection Capacity U Analysis Pericon Tipe Actuated Maximum v/c Ratio Line Control Type: Actuated Maximum v/c Ratio Line Stops Congal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela	Total Split (s)	20.0	65.0	33.0	0.0	45.0	78.0	22.0
Yellow Time (c) All-Red Time (s) Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Act Leffct Green (s) Actuated g/C Ratio v/c Ratio Queue Delay Total Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Obth %ile Green (s) 90th %ile Green (s) 90th %ile Green (s) 90th %ile Green (s) 50th %ile Term Code 30th %ile Term Code 30th %ile Term Code 30th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 30th %ile Term Code 30th %ile Green (s) 30th %ile Term Code 30th %ile Green (s) 30th %ile Green	Maximum Green (s)	15.0	04.2%	∠1.5% 28.0	0.0%	40.0	00.0%	20.0
AIH-Red Time (s) Lead-Lag Optimize? Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach Cos Soth %ile Term Code 30th %ile Green (s) 30th %ile Green	Yellow Time (s)	4.0		4.0		4.0		2.0
Lead-Lag Optimize? Vehicle Extension (s) Recail Mode Recail Mode Extension (s) Actuated giC Ratio Actuated giC Ratio Actuated giC Ratio Actuated giC Ratio Actuated giC Ratio Control Delay Queue Delay Control Delay Queue Delay Control Delay Queue Delay Control Delay Approach Delay Approach Delay Approach Delay Approach Delay Oth %ile Green (s) 30th %ile Green (s) 3	All-Red Time (s)	1.0		1.0		1.0		0.0
Vehicle Extension (s) Recall Mode Walk Time (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Delay LOS Approach LOS 90th %ile Green (s) 90th %ile Green (s) 90th %ile Green (s) 90th %ile Term Code 70th %ile Green (s) 90th %ile Term Code 10th %ile Green (s) 90th %ile G	Lead-Lag Optimize?	Leau		Load		Lay		Lay
Recail Mode Waik Time (s) Flash Dont Waik (s) Pedestrian Calls (#/hr) Act Effet Green (s) Actuated g/C Ratio v/c Ratio Uceue Delay Control Delay Queue Delay Total Delay LS Approach LOS 90th %ile Green (s) 90th %ile Green (s) 90th %ile Term Code 90th %ile Green (s) 90th %ile Term Code Stops (ych) Turm Bay Length 95th (ft) Queue Length 95th (ft) Queue Length 95th (ft) Queue Length 95th (ft) Pillenmar Vehicles (#) Queue Length 95th (ft) Staradion Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Signal Dela Intersection Signal Dela Intersection Capacity U/ Nahayis Perioten (im) 11 – Volume exceeds ac Queue Shop Internet i con	Vehicle Extension (s)	2.0		2.0		3.0		3.0
Fash Dont Walk (s) Pedestrian Calls (#/hrt) Act Effc Green (s) Actuated g/C Ratio v/c Ratio Queue Delay Total Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Oth %ile Green (s) 90th %ile Green (s) 90th %ile Term Code 30th %ile Term Code 30th %ile Green (s) 30th %ile Green (s) 10th %ile Green (s) 30th %ile Green (s) Stoth %ile Green	Recall Mode Walk Time (s)	None		C-Max		None		None 7.0
Pedestrian Calls (#/hr) ActLated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Oth %ile Green (s) 90th %ile Green (s) 90th %ile Green (s) 70th %ile Green (s) 50th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 10th %ile Green (s) 00th %ile Green (s) 10th %ile Green (s) 00th %ile Green (s) 10th %ile Green (s) 10th %ile Green (s) Stops (ych) Fuel Used(gal) CO Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) Dilemma Vehicles (#) Dilemma Vehicles (#) Dilema Vehicles (#) D	Flash Dont Walk (s)							13.0
Actuated Science (S) Actuated Science (S) Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Spith %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 50th %ile Green (s) 50th %ile Green (s) 50th %ile Green (s) 30th %ile Green (s) 00th %ile Green (s) CO Emissions (g/hr) Dilemma Vehicles (#) Dilemma Vehicles (#) Dueue Length 95th (tf) Dueue Length 120 Actuated Cycle Length: Difsect 65 (54%), Refen Natural Cycle: 110 Control Type: Actuated Maximum v/c Ratio: 1.0 Analysis Period (min) 11 - Volume exceeds ca Queue Sched (min) 11	Pedestrian Calls (#/hr)	0.0	FF 0	41.0		40.0	96.0	25
vic Raio Control Delay Queue Delay Total Delay LoS Approach LOS 90th %ile Green (s) 90th %ile Green (s) 70th %ile Green (s) 70th %ile Green (s) 50th %ile Green (s) 50th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 10th %ile Green (s) 10	Actuated g/C Ratio	0.08	0.47	0.35		0.33	0.72	
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS 90th %ile Green (s) 90th %ile Green (s) 70th %ile Green (s) 70th %ile Term Code 50th %ile Term Code 10th %ile Term Code 10th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 10th %ile Green (s) Stops (g/h) VOC Emissions (g/hr) Dilemma Vehicles (#) Dilemma Vehicles (#) Dilema Vehicles (#) Dilema Vehicles (#) Dilema Vehicles (#) Dilema Vehicles (#) Storage Cap Reducth Reduced vic Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: 10thersection Signal Dela Intersection Signal Dela Intersection Capacity U Analysis Pericantie volume exceeds ac Queue Shengt Kaito (min) 11 - Volume exceeds ac	v/c Ratio	0.49	0.35	0.75		1.02	0.53	
Loca Datay LOS Total Delay Approach Delay Approach LOS 90th %ile Green (s) 90th %ile Green (s) 90th %ile Green (s) 50th %ile Green (s) 10th %ile Gr	Control Delay	66.4	3.5	42.5		63.4	10.0	
LOS Approach Delay Approach Delay Approach Delay Approach LOS 90th %ile Green (s) 90th %ile Green (s) 70th %ile Green (s) 50th %ile Green (s) 50th %ile Green (c) 30th %ile Green (c) 10th %ile Green (c) 10th %ile Green (c) 10th %ile Green (c) C Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) Oueue Length 95th (t) Dilemma Vehicles (#) Oueue Length 95th (t) Dueue Length 95th (t) Dueue Length 95th (t) Dueue Length 95th (t) Starvation Cap Reducth Reduced v/c Ratio Intersection Starwator Storage Cap Reducth Reduced v/c Ratio Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela	Total Delay	66.4	3.5	42.5		63.4	10.0	
Approach Delay Approach Delay Approach LOS 90th %ile Green (s) 90th %ile Green (s) 70th %ile Term Code 70th %ile Term Code 30th %ile Term Code 30th %ile Term Code 30th %ile Term Code 30th %ile Term Code Stops (vph) Fuel Used(gal) CC Emissions (g/hr) NCX Emissions (g/hr) Starvation Cap Reductin Base Capacity (vph) Starvation Cap Reductin Storage Cap Reductin Storag	LOS	E	A	D		E	В	
yohh %ile Green (s) 90th %ile Term Code 90th %ile Term Code 70th %ile Term Code 50th %ile Green (s) 50th %ile Green (s) 50th %ile Green (s) 50th %ile Green (s) 10th %ile Term Code Stops (vph) Tuel Used(gal) CO Emissions (g/hr) NOZ Emissions (g/hr) NOZ Emissions (g/hr) Dilemma Vehicles (#) NOZ Emissions (g/hr) Dilemma Vehicles (#) Rase Capacity (vph) Starvation Cap Reductin Reduced vic Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: 10th Sorage Cap Reductin Reduced vic Ratio Intersection Signal Dela Intersection Signal Dela Intersection Capacity UI Control Type: Actuated Maximum vic Ratio: 110 Control Type: 110 Contr	Approach Delay	14.7 R		42.5 D			26.2	
90th %ile Term Code 70th %ile Green (s) 70th %ile Green (s) 70th %ile Green (s) 50th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 30th %ile Green (s) 10th %ile	90th %ile Green (s)	13.5		29.5		40.0	U	20.0
Jour ave Green (s) Jour ave Green (s) 20th %ile Green (c) 20th %ile Green (c) 30th %ile Green (c) 30th %ile Green (c) 10th %ile Green (c) 10th %ile Green (c) 10th %ile Green (c) 10th %ile Green (c) C Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) Dilemma Vehicles (#) Dilemma Vehicles (#) Dueue Length 95th (tt) Dueue Length 95th (tt) Starvation Cap Reducth Spillback Cap Reducth Reduced v/c Ratio Intersection Staral (y/c) Natural Cycle: 110 Control Type: Actualed Maximum v/c Ratio: 110 Analysis Period (min) 11 - Volume exceeds ac Queue Schown is man # 95th percentie your	90th %ile Term Code	Gap		Coord		Max		Ped
50th %ile Green (s) 50th %ile Term Code 50th %ile Term Code 50th %ile Term Code 10th %ile Term Code 50th %ile Term Code 50tos (vph) Fuel Used(gal) CO Emissions (g/hr) NOZ Emissions (g/hr) NOZ Emissions (g/hr) VOC Emissions (g/hr) VOC Emissions (g/hr) Ulerma Vehicles (#) Queue Length 50th (ft) Ilerma Vehicles (#) Queue Length 50th (ft) Turm Bay Length 10th (ft) Turm Bay Length 10th (ft) Turm Bay Length 10th (ft) Base Capacity (vph) Starvation Cap Reductn Storage	70th %ile Green (s) 70th %ile Term Code	10.9 Gan		32.1 Coord		40.0 Max		Ped
50th %ile Term Code 50th %ile Term Code 30th %ile Green (s) 30th %ile Green (s) 10th %ile Green (s) 10th %ile Green (s) 10th %ile Green (s) 10th %ile Term Code Stops (vph) CO Emissions (g/hr) NOC Emissions (g/hr) Note end (g/hr) Starvation Cap Reductn Storage Cap Reductn Natural Cycle Length: 120 Control Type: Actuated Maximum v/c Ratio 110 Control Type: Actuated V/	50th %ile Green (s)	9.1		33.9		40.0		20.0
Jourt and Green (s) 30th %ile Green (s) 30th %ile Green (s) 10th %ile Green (s) 10th %ile Green (s) Kore (s) K	50th %ile Term Code	Gap		Coord		Max		Ped
10th %ile Green (s) 10th %ile Green (c) 10th %ile Green Code Stops (vph) Fuel Used(gal) CC Emissions (g/hr) NOX Emissions (g/hr) NOX Emissions (g/hr) Dilerma Vehicles (#) Oueue Length Stoth (ft) Oueue Length Stoth (ft) Oueue Length Stoth (ft) Turm Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Reduced v/c Ratio Intersection Summary Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refen Natural Cycle: 110 Control Type: Actuated Maximum v/c Ratio: 120 Analysis Periodingial Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ca Oueue Shown is mai	30th %ile Term Code	8.0 Min		57.0 Coord		40.0 Max		Skip
tum %ile 1 erm Code tum %ile 1 erm Code Stops (vph) Fuel Used(gal) CO Emissions (g/hr) NOX Emissions (g/hr) VOC Emissions (g/hr) VOC Emissions (g/hr) Ucueu Length Stolh (fl) Internal Link Dist (fl) Internal Link Dist (fl) Internal Link Dist (fl) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Maximum v/c Ratio: 1.0 Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ca Queue Shop win is mary	10th %ile Green (s)	8.0		57.0		40.0		0.0
Europerformation of the second	10th %ile Term Code Stops (yph)	Min 10	17	Coord		Max	633	Skip
CO Emissions (g/hr) NOX emissions (g/hr) VOC Emissions (g/hr) Dilemma Vehicles (#) Queue Length 50th (ft) Queue Length 50th (ft) Internal Link Dist (ft) Tum Bay Length 10th 10th 10th 10th Base Capacity (vph) Starvation Cap Reducth Base Capacity (vph) Storage Cap Reducth Reduced vic Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: 10th 20th 120 Control Type: Actuated Maximum vic Ratio: 110 Control Type: 110 Control	Fuel Used(gal)	0	1	10		11	12	
VICZ Emissions (g/hr) VICC Emissions (g/hr) Dilemma Vehicles (#) Oueue Length Stht (t) Internal Link Dist (t) Internal Link Dist (t) Tim Bay Length (t) Base Capacity (v/ph) Starvation Cap Reducth Spillback Cap Reducth Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actualed Cycle Length: 10ffset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actualed Maximum v/c Ratio: 1.0 Cantol Type: Actualed Maximum v/c Ratio: 1.0 Cantol Type: Actualed Maximum v/c Ratio: 1.0 Control Type: 1.0	CO Emissions (g/hr)	35	97	730		741	831	
Diemma Vehicles (#) Queue Length 50th (ft) Internal Link Dist (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reducth Cycle Length: 120 Actuated Cycle Length: Offset: 56 (54%), Refer Natural Cycle 110 Control Type: Actuated Control Type: Actuated Maximum v/e Ratio: 1.0 Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ac Queue Shoh percentile volume	VOC Emissions (g/hr)	7	19	142		144	193	
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (ych) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle 110 Control Type: Actuated Control Type: Actuated Maximum v/c Ratio: 1.0 Intersection Signal Dela Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ca Queue shown is mar # 95th percentile volume	Dilemma Vehicles (#)	0	0	0		0	0	
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: 10Tset: 65 (54%), Refer Maximum v/c Ratio: 1.0 Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ac Queue shown is man # 95th percentile volume	Queue Length 50th (ft)	42	0	293		~363	251	
Tum Bay Length (t) Base Capacity (vph) Starvation Cap Reductr Spillback Cap Reductr Spillback Cap Reductn Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Otfset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated- Maximum v/c Ratio: 1.0 Analysis Periosinal Dela Intersection Signal Dela Intersection Signal Dela Intersection Capacity U) Analysis Period (min) 1 - Volume exceeds ac Queue shown is mai # 95th percentile volume	Internal Link Dist (ft)	33	41	398		114301	404 748	
Base Capacity (vph) Starvation Cap Reductr Spillback Cap Reductr Spillback Cap Reductr Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated Intersection Capacity UI Analysis Period (min) 11 ~ Volume exceeds ac Queue shown is max # 95th percentile volume	Turn Bay Length (ft)					200		
Salitaback Cap Reductin Storage Cap Reductin Storage Cap Reductin Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated Maximum v/c Ratio: 1.0 Intersection Sagnal Dela Intersection Capacity U Analysis Period (min) 11 ~ Volume exceeds ca Queue shown is man # 95th percentile volume	Base Capacity (vph) Staniation Cap Reducto	172	725	996		500	2208	
Storage Cap Reducth Reduced v/c Ratio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated Maximum v/c Ratio: 1.0 Intersection Capacity UI Analysis Period (min) 11 ~ Volume exceeds ca Queue shown is mar generative control of the control of the Operative control of the control of the control of the Operative control of the control of the control of the Operative control of the control of the control of the Operative control of the control of the control of the Operative control of the control of the control of the Operative control of the control of the control of the Operative control of the control of the control of the control of the Operative control of the control of the control of the control of the Operative control of the c	Spillback Cap Reductn	0	0	0		0	0	
Reduced vic Katio Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle Length: Natural Cycle 110 Control Type: Actuated- Maximum vic Ratio: 1.10 Analysis Periosingal Dela Intersection Signal Dela Intersection Signal Dela Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 – Volume exceeds ac Queue shown is man # 95th percentile volume	Storage Cap Reductn	0	0	0		0	0	
Intersection Summary Area Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated- Maximum vic Ratio: 1.0 Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ca Queue shown is man # 95th percentile volume Comme down is man	Reduced v/c Ratio	0.32	0.35	0.75		1.02	0.53	
Artea Type: Cycle Length: 120 Actuated Cycle Length: Offset: 65 (54%), Refern Natural Cycle: 110 Control Type: Actuated Intersection Capacity Uf Analysis Period (min) 11 - Volume exceeds ac Queue shown is max # 95th percentile volume	Intersection Summary	CRD						
Actuated Cycle Length: Offset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated Maximum v/c Ratio: 1.0 Intersection Signal Dela Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 1 ~ Volume exceeds ca Queue shown is may gisth percentile volu	Area Type: Cycle Length: 120	CRD						
Offset: 65 (54%), Refer Natural Cycle: 110 Control Type: Actuated- Maximum v/c Ratio: 1.0 Intersection Capacity UI Analysis Period (min) 11 ~ Volume exceeds ca Queue shown is maa # 95th percentile volu	Actuated Cycle Length:	120						
Valural Cycle: 110 Control Type: Actuated- Maximum v/c Ratio: 1.0 Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 11 - Volume exceeds ca Queue shown is max # 95th percentile volu	Offset: 65 (54%), Refere	enced to	phase 1	NBSB, S	Start of G	Green		
Maximum v/c Ratic: 1.0 Intersection Signal Dela Intersection Capacity UI Analysis Period (min) 13 - Volume exceeds ca Queue shown is max # 95th percentile volu	Natural Cycle: 110 Control Type: Actuated	Coordina	ited					
Intersection Signal Dela Intersection Capacity Uf Analysis Period (min) 19 ~ Volume exceeds ca Queue shown is may # 95th percentile voluu Queue shown is may	Maximum v/c Ratio: 1.0	2						
Intersection Capacity U Analysis Period (min) 1 Volume exceeds ca Queue shown is mai 95th percentile volu	Intersection Signal Dela	y: 29.3	25.001		Ir	ntersecti	on LOS:	С
 Volume exceeds ca Queue shown is may 95th percentile volu 	Intersection Capacity Ut Analysis Period (min) 16	IIIzation 6	55.9%		10	CU Leve	I of Serv	ice C
Queue shown is max # 95th percentile volu	 Volume exceeds cap 	bacity, qu	ieue is t	heoretica	ally infinit	e.		
# 95th percentile volu	Queue shown is max	imum aft	er two c	ycles.				
UTIPTIP STUTION IS	# 95th percentile volume Queue shown is man	ne excee	eds capa	city, que	ue may	be longe	er.	
m Volume for 95th pe	m Volume for 95th per	centile q	ueue is	metered	by upstr	eam sigr	nal.	
Colite and D'	Colline and D'	····	0.0.0.	de D i	A	-		
opiits and Phases: 3:	Splits and Phases: 3:	vvaik Hil	I ST & H	/de Park	AVE	ĸ		
♦ ø1	♦ ø1	,ÅÅ,	2	1	ø3	Į₹,	ə4	
338	33 S	22 \$		 20 s		45 s		

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\EXPM.sy7 HSH Associates

293 6.7 146 0.79 10% 185 185 3 3 8.0 17.0 34.0 28.3% 29.0 3.0 3.0 2.0 Lead	576 0.90 4% 640 640 pt+ov 3 4 3 4 3 4 62.0 51.7%	1282 29.1 455 0.92 13% 495 722 1 1 10.0 19.0 29.0	202 0.89 6% 227 0	280 0.90 6% 311 311 D.P+P 4 1 4	388 8.8 256 0.86 21% 298 298 298	2
6.7 146 0.79 10% 185 185 3 3 8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	576 0.90 4% 640 640 pt+ov 3 4 3 4 51.7%	29.1 455 0.92 13% 495 722 1 1 0.0 19.0 29.0	202 0.89 6% 227 0	280 0.90 6% 311 D.P+P 4 1 4	8.8 256 0.86 21% 298 298 298	2
0.79 10% 185 185 3 3 8.0 17.0 28.3% 29.0 3.0 2.0 Lead	0.90 4% 640 640 pt+ov 3 4 3 4 62.0 51.7%	100 0.92 13% 495 722 1 1 10.0 19.0 29.0	0.89 6% 227 0	0.90 6% 311 311 D.P+P 4 1 4	0.86 21% 298 298 1 4	2
10% 185 185 3 3 8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	4% 640 640 pt+ov 3 4 3 4 62.0 51.7%	13% 495 722 1 1 10.0 19.0 29.0	6% 227 0	6% 311 311 D.P+P 4 1 4	21% 298 298 1 4	2
185 185 3 3 8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	640 640 pt+ov 3 4 3 4 62.0 51.7%	495 722 1 10.0 19.0 29.0	227 0	311 311 D.P+P 4 1 4	298 298 1 4	2
185 3 8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	640 pt+ov 3 4 3 4 62.0 51.7%	1 1 10.0 19.0 29.0	U	311 D.P+P 4 1 4	1 4	2
3 8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	3 4 3 4 62.0 51.7%	1 10.0 19.0 29.0		4 1 4	14	2
3 8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	3 4 62.0 51.7%	1 10.0 19.0 29.0		1 4		
3 8.0 17.0 28.3% 29.0 3.0 2.0 Lead	3 4 62.0 51.7%	1 10.0 19.0 29.0		4		
8.0 17.0 34.0 28.3% 29.0 3.0 2.0 Lead	62.0 51.7%	10.0 19.0 29.0			14	
34.0 28.3% 29.0 3.0 2.0 Lead	62.0 51.7%	29.0		19.0		29.0
28.3% 29.0 3.0 2.0 Lead	51.7%		0.0	28.0	57.0	29.0
29.0 3.0 2.0 Lead		24.2%	0.0%	23.3%	47.5%	24%
2.0 Lead		23.0		23.0		27.0
Lead		3.0		2.0		2.0
		Lead		Lag		Lag
				Ŭ		
2.0		2.0		2.0		2.0
None		C-Iviax		None		7.0
						20.0
						45
21.0	48.2	40.6		63.8	67.8	
0.18	0.40	0.34		0.53	0.56	
63.8	6.7	43.5		53.2	19.5	
0.5	11.4	0.6		0.3	0.0	
64.3	18.1	44.1		53.4	19.5	
E	В	D		D	B	
28.4 C		44.1 D			30.8 D	
29.0		23.0		23.0		27.0
Max		Coord		Max		Pec
22.1		29.9		23.0		27.0
18 3		233 7		23 0		27 C
Gap		Coord		Max		Ped
18.1		33.9		23.0		27.0
Gap		Coord		Max		Peo
12.5		72.4 Coord		19.1		0.0
122	122	469		180	138	OKIĻ
3	3	15		5	3	
203	194	1047		341	178	
40	38	204		66	35	
-47	40	243		0		
133	102	261		196	134	
m116	m131	#471		#335	189	
213		1202			308	
382	950	919		381	771	
38	287	0		0	0	
0	0	41		3	0	
0	0	0		0	0	
0.54	0.97	0.82		0.82	0.39	
CBD						
20 aced to r	phase 1	NBSB	Start of (Green		
Coordina	ted					
00.4						
. 30.1 ization 6	7.4%			CU Leve	on LOS:	vice C
e excee	ds capa	city, qu	eue may	be longe	er.	
mum aft	er two c	ycles.	hy unct	oom sig	nal	
onale qi	1000 IO I		by apsu	Sam aigi	ich.	
Jkraine	Way & V	Vashind	ton St			
1.0		Ĭ.	۶.			
9 s		3	. სპ 4s			28 s
	21.0 0.18 0.69 63.8 0.5 64.3 28.4 C29.0 Max 22.1 Gap 18.2 Gap 18.2 Gap 18.2 Gap 18.2 Gap 18.3 Gap 12.5 Gap 12.2 3 Gap 12.5 Gap 12.3 3 203 3 00 0 0.5 4 0 0 0 0.5 4 0.5 5 6 6 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21.0 48.2 0.18 0.40 0.69 0.68 63.8 6.7 0.5 11.4 64.3 18.1 E B 28.4 C 29.0 Max 22.1 Gap 18.3 Gap 18.3 Gap 18.1 Gap 12.2 12.2 3 203 194 40 38 47 45 0 0 133 102 m116 m131 213 382 950 38 287 0 00 0.54 0.97 CBD 20 accid to phase 1: coordinated 20 20 20 20 20 20 20 20 20 20	21.0 48.2 40.6 0.18 0.40 0.34 0.69 0.68 0.79 63.8 6.7 43.5 0.5 11.4 0.6 63.8 6.7 43.5 0.5 11.4 0.6 64.3 18.1 44.1 C D 28.4 28.4 29.0 23.0 Max Coord 22.1 28.4 29.0 23.0 Max Coord 22.1 Gap Coord 18.3 33.7 75 203 Gap Coord 12.5 72.4 Gap Coord 12.5 72.4 Gap Coord 13 102 13.1 34.9 10.0 0 0 0 0 13.3 0 0 0 0 0.33 102 280 20 cced to phase 1:NBSB, coordinated 36.1 ization 67.4% e exceeds capacity, qu <td>21.0 48.2 40.6 0.8 0.40 0.34 0.69 0.68 0.79 63.8 6.7 43.5 0.5 11.4 0.6 64.3 18.1 44.1 E B D 28.4 44.1 C D D 28.4 44.1 C D J 29.0 23.0 Max Coord 22.1 29.9 Gap Coord 18.3 33.7 Gap Coord 18.3 33.7 Gap Coord 12.5 72.4 Gap Coord 13.1 10.2 Set D 20 Coordinated 13.5 14.5</td> <td>21.0 48.2 40.6 63.8 0.18 0.40 0.34 0.53 0.69 0.68 0.79 0.84 63.8 6.7 43.5 53.2 0.5 11.4 0.6 0.3 64.3 18.1 44.1 53.4 C D D 22.4 44.1 C D 23.0 22.4 44.1 29.0 23.0 23.0 23.0 23.0 Gap Coord Max Cord Max Coord Max 18.3 33.7 23.0 Gap Coord Max 13.3 18.1 33.9 23.0 Gap Coord Max 12.5 72.4 19.1 Gap Coord Max 12.5 72.4 19.1 Gap Coord Max 12.15 72.4 19.1 Gap Coord Max 13.1 10.2 261 138</td> <td>21.0 48.2 40.6 63.8 67.8 0.18 0.40 0.34 0.53 0.56 0.18 0.40 0.34 0.53 0.55 0.18 0.68 0.79 0.84 0.39 0.53 1.14 0.6 0.3 0.0 0.3 18.1 44.1 53.4 19.5 E B D D B 28.4 44.1 36.8 6.7 29.0 23.0 23.0 23.0 Gap Coord Max 22.1 29.9 23.0 Gap Coord Max 18.3 33.7 23.0 Gap Coord Max 18.8 33.9 23.0 Gap Coord Max 18.8 32.0 Gap Gap Coord Max 18.8 32.0 Gap Gap Coord Gap 12.1 17.8 18.8 203 194 1047 341 17.8 17.8 13 102 20<!--</td--></td>	21.0 48.2 40.6 0.8 0.40 0.34 0.69 0.68 0.79 63.8 6.7 43.5 0.5 11.4 0.6 64.3 18.1 44.1 E B D 28.4 44.1 C D D 28.4 44.1 C D J 29.0 23.0 Max Coord 22.1 29.9 Gap Coord 18.3 33.7 Gap Coord 18.3 33.7 Gap Coord 12.5 72.4 Gap Coord 13.1 10.2 Set D 20 Coordinated 13.5 14.5	21.0 48.2 40.6 63.8 0.18 0.40 0.34 0.53 0.69 0.68 0.79 0.84 63.8 6.7 43.5 53.2 0.5 11.4 0.6 0.3 64.3 18.1 44.1 53.4 C D D 22.4 44.1 C D 23.0 22.4 44.1 29.0 23.0 23.0 23.0 23.0 Gap Coord Max Cord Max Coord Max 18.3 33.7 23.0 Gap Coord Max 13.3 18.1 33.9 23.0 Gap Coord Max 12.5 72.4 19.1 Gap Coord Max 12.5 72.4 19.1 Gap Coord Max 12.15 72.4 19.1 Gap Coord Max 13.1 10.2 261 138	21.0 48.2 40.6 63.8 67.8 0.18 0.40 0.34 0.53 0.56 0.18 0.40 0.34 0.53 0.55 0.18 0.68 0.79 0.84 0.39 0.53 1.14 0.6 0.3 0.0 0.3 18.1 44.1 53.4 19.5 E B D D B 28.4 44.1 36.8 6.7 29.0 23.0 23.0 23.0 Gap Coord Max 22.1 29.9 23.0 Gap Coord Max 18.3 33.7 23.0 Gap Coord Max 18.8 33.9 23.0 Gap Coord Max 18.8 32.0 Gap Gap Coord Max 18.8 32.0 Gap Gap Coord Gap 12.1 17.8 18.8 203 194 1047 341 17.8 17.8 13 102 20 </td

Lanes, Volumes, Timings 1: Ukraine Way & Washington St

Lane Group Lane Configurations Ideal Flow (vphpi) Lane Width (th) Total Lost Time (s) Leading Detector (th) Trailing Detector (th) Turning Speed (mph) Lane Util. Factor Frt

Flt Protected Satd. Flow (prot)

Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Heavy Vehicles (%)

< t > > +

 WBL
 WBR
 NBT
 NBR
 SBL
 SBT

 1900
 1900
 1900
 1900
 1900
 1900

 13
 13
 10
 11
 11

 4.0
 4.0
 4.0
 4.0
 4.0

 20
 20
 100
 20
 100

 0
 0
 0
 0
 0
 0

 15
 9
 9
 15
 1.00
 1.00

 1.00
 1.00
 0.95
 0.953
 0.955
 1.00

 0.850
 0.953

 0.950
 0.956

 1526
 1444
 2608
 0
 1481
 1366

 0.950
 0.160
 0
 1526
 1444
 2608
 0
 126
 1444
 2608
 0
 250
 1366

 1526
 1444
 2608
 0
 250
 1366
 9
 160
 160
 160
 160
 160
 110
 1.05
 1.10
 1.10
 1.25
 1.26
 1.19
 1.19
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30

Syncrho 6 Report Page 3

Z:\jobs\13\13083 HSH Associates

13083::Parcel U No Build AM Peak Hour

Lanes, Volumes, Tim	nings de Par	k Avo					
	JO F di	· · · ·	*	+	1	1	
Lano Group	EPI	EPP	NPI	NIDT	CDT	SPP	~2
Lane Configurations	CBL	EBR	NBL	1801 ≜¶}	<u>301</u> ∱1≽	SBR	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	
Leading Detector (ft)	20	20	20	100	100		
Turning Detector (ft) Turning Speed (mph)	15	9	15	0	0	9	
Lane Util. Factor	1.00	1.00	0.95	0.95	0.95	0.95	
Frt Elt Protoctod	0.050	0.850		0.090	0.959		
Satd. Flow (prot)	1584	1417	0	2938	2707	0	
Flt Permitted	0.950			0.645	0707		
Satd. Flow (perm) Right Turn on Red	1584	1417 Yes	0	1933	2707	Yes	
Satd. Flow (RTOR)		336			38	100	
Headway Factor	1.10	1.10	1.19	1.19	1.19	1.19	
Link Distance (ft)	293			828	489		
Travel Time (s)	6.7			18.8	11.1		
volume (vph) Peak Hour Factor	193	289	579 0.93	816 0 90	422	143	
Heavy Vehicles (%)	6%	6%	3%	6%	11%	12%	
Adj. Flow (vph)	205	336	623	907	469	179	
Lane Group Flow (vph)	205	336 pt+ov	D.P+P	1530	648	0	
Protected Phases	3	3 4	4	14	1		2
Permitted Phases	0	2.4	1	4.4	4		
Minimum Initial (s)	8.0	34	8.0	14	10.0		7.0
Minimum Split (s)	14.0		14.0		17.0		26.0
Total Split (s)	24.0	74.0	50.0	70.0	20.0	0.0	26.0
Maximum Green (s)	20.0%	01.7%	41.7%	08.3%	10.7%	0.0%	24.0
Yellow Time (s)	3.0		3.0		3.0		2.0
All-Red Time (s)	3.0		3.0		3.0		0.0
Lead/Lag Lead-Lag Optimize?	Lead		Lag		Lead		Lag
Vehicle Extension (s)	2.0		2.0		2.0		3.0
Recall Mode	None		None		C-Max		None
Flash Dont Walk (s)							7.0
Pedestrian Calls (#/hr)							20
Act Effct Green (s)	18.0	68.0		76.6	31.6		
Actuated g/C Ratio	0.15	0.57		0.64	0.26		
Control Delay	65.4	12.0		23.3	54.8		
Queue Delay	2.6	2.8		0.0	0.0		
I otal Delay	67.9 F	14.8 P		23.3	54.8		
Approach Delay	34.9	5		23.3	54.8		
Approach LOS	С			С	D		
90th %ile Green (s) 90th %ile Term Code	18.0 Max		44.0 Max		14.0 Coord		24.0 Ped
70th %ile Green (s)	18.0		44.0		14.0		24.0
70th %ile Term Code	Max		Max		Coord		Ped
50th %ile Green (s)	18.0		44.0		40.0		0.0
30th %ile Green (s)	18.0		1/1ax		40.0		5KIP
30th %ile Term Code	Max		Max		Coord		Skip
10th %ile Green (s)	13.2		44.0		44.8		0.0
IUTN %IE Term Code Stops (vph)	Gap 183	109	Max	1076	Coord		Skip
Fuel Used(gal)	4	2		22	10		
CO Emissions (g/hr)	281	138		1508	721		
NUX Emissions (g/hr)	55	27		293	140		
Dilemma Vehicles (#)	0	0		049	0		
Queue Length 50th (ft)	170	68		594	213		
Queue Length 95th (ft)	m208	m182		#735	#503		
Turn Bay Length (ft)	213			748	409		
Base Capacity (vph)	251	949		1610	740		
Starvation Cap Reductn	11	489		0	0		
Storage Cap Reducto	0	0		0	0		
Reduced v/c Ratio	0.85	0.73		0.95	0.88		
ntersection Summary							
Area Type: (CBD						
Cycle Length: 120							
Actuated Cycle Length: 1	20	1000 4.*		tart of C	roon		
Natural Cycle: 150	Jea to pl	iase 1:N	ଜ୍ଞରଟ, ମ	lant of G	neen		
Control Type: Actuated-0	coordina	ted					
Maximum v/c Ratio: 0.95						1.00	0
Intersection Signal Delay	: 33.1	6 2%			Intersecti	on LOS:	C F
Analysis Period (min) 15	i∠auUII č	0.270			Leve	or Selv	UC L
# 95th percentile volum	e excee	ds capa	city, que	eue may	be longe	er.	
Queue shown is maxi	mum aft	er two c	ycles.	byunct	room oi-		
volume for 95th per	enule q	ieué IS I	netered	by upst	ream sig	ıdı.	
Splits and Phases: 2:	Jkraine	Way & F	lyde Par	rk Ave			
1 1			-1		<u>.</u>		
20 s 26 s		24 .	C.U		◆1 04 50 s		

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\NBAM.sy7 HSH Associates Syncrho 6 Report Page 2 Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\NBAM.sy7 HSH Associates

Lanes, Volumes, Tin 3: Hyde Park Ave &	nings Walk H	ill St						
	4	•	Ť	1	1	ŧ		
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	ø2	
Lane Configurations	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	10	10	10	10	10	11		
Storage Length (ft)	0	0		0	200			
Total Lost Time (s)	5.0	4.0	5.0	4.0	5.0	5.0		
Leading Detector (ft)	20	20	100		20	100		
Trailing Detector (ft) Turning Speed (mph)	15	9	0	9	0 15	0		
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.95		
Frt	0.050	0.850	0.995		0.050			
Satd. Flow (prot)	1252	1197	2928	0	1501	2908		
Flt Permitted	0.950				0.950			
Satd. Flow (perm) Right Turn on Red	1252	1197 Ves	2928	U Ves	1501	2908		
Satd. Flow (RTOR)		370	3	103				
Headway Factor	1.42	1.42	1.25	1.25	1.25	1.19		
Link Speed (mpn)	111		478			828		
Travel Time (s)	2.5		10.9			18.8		
Volume (vph)	23	367	1028	27	193	519		
Heavy Vehicles (%)	9%	2%	3%	4%	1%	8%		
Parking (#/hr)	0	0						
Adj. Flow (vph)	29	432	1155	38	306	583		
Turn Type	23	pt+ov	1193	J	Prot	303		
Protected Phases	3	34	1		4	14	2	
Permitted Phases	3	34	1		А	14		
Minimum Initial (s)	8.0	04	10.0		4.0	14	7.0	
Minimum Split (s)	13.0	52.0	15.0	0.0	9.0	70.0	22.0	
Total Split (S) Total Split (%)	25.0	53.0	45.0	0.0	28.0	73.0	22.0	
Maximum Green (s)	20.0	111270	40.0	0.070	23.0	00.070	20.0	
Yellow Time (s)	4.0		4.0		4.0		2.0	
All-Red Time (s)	1.0 Lead		1.0 Lead		1.0 Lag		0.0 Lag	
Lead-Lag Optimize?	Louid		Louid		Lug		Lug	
Vehicle Extension (s)	2.0		2.0		3.0		3.0	
Walk Time (s)	None		C-Max		None		None 7.0	
Flash Dont Walk (s)							13.0	
Pedestrian Calls (#/hr)	10.0	44.0	55.0		00.0		30	
Act Effect Green (s) Actuated g/C Ratio	0.11	41.9	0.47		0.19	0.70		
v/c Ratio	0.22	0.66	0.87		1.06	0.29		
Control Delay	50.2	10.1	40.0		99.5	6.5		
Queue Delay Total Delay	50.2	10.1	40.0		99.5	0.0 6.5		
LOS	D	В	D		F	A		
Approach Delay	12.6		40.0			38.5		
Approach LOS 90th %ile Green (s)	20 0		40.0		23.0	D	20.0	
90th %ile Term Code	Max		Coord		Max		Ped	
70th %ile Green (s)	17.3		42.7		23.0		20.0	
50th %ile Green (s)	11.0		49.0		23.0		20.0	
50th %ile Term Code	Gap		Coord		Max		Ped	
30th %ile Green (s)	8.0		74.0		23.0		0.0	
10th %ile Green (s)	8.0		74.0		23.0		0.0	
10th %ile Term Code	Min		Coord		Max		Skip	
Stops (vph)	21	63	750		149	232		
CO Emissions (g/hr)	33	207	1166		418	372		
NOx Emissions (g/hr)	6	40	227		81	72		
VOC Emissions (g/hr)	8	48	270		97	86		
Queue Length 50th (ft)	21	34	476		~247	53		
Queue Length 95th (ft)	43	98	#725		#244	m201		
Tum Bay Length (ft)	31		398		200	748		
Base Capacity (vph)	209	657	1367		288	2034		
Starvation Cap Reductn	0	0	0		0	0		
Spillback Cap Reductn	0	0	0		0	0		
Reduced v/c Ratio	0.14	0.66	0.87		1.06	0.29		
Intersection Summary								
Area Type:	CBD							
Cycle Length: 120	120							
Offset: 66 (55%), Refere	nced to p	hase 1:	NBSB, S	Start of C	Green			
Natural Cycle: 110								
Control Type: Actuated-0 Maximum v/c Patio: 1.06	Coordina	ted						
Intersection Signal Delay	/: 34.5				ntersect	ion LOS:	С	
Intersection Capacity Uti	lization 6	5.3%		l	CU Leve	el of Serv	rice C	
Analysis Period (min) 15	acity and	0110 ic 4	Porotico	Illy infini	to.			
Queue shown is maxi	imum afte	er two c	vcles.	y 111111				
# 95th percentile volum	ne excee	ds capa	city, que	ue may	be long	er.		
Queue shown is maxi	mum afte	er two c	ycles.	by upstr	eam sia	nal		
m volume tot sout per	og nule dr	acue is i	netered	by upstr	cant sig	nai.		
Splits and Phases: 3:	Hyde Pa	rk Ave 8	Walk H	ill St				
↓↑ ø1		÷.	ø2	_ ネ	ø3		₽ ₀4	
45 s		22 s		25	s		28 s	

13083::Parcel U No Build AM Peak Hour

Lanes, Volumes, Timings 1: Ukraine Way & Washington ST No Build Plv											
		×.	ŧ	*	5	Ţ					
Lane Group	WBI	WRP	NBT	NBR	SBI	SBT	Ø2				
Lane Configurations	1	1	₫ ₽		٦	1	52				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900 11	1900 11					
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0					
Leading Detector (ft)	20	20	100		20	100					
Trailing Detector (ft)	0	0	0	0	0	0					
Lane Util, Factor	1.00	1.00	0.95	0.95	1.00	1.00					
Frt		0.850	0.945	2.00							
Fit Protected	0.950	1004	2500	~	0.950	1400					
Fit Permitted	0,950	1391	2000	U	0.235	1489					
Satd. Flow (perm)	1599	1391	2566	0	377	1489					
Right Turn on Red		Yes		Yes							
Satd. Flow (RTOR) Headway Factor	1.10	1 10	1 25	1.25	1 10	1 10					
Link Speed (mph)	30		30	1.20		30					
Link Distance (ft)	293		1282			388					
Travel Time (s)	6.7	245	29.1	200	E A A	8.8					
Peak Hour Factor	0.84	0.92	0.83	0.89	0.92	0,90					
Heavy Vehicles (%)	5%	8%	15%	6%	3%	11%					
Adj. Flow (vph)	236	342	425	249	591	428					
Lane Group Flow (vph)	236	342	674	0	591 D P+P	428					
Protected Phases	3	3 4	1		J.F+P	14	2				
Permitted Phases	5				1						
Detector Phases	3	34	1		4	14					
Minimum Initial (s)	10.0		10.0		8.0		7.0				
Total Split (s)	32.0	70.0	21.0	0.0	38.0	59.0	29.0				
Total Split (%)	26.7%	58.3%	17.5%	0.0%	31.7%	49.2%	24%				
Maximum Green (s)	27.0		15.0		33.0		27.0				
All-Red Time (s)	3.0		3.0		3.0		2.0				
Lead/Lag	Lead		Lead		Lag		Lag				
Lead-Lag Optimize?	2000				Lug		9				
Vehicle Extension (s)	2.0		2.0		2.0		2.0				
Recall Mode	None		C-Max		None		None				
Flash Dont Walk (s)							7.0				
Pedestrian Calls (#/hr)							30				
Act Effct Green (s)	22.4	60.4	34.2		68.2	72.2					
Actuated g/C Ratio	0.19	0.50	0.28		0.57	0.60					
Control Delay	0.79 54.3	15.9	49.7		101.8	19.6					
Queue Delay	6.1	7.1	3.9		7.4	0.1					
Total Delay	60.4	23.1	53.7		109.2	19.7					
LUS	E	С	D		F	B					
Approach LOS	38.3 D		53.7 D			71.0 E					
90th %ile Green (s)	27.0		15.0		33.0	_	27.0				
90th %ile Term Code	Max		Coord		Max		Ped				
70th %ile Green (s)	25.5		16.5 Coord		33.0 Mov		27.0				
50th %ile Green (s)	22.2		19.8		33.0		27.0				
50th %ile Term Code	Gap		Coord		Max		Ped				
30th %ile Green (s)	18.5		52.5		33.0		0.0				
30th %ile Term Code	Gap		Coord		Max		Skip				
10th %ile Term Code	Gap		Coord		Max		Skip				
Stops (vph)	197	135	306		322	201	p				
Fuel Used(gal)	4	2	13		15	4					
CO Emissions (g/hr)	261	174	925		1027	266					
VOC Emissions (g/nf)	51	34 40	214		200	52 62					
Dilemma Vehicles (#)	0	0	0		0	0					
Queue Length 50th (ft)	196	126	~318		~505	219					
Queue Length 95th (ft)	m220	m162	#429		#710	290					
Turn Bay Length (ft)	213		1202			308					
Base Capacity (vph)	373	865	791		540	896					
Starvation Cap Reductn	90	468	0		0	55					
Spillback Cap Reductn	0	0	64		9	0					
Reduced v/c Ratio	0.83	0 38.0	0 03		1 11	0.51					
	0.03	0.00	0.90			0.01					
Area Type:	CBD										
Cycle Length: 120	CDD										
Actuated Cycle Length:	120										
Offset: 2 (2%), Reference	ed to pha	ase 1:NE	BSB, Sta	rt of Gre	en						
Natural Cycle: 145	Control	tod									
Maximum v/c Ratio: 1.00	oordina	iea									
Intersection Signal Delay	: 57.8			Ir	ntersecti	on LOS:	E				
Intersection Capacity Uti	lization 7	4.4%		10	CU Leve	l of Serv	ce D				
Analysis Period (min) 15											
 Volume exceeds cap Output of showing in strength 	acity, qu	eue is th	neoretica	uly infinit	te.						
# 95th percentile volum	ne excee	ds cana	city, que	ue mav	be longe	r.					
Queue shown is max	imum afte	er two c	ycles.	- may	Singe						
m Volume for 95th per	centile qu	ueue is r	metered	by upstr	eam sigi	nal.					
0.15				c=							
Splits and Phases: 1:	Ukraine \	Way & V	Vashingt	on ST		14					
📲 ø1 👫 ø2			∢ ₀3			₽ @4					

 EBL
 EBR
 NBL
 NBT
 SBT
 SBR

 1°
 -1°
 -1°
 +1°
 +1°

 1900
 1900
 1900
 1900
 1900

 13
 13
 11
 11
 11

 5.0
 5.0
 4.0
 5.0
 5.0
 4.0

 20
 20
 20
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 <td Lane Group Lane Configurations Ideal Flow (vphpl) Lane Width (ft) Lane Width (tt) Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt 0.850 0.971 0.950 0.982 1584 1458 0 2922 2868 0 Flt Protected Satd. Flow (prot) Flt Permitted 0.950 0.563 1584 1458 0 1675 2868 0 Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Yes 27 Yes 417 1.10 1.10 1.19 1.19 1.19 1.19
 Headway Factor
 1.10
 1.10
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.19
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 1.10
 Permitted Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s)
 Zen
 Size
 Fize
 Size
 Gize
 <thG 24.0 2.0 0.0 Lead Lead/Lag Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode 2.0 2.0 20 3.0 C-Max None None None Walk Time (s) Flash Dont Walk (s) 7.0 17.0 Pedestrian Calls (#/hr) Act Effct Green (s) 35 21.1 36.1 68.3 58.3 Actuated g/C Ratio v/c Ratio Control Delay
 0.18
 0.30

 0.74
 0.85

 68.8
 22.0

 1.8
 92.9
 0.57 0.49 1.71dl 0.88
 38.5
 39.0

 1.8
 1.5

 40.3
 40.5

 D
 D
 Queue Delay Total Delay LOS 70.6 114.9 E F Approach Delay Approach LOS 40.3 40.5 D D 103.9 Approach LOS 90th %ile Green (s) 90th %ile Term Code 70th %ile Green (s) 70th %ile Green (s) 26.0 9.0 41.0 24.0 41.0 Coord 45.2 Coord 45.9 Max 21.8 Ped 24.0 Ped Max 9.0 Gap 21.1 Max 24.0 9.0 50th %ile Term Code 30th %ile Green (s) 30th %ile Term Code Gap 18.1 Max Coord 74.9 Ped 0.0 9.0 Coord 79.6 Gap 13.4 Max 9.0 Skip 0.0 10th %ile Green (s) 10th %ile Term Code Gap 161 233 Max Coord Skip
 Toth Wile Term Code
 Gap

 Stops (vph)
 161
 233

 Fuel Used(gal)
 4
 5

 CO Emissions (g/hr)
 267
 367

 NOx Emissions (g/hr)
 52
 71

 VOC Emissions (g/hr)
 62
 85
 956 735 17 17
 1220
 1175

 237
 229

 283
 272

 Object
 Object< 0 ~413 ~563 #587 #726
 Cubeu Lengin Sou (u)
 Intra Company
 Intra Company

 Internal Link (bis) (ft)
 213

 Turn Bay Length (ft)
 Base Capacity (vph)
 356

 Base Capacity (vph)
 356
 728

 Starvation Cap Reductn
 57
 210

 Spillback Cap Reductn
 0
 0

 Storage Cap Reductn
 0
 0
 748 409 1058 1408 0 0 36 62 0 0
 Storage Cap Reductn
 0
 0

 Reduced v/c Ratio
 0.69
 1.20
 0.93 0.92 Intersection Summary Area Type: CBD Area Type: CBD Cycle Length: 120 Actuated Cycle Length: 120 Offset: 117 (98%), Referenced to phase 1:NBSB, Start of Green Natural Cycle: 130 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.30 Intersection Signal Delay: 57.9 Inters Intersection Capacity Utilization 84.5% ICU L Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Intersection LOS: E ICU Level of Service E Volume exceeds capacity, queue is uncertainly immitte. Queue shown is maximum after two cycles.
 Sh percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Volume for 95th percentile queue is metered by upstream signal. Defacto Left Lane. Recode with 1 though lane as a left lane. Splits and Phases: 2: Ukraine Way & Hyde Park Ave **\$** 04

イット トレイ

Lanes, Volumes, Timings 2: Ukraine Way & Hyde Park Ave

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\NBPM.sy7 HSH Associates Syncrho 6 Report Page 1 Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\NBPM.sy7 HSH Associates 13083::Parcel U No Build PM Peak Hour

Lanes, volumes, Timings 3: Walk Hill St & Hyde Park Ave								
<u></u>		4	+	*		1		
	+	WDD	NDT	/	CDI	+	-0	
Lane Group Lane Configurations	WBL	WBR	NBT ≜1≽	NBR	SBL	SB1	ø2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Storage Length (ft)	13	13	10	10	200	11		
Storage Lanes	1	1	5.0	0	1	5.0		
Leading Detector (ft)	5.0 20	4.0	5.0 100	4.0	5.0 20	5.0 100		
Trailing Detector (ft)	0	0	0		0	0		
Lane Util, Factor	1.00	1.00	0.95	0.95	1.00	0.95		
Frt		0.850	0.993					
Fit Protected Satd, Flow (prot)	0.950	1275	2843	0	0.950	3049		
Flt Permitted	0.950				0.950			
Satd. Flow (perm) Right Turn on Red	1373	1275 Vos	2843	0 Ves	1501	3049		
Satd. Flow (RTOR)		261	4	100				
Headway Factor	1.25	1.25	1.25	1.25	1.25	1.19		
Link Distance (ft)	111		478			828		
Travel Time (s)	2.5	000	10.9	04	455	18.8		
Peak Hour Factor	0.38	0.89	0.85	0.72	455	0.84		
Heavy Vehicles (%)	10%	6%	6%	4%	1%	3%		
Parking (#/hr) Adi, Flow (vph)	0 58	261	728	33	523	1205		
Lane Group Flow (vph)	58	261	761	0	523	1205		
Turn Type Protected Phases	0	pt+ov	1		Prot	1.4	2	
Permitted Phases	3	34	ſ		4	14	2	
Detector Phases	3	34	1		4	14	7.0	
Minimum Initial (s) Minimum Split (s)	8.0		10.0		4.0 9.0		22.0	
Total Split (s)	20.0	65.0	33.0	0.0	45.0	78.0	22.0	
I otal Split (%) Maximum Green (s)	16.7%	54.2%	27.5%	0.0%	37.5%	65.0%	18%	
Yellow Time (s)	4.0		4.0		4.0		2.0	
All-Red Time (s)	1.0		1.0		1.0		0.0	
Lead-Lag Optimize?	Lead		Lead		Lag		Lag	
Vehicle Extension (s)	2.0		2.0		3.0		3.0	
Walk Time (s)	None		C-Max		None		None 7.0	
Flash Dont Walk (s)							13.0	
Pedestrian Calls (#/hr)	10.4	56 4	417		40.0	86.7	25	
Actuated g/C Ratio	0.08	0.47	0.35		0.33	0.72		
v/c Ratio	0.50	0.36	0.77		1.05	0.55		
Queue Delay	0.0	3.4	43.4		0.0	0.0		
Total Delay	67.1	3.4	43.4		70.0	10.5		
LOS Approach Delay	15 0	A	D 43.4		E	28.5		
Approach LOS	B		-0.4 D			C		
90th %ile Green (s)	13.9		29.1		40.0		20.0	
70th %ile Green (s)	11.1		31.9		40.0		20.0	
70th %ile Term Code	Gap		Coord		Max		Ped	
50th %ile Green (s) 50th %ile Term Code	9.3 Gap		33.7 Coord		40.0 Max		20.0 Ped	
30th %ile Green (s)	8.0		57.0		40.0		0.0	
30th %ile Term Code	Min		Coord		Max		Skip	
10th %ile Term Code	8.0 Min		Coord		40.0 Max		Skip	
Stops (vph)	21	17	494		371	663		
CO Emissions (a/hr)	37	100	755		11 802	12 864		
NOx Emissions (g/hr)	7	19	147		156	168		
VOC Emissions (g/hr)	9	23	175		186	200		
Queue Length 50th (ft)	44	0	303		~428	279		
Queue Length 95th (ft)	35	41	#436		m#564	506		
Turn Bay Length (ft)	31		398		200	/ 48		
Base Capacity (vph)	172	730	992		500	2204		
Starvation Cap Reductn Spillback Cap Reductn	0	0	0		0	0		
Storage Cap Reductn	0	0	0		0	0		
Reduced v/c Ratio	0.34	0.36	0.77		1.05	0.55		
Intersection Summary								
Area Type: C	BD							
Actuated Cycle Length: 1	20							
Offset: 65 (54%), Referen	nced to	phase 1:	NBSB, S	Start of G	Green			
Control Type: Actuated-C	oordina	ited						
Maximum v/c Ratio: 1.05								
Intersection Signal Delay: Intersection Canacity Ltill	: 31.0	57.0%		li D	ntersection	on LOS:	C	
Analysis Period (min) 15	∠au011 t			10	CO Leve	i or SerV		
 Volume exceeds capa 	acity, qu	ieue is t	neoretica	ally infinit	te.			
Queue shown is maxir # 95th percentile volum	num aft e excer	er two c ds capa	ycles. city, que	ue mav	be longe	er.		
Queue shown is maxir	num aft	er two c	ycles.	y	_ ionge			
m Volume for 95th perc	entile q	ueue is i	metered	by upstr	eam sigr	nal.		
Splits and Phases: 3: V	Valk Hil	I St & H	/de Park	Ave				
↓↑ _{a1}	#1 -	2	2	a3	N.	*1		
33 s	22 s	4	20 s	83	45 s	04		

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\NBPM.sy7 HSH Associates

Lanes, Volumes, 1 Ukraine Way &	Timings Washingt	on St						
n ontano may a		•	ŧ	*	~	1		
	W/DI	WPP	NIDT	/	CDI	CDT	~?	
Lane Configurations	VVBL	WBR		NBK	SBL	<u>381</u>	02	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	13	13	10	10	11	11		
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Trailing Detector (ft)	20	20	100		20	100		
Turning Speed (mph)) 15	9	U	9	15	U		
Satd. Flow (prot)	1599	1391	2564	0	1525	1489		
Fit Permitted	0.950	4004	0504	0	0.235	4 400		
Sata. Flow (perm) Right Turn on Red	1599	1391 Yes	2564	Yes	3//	1489		
Satd. Flow (RTOR)		350	84	103				
Link Speed (mph)	30		30			30		
Link Distance (ft)	293		1282			388		
Volumo (vph)	5.7	300	29.1	222	554	295		
Peak Hour Factor	0.84	0.92	0.83	0.89	0.92	0.90		
Heavy Vehicles (%)	5%	8%	15%	6%	3%	11%		
Adj. Flow (vph)	237	350	425	251	602	428		
Lane Group Flow (vp	h) 237	350	676	0	602	428		
Protected Phases	3	3.4	1		D.P+P	14	2	
Permitted Phases	5	04			1	14	2	
Detector Phases	3	34	1		4	14		
Minimum Initial (s)	8.0		10.0		8.0		7.0	
Minimum Split (s)	17.0	70.0	19.0	0.0	19.0	50.0	29.0	
Total Split (%)	26.7%	58.3%	17.5%	0.0%	31.7%	49.2%	29.0	
Maximum Green (s)	27.0	00.070	15.0	0.070	33.0	10.270	27.0	
Yellow Time (s)	3.0		3.0		3.0		2.0	
All-Red Time (s)	2.0		3.0		2.0		0.0	
Lead-Lag	Lead		Lead		Lag		Lag	
Vehicle Extension (s)	2.0		2.0		2.0		2.0	
Recall Mode	None		C-Max		None		None	
Walk Time (s)							7.0	
Flash Dont Walk (s) Pedestrian Calls (#/h	r)						20.0	
Act Effct Green (s)	22.4	60.4	34.2		68.2	72.2	50	
Actuated g/C Ratio	0.19	0.50	0.28		0.57	0.60		
v/c Ratio	0.80	0.40	0.85		1.11	0.48		
Control Delay	52.0	15.9	49.8		103.0	20.5		
Total Delay	58.3	26.8	52.6		109.0	20.5		
LOS	E	С	D		F	С		
Approach Delay	39.5		52.6			72.2		
Approach LOS	D 107	140	D 219		E10	E		
Queue Length 95th (1	ft) m212	m154	#428		#766	361		
Internal Link Dist (ft)	213		1202			308		
Turn Bay Length (ft)								
Base Capacity (vph)	373	870	791		540	896		
Starvation Cap Reduc	tn 0	486	51		7	0		
Storage Cap Reductr	n 0	0	0		0	0		
Reduced v/c Ratio	0.84	0.91	0.91		1.13	0.48		
Intersection Summar	у							
Area Type:	CBD							
Cycle Length: 120								
Actuated Cycle Leng	th: 120	aco 1·NI	208 010	rt of Gro	000			
Natural Cycle: 145	enced to pra	ase I.IN	55D, 3la		en			
Control Type: Actuate	ed-Coordina	ited						
Maximum v/c Ratio:	1.11						_	
Intersection Signal D	elay: 58.1	75 10/		1	ntersect	ion LOS	iee D	
Analysis Period (min)	15	0.1%			CU Leve	er or Serv	nce D	
 Volume exceeds 	capacity, qu	ieue is tl	neoretica	ally infini	te.			
Queue shown is n	naximum aft	er two c	ycles.	,				
# 95th percentile vo	olume excee	eds capa	city, que	ue may	be long	er.		
Queue shown is n	naximum aft	er two c	ycles.	huungt		nal		
volume for 95th	percentile q	ueue IS I	metered	by upsti	ream sig	ndl.		
Splits and Phases:	1: Ukraine	Way & V	Vashing	on St				
			7.0			N		
21 s 29 s	W6.		32 s			38 s		
			-			-		

Syncrho 6 Report Page 3 Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\BPM.sy7 HSH Associates 13083::Parcel U Build PM Peak Hour

2: Ukraine Way & Hy	ings /de Par	rk Ave					
		-			1	,	
	~	7	1	Ť	ŧ	*	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	ø2
Lane Configurations	1007	1000	4055	41	≜ †≽	1005	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	
Leading Detector (ft)	20	20	20	100	100		
Trailing Detector (ft)	0	0	0	0	0		
Turning Speed (mph)	15	9	15			9	
Satd. Flow (prot)	1584	1458	0	2922	2868	0	
Satd Flow (porm)	1594	1459	0	1697	2869	0	
Right Turn on Red	1384	1408 Yes	U	1807	2000	Yes	
Satd. Flow (RTOR)		416			26	. 00	
Link Speed (mph)	30			30	30		
Link Distance (ft)	293			349	489		
Travel Time (s)	6.7	507	0.1.0	7.9	11.1	000	
Volume (vph)	180	597	318	554	896	203	
Heavy Vehicles (%)	0.88	0.94	0.90	7%	0.88	12%	
Adi, Flow (vph)	205	635	353	622	1018	239	
Lane Group Flow (vph)	205	635	000	975	1257	0	
Turn Type		pt+ov	D.P+P				
Protected Phases	3	3 4	4	14	1		2
Permitted Phases			1				
Detector Phases	3	34	4	14	1		7.0
Minimum Initial (S)	8.0		14.0		10.0		7.0
Total Split (s)	32.0	47 0	14.0	62.0	47.0	0.0	26.0
Total Split (%)	26.7%	39.2%	12.5%	51.7%	39.2%	0.0%	22%
Maximum Green (s)	26.0		9.0		41.0		24.0
Yellow Time (s)	3.0		3.0		3.0		2.0
All-Red Time (s)	3.0		3.0		3.0		0.0
Lead/Lag	Lead		Lag		Lead		Lag
Lead-Lag Optimize?	20		20		2.0		3.0
Recall Mode	None		None		C-May		None
Walk Time (s)	None		None		O WILLA		7.0
Flash Dont Walk (s)							17.0
Pedestrian Calls (#/hr)							35
Act Effct Green (s)	22.9	37.9		66.5	56.5		
v/c Ratio	0.19	0.32		1 784	0.47		
Control Delay	64.5	20.5		40.7	44.2		
Queue Delay	4.4	93.0		3.9	3.5		
Total Delay	68.8	113.5		44.7	47.7		
LOS	E	F		D	D		
Approach Delay	102.6			44.7	47.7		
Approach LOS	F	10-		D	D		
Queue Length 50th (ft)	135 m146	169		~463	~629		
Queue Length 95th (ft)	212	maa		10707	#/41		
Turn Bay Length (ft)	213			269	409		
Base Capacity (vph)	356	745		1038	1365		
Starvation Cap Reductn	90	217		0	0		
Spillback Cap Reductn	0	0		36	62		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.77	1.20		0.97	0.96		
Intersection Summary	_	_	_				_
Area Type: (CBD						
Cycle Length: 120							
Actuated Cycle Length: 1	120						
Offset: 117 (98%), Refer	enced to	phase	1:NBSE	, Start o	f Green		
Natural Cycle: 130							
Control Type: Actuated-C	coordina	ated					
Intersection Signal Dalay	r 61 7				Intorcosti	00100	6
Intersection Capacity Ltti	lization 9	35.6%			ICLU AVO	I of Serv	ice E
Analysis Period (min) 15		55.076			CO Leve		
 Volume exceeds cap 	acity, au	ueue is t	heoretic	ally infin	ite.		
Queue shown is maxi	mum aft	ter two d	ycles.	,			
# 95th percentile volum	ne excee	eds capa	icity, qu	eue may	be longe	er.	
Queue shown is maxi	imum aft	ter two o	ycles.				
m Volume for 95th per	centile qu	ueue is	metered	l by upst	ream sig	nal.	
di Defacto Left Lane. F	Recode v	with 1 th	ough la	ne as a l	eft lane.		
Colite and Discours	l llura in a l	Mov 9	Jude D	ele A···-			
Splits and Phases: 2:	okraine	vvayŏul	чуаё Ра	urk AVE	L A		
📲 al		1	k		_ ⊀ ∞		
47 s		26	\$		32 s		

	пуцет	Park A	/e											Duliu F M F eak
	٦		\mathbf{i}	4	-	•	•	Ť	1	1	Ŧ	1		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2	
Lane Configurations		\$			र्स	1		ፋት		۲	†î≽			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	12	12	12	10	12	10	12	10	10	10	11	12		
Storage Length (It)	0		0	0		1	0		0	200		0		
Fotal Lost Time (s)	4.0	4.0	4.0	5.0	4.0	4.0	4.0	5.0	4.0	5.0	5.0	4.0		
_eading Detector (ft)	50	50	1.0	20	50	20	50	100		20	100	1.0		
Frailing Detector (ft)	0	0		0	0	0	0	0		0	0			
Furning Speed (mph)	15		9	15		9	15		9	15		9		
Satd. Flow (prot)	0	1593	0	0	1483	1152	0	2846	0	1501	3046	0		
-It Permitted	0	0.715	0	0	0.715	4450	0	0.835	0	0.950	20.40	0		
Sato. Flow (perm)	0	1190	Ves	0	1113	1152 Vos	0	2376	Ves	1501	3046	Ves		
Satd Flow (RTOR)		1	103			261		4	103		1	103		
ink Speed (mph)		30			30	201		30			30			
ink Distance (ft)		159			111			478			479			
Travel Time (s)		3.6			2.5			10.9			10.9			
/olume (vph)	17	1	1	22	1	232	1	623	24	455	1015	9		
Peak Hour Factor	0.92	0.92	0.92	0.38	0.92	0.89	0.92	0.85	0.72	0.87	0.84	0.92		
leavy Vehicles (%)	2%	2%	2%	10%	2%	6%	2%	6%	4%	1%	3%	2%		
arking (#/hr)	10		4	0	4	0	4	700	20	500	1202	10		
ane Group Flow (upb)	18	20	0	58	50	201	1	733	33	523	1208	10		
Furn Type	Perm	20	0	Perm	59	201 pm+ov	Perm	/0/	0	Prot	1218	U		
Protected Phases	1 Gini	3		- Chil	3	4	1 cml	1		4	14		2	
Permitted Phases	3	Ŭ		3	0	3	1						~	
Detector Phases	3	3		3	3	4	1	1		4	14			
/linimum Initial (s)	8.0	8.0		8.0	8.0	4.0	10.0	10.0		4.0			7.0	
/linimum Split (s)	13.0	13.0		13.0	13.0	9.0	15.0	15.0		9.0			22.0	
Fotal Split (s)	13.0	13.0	0.0	13.0	13.0	50.0	35.0	35.0	0.0	50.0	85.0	0.0	22.0	
Fotal Split (%)	10.8%	10.8%	0.0%	10.8%	10.8%	41.7%	29.2%	29.2%	0.0%	41.7%	70.8%	0.0%	18%	
Aaximum Green (s)	8.0	8.0		8.0	8.0	45.0	30.0	30.0		45.0			20.0	
rellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0			2.0	
ead/l an	beal	0.1		0.1	0.1	1.0	0.1	0.1		0.1			0.0	
ead-Lag Optimize?	Leau	Leau		Leau	Leau	Lay	Leau	Leau		Lay			Lay	
/ehicle Extension (s)	2.0	2.0		2.0	2.0	3.0	2.0	2.0		3.0			3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		None			None	
Nalk Time (s)													7.0	
Flash Dont Walk (s)													13.0	
Pedestrian Calls (#/hr)													25	
Act Effct Green (s)		9.0			9.0	55.8		42.0		44.4	92.4			
Actuated g/C Ratio		0.08			0.08	0.46		0.35		0.37	0.77			
Control Dolay		0.22			0.71	0.39		0.92		40.3	0.52			
		0.0			0.0	0.0		0.0		40.3	0.0			
Total Delay		56.7			95.9	3.8		56.9		40.3	7.9			
OS		E			F	A		E		D	A			
Approach Delay		56.7			20.8			56.9			17.6			
Approach LOS		E			С			E			В			
Queue Length 50th (ft)		14			46	0		~398		285	235			
Queue Length 95th (ft)		40			#118	42		#482		m#497	348			
nternal Link Dist (ft)		79			31			398		202	399			
Rase Capacity (yoh)		00			0.0	690		925		200	2226			
Starvation Can Reducto		90			83	080		035		505 0	2330			
Spillback Cap Reducto		0			0	0		0		0	0			
Storage Cap Reductn		0			0	0		0		0	0			
Reduced v/c Ratio		0.22			0.71	0.38		0.92		0.93	0.52			
ntersection Summery			_	_		_				_		_	_	
rea Type:	CBD													
vole Length: 120	000													
Actuated Cycle Length: 1	20													
Offset: 65 (54%), Referen	nced to p	hase 1:	NBSB, S	Start of C	Green									
latural Cycle: 130														
Control Type: Actuated-C	Coordinat	ed												
Maximum v/c Ratio: 0.94														
ntersection Signal Delay	: 28.8	1.00/		li li	ntersecti	on LOS	: C							
ntersection Capacity Util	ization 7	1.0%		1	CU Leve	e of Ser	vice C							
Volumo evenedo	acity a		ooretic	lly infini	to									
Ouque shown is may	acity, que	r two co	clos	iny minini	.e.									
4 95th percentile volum	nun alle	is caper	tity que	ue mav	he long	ər								
Outporteritie voluit	mum ofte	r two cu	ny, que	ao may	Se longe									
Queue snown is may			3 4 1 3 4 4 7											

Z:\jobs\13\13083 - Parcel U\Project\Synchro\SYNCHRO\BPM.sy7 HSH Associates

 Splits and Phases:
 3: Site Drive South & Hyde Park Ave

 ↓ o1
 ↓ ↓ o2
 ↓ ↓ o3
 ↓ ↓ o4

 35 s
 ↓ ↓ 2 s
 ↓ 13 s
 ↓ 50 s

HCM Unsignalized Intersection Capacity Analysis 4: Site Drive North & Hyde Park Ave										13083::Pi Build PM Pe		
	٩	7	1	t	ţ	~						
Movement	EBL	EBR	NBL	NBT	SBT	SBR						
Lane Configurations				4 12	A 12	-						
Sign Control	Stop			Free	Free							
Grade	0%			0%	0%							
Volume (veh/h)	0	0	0	872	1479	14						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Hourly flow rate (vph)	0	0	0	948	1608	15						
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type	None											
Median storage veh)												
Upstream signal (ft)				479	349							
pX, platoon unblocked	0.73	0.63	0.63									
vC. conflicting volume	2089	811	1623									
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1283	113	1401									
tC, single (s)	6.8	6.9	4.1									
tC, 2 stage (s)												
tF (s)	3.5	3.3	2.2									
p0 queue free %	100	100	100									
cM capacity (veh/h)	115	579	304									
Direction Lane #	NR 1	NR 2	SB 1	SB 2								
Vielume Tetel	IND I	100 2	4070	552								
Volume Loft	316	032	1072	551								
Volume Dight	0	0	0	15								
	204	1700	1700	1700								
Volume to Conneity	0.00	0.27	0.62	0.22								
Oucure Longth 95th (#)	0.00	0.37	0.63	0.32								
Control Dolay (c)	0.0	0.0	0.0	0.0								
Lane LOS	0.0	0.0	0.0	0.0								
Approach Delay (s)	0.0		0.0									
Approach LOS	0.0		0.0									
Intersection Summan/												
Average Delay			0.0									
Intersection Canacity Liti	lization		44 7%	10		Lof Service	Α					
Analysis Period (min)	1200011		15	IV.	DO LEVE		~					
Analysis i chou (min)			15									

Novement WBL WBR NBT NBR SBL SBT ane Configurations Y ↑↑		4	•	Ť	1	1	Ļ
ane Configurations Y ↑↑ ↑↑ ↑↑ Sign Control Stop Free Free Free Sign Control Stop Free 0% <	Movement	WBL	WBR	NBT	NBR	SBL	SBT
Sign Control Stop Free Free Grade 0% 0% 0% 0% Grade 0% 0% 0% 0% Ordume (veh/h) 5 29 1026 5 5 531 Yeak Hour Factor 0.92 <td>Lane Configurations</td> <td>¥</td> <td></td> <td>A1.</td> <td></td> <td></td> <td>.₫≜</td>	Lane Configurations	¥		A 1.			. ₫ ≜
Srade 0% 0% 0% Volume (veh/h) 5 29 1026 5 5 531 Volume (veh/h) 5 29 1026 5 5 531 Volume (veh/h) 5 32 0.92	Sign Control	Stop		Free			Free
folume (veh/h) 5 29 1026 5 5 531 Peak Hour Factor 0.92	Grade	0%		0%			0%
Peak Hour Factor 0.92	Volume (veh/h)	5	29	1026	5	5	531
Jourk Jivov rate (vph) 5 32 1115 5 5 577 Pedestrians ane Widh (t) 3 3 1115 5 5 577 Pedestrians ane Widh (t) 3 3 3 5 5 577 Pedestrians Speed (ft/s) Percent Blockage 5 5 577 Vight turn flare (veh) More 388 3 4 5 5 5 77 Addian type None 388 38 3 2 5 7 7 560 1121 C(1, stage 1 conf vol 1121 C(2, stage 2 conf vol 4 1 5 5 3 3 2.2 9 9 Mcapacity (veh/h) 127 471 619 1121 6 1121 1 1 1 1 1 619 1121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Pedestrians ane Width (ft) Vaking Speed (ft/s) Fercent Blockage tight turn flare (veh) Aedian storage veh) Jestream signal (ft) Sk, platoon unblocked C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, unblocked vol C, stage 2 conf vol C, unblocked vol C, conflicting volume 1417 560 1121 C, stage 2 conf vol C, unblocked vol C, unblocked vol C, stage 2 conf vol C, stage 2 conf vol C, unblocked vol C, stage 2 conf vol C, unblocked vol C, stage 2 conf vol C, stage 2 conf vol C, unter the	Hourly flow rate (vph)	5	32	1115	5	5	577
ane Width (ft) Varking Speed (ft/s) Vercent Blockage Vight turn flare (veh) Vercent Blockage Vercent Blockage Verc	Pedestrians						
Valking Speed (tt/s) versont Blockage kight turn flare (veh) Aedian storage veh) Jpstream signal (tt) 388 X, platoou nublocked C, conflicting volume 1417 560 1121 C1, stage 1 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C2, stage (s) 560 1121 C, 2 stage 2 conf vol C, conflicting volume 1417 560 1121 C, stage (s) 46.8 6.9 4.1 C, 2 stage (s) 50 3.3 2.2 0 queue free % 96 93 99 M capacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 37 743 377 198 385 Volume Total 37 743 2.0 5 0 Volume Right 32 0 5 0 Volume Left 5 0.0 0.1 0.23 Dueue Length 95th (ft) 9 0.0 0.1 0.23 Dueue Length 95th (ft) 9 0.0 0.1 0.23 Dueue Length 95th (ft) 9 0.0 0.1 SH 0.0 0.0 0.0 0.0 ane LOS C A https://doi.org///op/10.000 A	Lane Width (ft)						
Venent Blockage Vone Aedian type None Median storage veh) 388 Venent Storage veh) 388 X, platoon unblocked 1121 C1, stage 1 conf vol 1121 C2, stage 2 conf vol 1121 C2, stage 2 conf vol 1121 C3, stage 2 conf vol 1121 C, stage 1 conf vol 560 1121 C, stage 2 conf vol 1121 C, stage 2 conf vol 1121 C, stage 2 conf vol 2 C, stage 1 conf vol 2 C2, stage 2 conf vol 2 C, stage 2 conf vol 2 C2, stage 2 conf vol 3 C2, stage 2 conf vol 2 Outpue Ctere % 96 93 M capacity (veh/h) 127 471 Olgume Total 37 743 377 Olume Ref 4 5 0 0 Olume Netht 32 0 0 Olume Netht 32 0 0 0	Walking Speed (ft/s)						
Wight turn flare (veh) None Aedian type None Aedian type None Aedian type 388 Aedian type 388 X, platoon unblocked 1121 C1, stage 1 conf vol 1121 C2, stage (sonf vol 1121 C2, stage (s) 6.8 6.9 4.1 C, 2 stage (s) 560 1121 C, 2 stage (s) 5 3.3 2.2 0 queue free % 96 93 99 M capacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 Volume Left 5 0 0 5 0 Volume Left 37 743 377 198 385 Volume Left 32 0 5 0 0 Olume Right 32 0 0 1 0.23 2 Volume Left 5 0 0 1 0 0.24	Percent Blockage						
Mone None Median storage veh) 388 X, platoon unblocked 388 C, conflicting volume 1417 560 1121 C1, stage 2 conf vol 122 121 121 C2, stage 2 conf vol 560 1121 121 C2, stage 2 conf vol 560 1121 121 C, single (s) 6.8 6.9 4.1 121 C, single (s) 3.5 3.3 2.2 0 99 M capacity (veh/h) 127 471 619 131 138 385 folume Total 37 743 377 198 385 10 141 10 121 10 10 10 1121<	Right turn flare (veh)						
Median storage veh) 388 X, platcom unblocked 388 X, platoon unblocked 1117 C, conlicting volume 1417 C2, stage 1 conf vol 1121 C2, stage 2 conf vol 1121 C2, stage 1 conf vol 1121 C2, unblocked vol 1417 Stage 2 conf vol 1121 C3, unblocked vol 1417 Stage 2 conf vol 1121 C4, stage 1 conf vol 1121 C3, stage 1 conf vol 6.8 6.9 4.1 Stage 2 conf vol 6.8 M capacity (weh/h) 127 VM capacity (weh/h) 127 Valume Right 32 32 0 Volume I colai 37 743 377 Volume Right 32 33 1700 100 0.4 Volume Right 32 33 1700 100 0.4 Value Length Sth (t) 9 0.0 0.4 100 0.0 1111 0.4 1	Median type	None					
Jpstream signal (ft) 388 X, platoou nublocked 1417 560 1121 C1, stage 1 conf vol 1417 560 1121 C2, stage 2 conf vol 1417 560 1121 C4, unblocked vol 1417 560 1121 C2, stage 2 conf vol 1417 560 1121 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) F 5 3.3 2.2 0 quee free % 96 93 99 M capacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 /olume Total 37 743 377 198 385 folume Right 32 0 5 0 0 colume Right 32 0 0 0 0 folume Right 32 0 0 0 0 0 colume Total 37 700 100 0	Median storage veh)						
X, platon unblocked (C, conflicting volume 1417 560 1121 C1, stage 1 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C4, unblocked vol 1417 560 1121 C4, unblocked vol 1417 560 1121 C4, single (s) 6.8 6.9 4.1 C, 2 stage (s) F (s) 3.5 3.3 2.2 0 queue free % 96 93 99 M capacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 2 SB 1 SB 2 Volume C1 37 743 377 198 385 Volume Left 5 0 0 5 0 Volume Field 337 1700 1700 619 1700 Volume R1 337 1700 1700 619 1700 Volume R1 337 1700 1700 619 1700 Volume C1 377 198 0.2 SH 1 337 1700 1700 0 0 SH 337 1700 1700 0 SH 1 0.44 0.22 0.01 0.23 Dueue Length 95th (t) 9 0 0 1 0 Sh 200 C A Upproach LOS C A Intersection Summary	Upstream signal (ft)			388			
C, conflicting volume (C1, stage 1 conf vol C2, stage 2 conf vol 1121 C4, stage 1 conf vol C2, stage (s) 1121 C4, unblocked vol C2, single (s) 1417 560 1121 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) 5 3.3 2.2 0 queue free % 96 93 99 M capacity (velvh) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 /olume Total 37 743 377 198 385 /olume Right 32 0 5 0 0 Olume Right 32 0 5 0 0 Olume Length 95th (ft) 9 0 0 1 0.23 Dueue Length 95th (ft) 9 0 0 1 0 Jointol Delay (s) 17.0 0.0 0.4 0 ane LOS A oproach Dels C A A A A	pX, platoon unblocked						
C1, stage 2 conf vol C2, stage 2 conf vol C4, unblocked vol 1417 C2, stage 2 conf vol C4, unblocked vol 1417 C2, stage 2 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C, stage 1 conf vol C, single (s) F (s) O queue free % 96 M capacity (velvh) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 folume Total 37 743 377 198 385 folume Right 32 0 32 0 5 0 Olume Right 32 0 5 0 SH 337 1700 1700 0.0 0.23 Outme Totapity 0.11 0.44 0.22 0.01 0.23 Outme Totapicity (s) 17.0 0.0 0.4 0.0 0.3 Shipproach LOS C A	vC, conflicting volume	1417	560			1121	
C2, stage 2 conf vol C2, stage 2 conf vol C2, unblocked vol 1417 560 1121 C, single (s) 6.8 6.9 4.1 C, 2 stage (s)	vC1, stage 1 conf vol						
Cu, unblocked vol 1417 560 1121 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) 5 3.3 2.2 0 queue free % 96 93 99 M capacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 folume Total 37 743 377 198 385 folume Intal 37 743 377 198 385 folume Right 32 0 5 0 0 5 0 Olume Right 32 0 5 0 0 2 0.0 0.23 0 Outrue to capacity 0.11 0.44 0.22 0.01 0.23 0 0 1 0	vC2, stage 2 conf vol						
C, single (s) 6.8 6.9 4.1 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) F (s) 3.5 3.3 2.2 0 queue free % 96 93 99 Micapacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 folume Total 37 743 377 198 385 Volume Left 5 0 0 5 0 Volume Right 32 0 5 0 SH 337 1700 619 1700 Of low to Capacity 0.11 0.44 0.22 0.01 0.23 Jueue Length 95th (ft) 9 0 0 1 0 Sh 0.0 0.0 0.4 0.0 Jueue Length 95th (ft) 9 0 0 1 0 Jueue Length 95th (ft) 9 0 0 0 0 0 0 0 0 0 0 0 0 0 Jueue Length 95th (ft) 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	vCu, unblocked vol	1417	560			1121	
C, 2 stage (s) F (s) 3.5 3.3 2.2 0 queue free % 96 93 99 M capacity (velvh) 127 471 619 interction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 folume Total 37 743 377 198 385 folume Left 5 0 0 5 0 folume Left 37 743 377 198 385 folume Left 37 743 198 385 folume Left 37 744 198 198 folume Left 38 74 folume Left 38 74 fol	tC, single (s)	6.8	6.9			4.1	
F (s) 3.5 3.3 2.2 0 queue free% 96 93 99 M capacity (velv/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 /olume Total 37 743 377 198 385 /olume Right 32 0 5 0 0 /olume to Capacity 0.11 0.44 0.22 0.01 0.23 /oure to Capacity 0.11 0.44 0.22 0.01 0.23 /oure to Capacity 0.11 0.44 0.02 0.01 0.23 /oure to Capacity 0.11 0.44 0.02 0.01 0.23 /oure to Capacity 0.11 0.44 0.02 0.01 0.23 /oure to Capacity 0.11 0.0 0.0 0.4 0.0 .ane LOS C A A A A /oproach Delay (s) 17.0 0.0 0.1 A	tC, 2 stage (s)						
0 queue free % 96 93 99 Mcapacity (veh/h) 127 471 619 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 /olume Total 37 743 377 198 385 /olume Right 32 0 5 0 /olume Right 32 0 5 0 /olume Right 32 0 100 1700 /olume Right 32 0 10 0.23 /olume Right 32 0 0 1 0.23 /olume Length 95th (ft) 9 0 0 1 0.23 /ourous Length 95th (ft) 9 0.0 0.4 0.0 .ane LOS C A /opproach LOS C A .ane LOS C A .ane LOS .ane LO	tF (s)	3.5	3.3			2.2	
M capacity (veh/h) 127 471 619 Diraction, Lane # WB1 NB1 NB2 SB1 SB2 folume Total 37 743 377 198 385 folume Left 5 0 0 5 0 SH 337 1700 1700 619 1700 Olume Right 32 0 5 0 0 SH 337 1700 1700 619 1700 Olume Right 32 0 5 0 0 SH 20 0 0 1 0 Durue Length 95th (ft) 9 0 0 1 0 Durue Length 95th (ft) 9 0 0 1 0 Durue Longth 95th (ft) 9 0 0 0 0 1 0 Durue Longth 95th (ft) 9 0 0 0 0 0 0 Durue Longth 95th (ft) 9 0 0 0 0 0 0 0 Durue Longth 95th (ft) 9 0 0 0 0 0 0 0 0 0 0 Durue Longth 95th (ft) 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	p0 queue free %	96	93			99	
Virection, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 37 743 377 198 385 Volume Et 5 0 0 5 0 Volume Right 32 0 5 0 0 SH 337 1700 1700 1700 1700 Volume to Capacity 0.11 0.44 0.22 0.01 0.23 Jueue Length 95th (ft) 9 0 0 1 0 Jointol Delay (s) 17.0 0.0 0.4 0.0 upproach LOS C A therracture Structure S	cM capacity (veh/h)	127	471			619	
Volume Total 37 743 377 198 385 /olume Left 5 0 0 5 0 /olume Left 5 0 0 5 0 /olume Left 32 0 5 0 0 SH 337 1700 1700 619 1700 Olume to Capacity 0.11 0.44 0.22 0.01 0.23 Jueue Length 95th (ft) 9 0 0 1 0 Jointol Delay (s) 17.0 0.0 0.4 0.0 ane LOS C A A htproach Delay (s) 17.0 0.0 0.1 tproach DS C A A	Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
folume Left 5 0 0 5 0 (olume Right 32 0 5 0 0 SH 337 1700 1700 619 1700 /olume to Capacity 0.11 0.44 0.22 0.01 0.23 Queue Length 95th (ft) 9 0 0 1 0 ontrol Delay (s) 17.0 0.0 0.0 0.4 0.0 ane LOS C A A A A opproach Delay (s) 17.0 0.0 0.1 L netresection Summary E E E E	Volume Total	37	743	377	198	385	
Volume Right 32 0 5 0 0 SH 337 1700 1700 619 1700 folume to Capacity 0.11 0.44 0.22 0.01 0.23 Jueue Length 95th (ft) 9 0 0 1 0 Jointol Delay (s) 17.0 0.0 0.4 0.0 _ane LOS C A A µpproach Delay (s) 17.0 0.0 0.1 Intersection Summary E E E	Volume Left	5	0	0	5	0	
SH 337 1700 1700 619 1700 folume to Capacity 0.11 0.44 0.22 0.01 0.23 bueue Length 95th (tt) 9 0 0 1 0 control Delay (s) 17.0 0.0 0.0 4 0.0 ane LOS C A A pproach Delay (s) 17.0 0.0 0.1 ptproach DES C A A A A	Volume Right	32	0	5	0	0	
/olume to Capacity 0.11 0.44 0.22 0.01 0.23 Dueue Length 95th (ft) 9 0 0 1 0 Jontrol Delay (s) 17.0 0.0 0.0 0.4 0.0 Jontrol Delay (s) 17.0 0.0 0.0 0.4 0.0 Ana LOS C A hyproach Delay (s) 17.0 0.0 0.1 hyproach LOS C	cSH	337	1700	1700	619	1700	
Jueue Length 95th (ft) 9 0 0 1 0 Jointol Delay (s) 17.0 0.0 0.4 0.0 Jointol Delay (s) 17.0 0.0 0.4 0.0 Jointol Delay (s) 17.0 0.0 0.1 Joproach Delay (s) 17.0 0.0 0.1 Intersection Summary C	Volume to Capacity	0.11	0.44	0.22	0.01	0.23	
Control Delay (s) 17.0 0.0 0.4 0.0 .ane LOS C A pproach Delay (s) 17.0 0.0 0.1 pproach LOS C A thersection Summary C C	Queue Length 95th (ft)	9	0	0	1	0	
ane LOS C A pproach Delay (s) 17.0 0.0 0.1 pproach LOS C	Control Delay (s)	17.0	0.0	0.0	0.4	0.0	
pproach Delay (s) 17.0 0.0 0.1 pproach LOS C ntersection Summary	Lane LOS	С			A		
Approach LOS C Intersection Summary	Approach Delay (s)	17.0	0.0		0.1		
ntersection Summary	Approach LOS	С					
	Intersection Summary						
Average Delay 0.4	Average Delay			0.4			
ntersection Capacity Utilization 38.5% ICU Level of Service	Intersection Capacity Uti	ilization		38.5%	IC	CU Leve	of Service
Analysis Period (min) 15	Analysis Period (min)			15			

13083::Parcel U Build PM Peak Hour

3003: Weld Hill St & Hyde Park Ave								
	4	۰.	t	~	1	Ļ		
Movement	WBI	WBP	NBT	NBP	SBI	SBT		
Lane Configurations	M	THE N		- NDIN	ODL	**		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Volume (veh/h)	16	66	1009	0	0	549		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (yph)	17	72	1007	0.52	0.52	507		
Podestrians	17	12	1037	0	0	331		
I ane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (yeh)								
Median type	None							
Median storage veb)	NULLE							
Linstream signal (ft)			489					
nX platoon unblocked			409					
vC conflicting volume	1395	548			1097			
vC1_stage 1 conf vol	1000	040			1007			
vC2_stage 2 conf vol								
vCu_unblocked vol	1395	548			1097			
tC. single (s)	6.8	6 9			4 1			
tC 2 stane (s)	0.0	0.9			-4.1			
tE (s)	3.5	33			22			
n (3)	87	85			100			
cM capacity (yeb/b)	132	480			632			
ow capacity (verin)	152	400			032			
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2			
Volume Total	89	548	548	298	298			
Volume Left	17	0	0	0	0			
Volume Right	72	0	0	0	0			
cSH	317	1700	1700	1700	1700			
Volume to Capacity	0.28	0.32	0.32	0.18	0.18			
Queue Length 95th (ft)	28	0	0	0	0			
Control Delay (s)	20.7	0.0	0.0	0.0	0.0			
Lane LOS	С							
Approach Delay (s)	20.7	0.0		0.0				
Approach LOS	С							
Intersection Summany								
Average Delay			1.0					
Intersection Canacity Ltti	lization		20.5%	14				
Analysis Poriod (min)	nzau011		1F	I.	SO Level			
Analysis Feliou (IIIII)			10					

	4	•	Ť	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		≜ 1⊾			_ <u>_</u>
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	2	1	1054	5	7	535
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	1	1146	5	8	582
Pedestrians	-				-	
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						478
pX, platoon unblocked						
vC, conflicting volume	1454	576			1151	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1454	576			1151	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	98	100			99	
cM capacity (veh/h)	119	461			603	
Disastian Lana #		ND 4		00.4	00.0	
Direction, Lane #	VVBI	INB I	INB Z	SBI	SB Z	
volume I otal	3	764	387	201	388	
Volume Lett	2	0	0	8	0	
volume Right	1	4700	4700	0	4700	
Volume to Conseit	159	1700	0.00	0.01	0.22	
Queue Length OEth (ft)	0.02	0.45	0.23	0.01	0.23	
Control Dolou (a)	200.0	0	0.0	0.6	0.0	
	28.2	0.0	0.0	0.6	0.0	
Approach Dolay (c)	29.2	0.0		0.2		
Approach LOS	20.2	0.0		0.2		
	U					
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Uti	lization		39.3%	IC	CU Leve	of Service

13083::Parcel U Build PM Peak Hour

APPENDIX E ACCESSIBILITY CHECKLIST

Article 80 | ACCESSIBILTY CHECKLIST

Project Information

Team Description

Project Name:	Parcel U
Project Address Primary:	Hyde Park Ave
Project Address Additional:	
Project Contact (name / Title /	Urbanica, Inc /
company/email/phone).	617-654-8900
am Description	
Owner / Developer:	Urbanica, Inc ;
Architect:	Urbanica Desi
Engineer (building systems):	n/a
Sustainability / LEED:	Conservation S
Permitting:	MLF Consultin
Construction Management:	Urbanica Cons

Project Permitting and Phase

At what phase is the project – at time of this questionnaire?

🗹 PNF / Expanded PNF Submitted

BRA Design Approved

enue

/ Kamran Zahedi/ Principal/ <u>kzahedi@urbanicaboston.com/</u>

The Community Builders, Inc ign Services Group ng LLC nstruction

Draft / Final Project Impact Report Submitted	BRA Board Approved
Under Construction	Construction just completed:

Article 80 | ACCESSIBILTY CHECKLIST

Building Classification and Description

What are the principal Building Uses - select all appropriate uses?

Residential – One to Three Unit	✓ Residential - Multi-unit, Four +	Institutional	Education							
Commercial	Office	Retail	Assembly							
Laboratory / Medical	Manufacturing / Industrial	Mercantile	Storage, Utility and Other							
Residential, Amenity Space, Accessory Retail Space										

First Floor Uses (List)

What is the Construction Type - select most appropriate type?

V	☑ Wood Frame	Masonry	Steel Frame	Concrete
---	--------------	---------	-------------	----------

Describe the building?

Site Area

Building I

First Floo

:	126, 070 SF	Building Area:	Approx. 190,000 GSF +/-	
Height:	42'6"/ 55' / 65'	Number of Stories:	3 / 4 /5 with basements	
r Elevation:	Varying, 52.0- 54.0' +/- across the site.	Are there below grade spaces:	Yes ∕ ⊠No ** Due to the grade change,	
	Final Elevation to be determined		there is a partial basement level	
	during Construction		that is also at grade to the rear	
	Drawing phase		service road	

Assessment of Existing Infrastructure for Accessibility:

This section explores the proximity to accessible transit lines and proximate institutions such as, but not limited to hospitals, elderly and disabled housing, and general neighborhood information. The proponent should identify how the area surrounding the development is accessible for people with mobility impairments and should analyze the existing condition of the accessible routes through sidewalk and pedestrian ramp reports.

Provide a description of the development neighborhood and

Parcel U is located in the Forest Hills section of Jamaica Plain. Jamaica Plain has an interesting blend of socio-economic and cultural diversity that is reflected in

Article 80 | ACCESSIBILTY CHECKLIST

identifying characteristics.

local businesses and residents. Parcel U is bounded by Hyde Park Avenue, Ukraine Way, Tollgate Cemetery and MBTA Commuter Rail /Amtrak train tracks. The proportion of the site is approximately 120' x 1000'. The site is naturally sloping from Hyde Park Avenue towards the train tracks.

The existing sidewalk along Hyde Park Avenue and Ukraine Way is in good condition and has a line of street trees that the developer will intend to preserve. There is a bus stand located at the Hyde Park Avenue and Walk Hill intersection.

The urban context that surrounds the site is a mix of single family, triple deckers, townhouses, mid-rise apartments, neighborhood retail spaces and larger institutional/transportation landmarks like the State Lab, Forest Hill T station, Arnold Arboretum and the Forest Hills Cemetery.

List the surrounding ADA compliant MBTA transit lines and the proximity Avenue) to the development site: Commuter rail, subway, bus, etc.

List the surrounding institutions: hospitals, public housing and elderly and disabled housing developments, educational facilities. etc.

Public Library: Boston Public Library (Jamaica Plain Branch)

Community Center: Curtis Hall Community Center, Hennigan Community Center

Police: E-13 and E-18 Police Station

Fire: Engine 28 Fire Station

•

Hospitals: Faulkner Hospital, Arbor Hospital, Lemuel Shattuck Hospital, Southern Jamaica Plain Health Center, Brookside Community Health Center, VA Boston Hospital, Ambulance 5 and 13, Paramedic 5

Is the proposed development on a priority accessible route to a key public use facility? List the surrounding: government buildings, libraries, community centers and recreational facilities and other

related facilities.

Forest Hills MBTA Station (0.25 miles away – one block away along Hyde Park

 Orange Line Subway Needham Commuter Rail Line Bus 16,21,30,31,32,34,34E,35,36,37,38,39,40,42,50,51

Affordable/Public Housing: Bromley Park, South Street, Heath Street, Woodbourne Apartments, Farnsworth House and others

School: Manning Elementary, Match Community Day Charter Public School, Curley K-8 School, Boston Teachers Union School, Hennigan School and others.

Site is located adjacent (0.25 miles) to the Forest Hills Transportation Hub that links the site to major Boston public facilities.

Surrounding Site Conditions – Existing:

This section identifies the current condition of the sidewalks and pedestrian ramps around the development site.

Are there sidewalks and pedestrian ramps existing at the development site?	Yes, an existing sidewalk abuts the project site to the east. The existing sidewalk includes pedestrian ramps.
<i>If yes above</i> , list the existing sidewalk and pedestrian ramp materials and physical condition at the development site.	The existing sidewalk material is concrete with granite curbing. The physical condition of the existing concrete sidewalk and pedestrian ramps is good.
Are the sidewalks and pedestrian ramps existing-to-remain? If yes , have the sidewalks and pedestrian ramps been verified as compliant? If yes , please provide surveyors report.	Yes with modifications for new driveway entrances into the property. No, the existing sidewalks and pedestrian ramps have not been verified as being in compliance at this time but will be verified during the project design.
Is the development site within a historic district? If yes, please identify.	The project site is not located within an historic district.

Surrounding Site Conditions - Proposed

This section identifies the proposed condition of the walkways and pedestrian ramps in and around the development site. The width of the sidewalk contributes to the degree of comfort and enjoyment of walking along a street. Narrow sidewalks do not support lively pedestrian activity, and may create dangerous conditions that force people to walk in the street. Typically, a five foot wide Pedestrian Zone supports two people walking side by side or two wheelchairs passing each other. An eight foot wide Pedestrian Zone allows two pairs of people to comfortable pass each other, and a ten foot or wider Pedestrian Zone can support high volumes of pedestrians.

Are the proposed sidewalks consistent with the Boston Complete Street Guidelines? See: www.bostoncompletestreets.org

Yes (pending confirmation of existing cross slopes and clearances).

Article 80 | ACCESSIBILTY CHECKLIST

What is the total width of the proposed sidewalk? List the widths of the proposed zones: Frontage, Pedestrian and Furnishing Zone.

List the proposed materials for each Zone. Will the proposed materials be on private property or will the proposed materials be on the City of Boston pedestrian rightof-way?

If the pedestrian right-of-way is on private property, will the proponent seek a pedestrian easement with the City of Boston Public Improvement Commission?

Will sidewalk cafes or other furnishings be programmed for the pedestrian right-of-way?

If yes above, what are the proposed dimensions of the sidewalk café or furnishings and what will the rightof-way clearance be?

On visual inspection of existing conditions it appears that there is at least 4 or 5 feet clear in all locations, to be verified during project design. In all new pedestrian sidewalk areas, at least 5 feet clear width will be maintained.

Proposed Accessible Parking:

See Massachusetts Architectural Access Board Rules and Regulations 521 CMR Section 23.00 regarding accessible parking requirement counts and the Massachusetts Office of Disability Handicap Parking Regulations.

1

90 spaces

Neighborhood Connector

The sidewalk width varies from approximately 6 feet to 8 feet (including the curb) depending on the location in the project. The majority of the project has a pedestrian zone adjacent to a planted area. Existing street furnishing including a narrow bus shelter, and street lights sit within the existing pedestrian zone. In the wide paved area on Hyde Park Avenue close to Ukraine Way, the frontage zone and pedestrian zone combine to a total of approximately 28 feet.

The paving material for the pedestrian zone will be poured in place concrete. The majority of the pedestrian zone will reuse the existing concrete sidewalk and is in the City of Boston right-of-way. A portion of the walkway along Hyde Park Avenue in front of the apartment building will be within private property.

Yes, for a portion of the site. This easement will occur along Hyde Park Avenue for the rental apartment portion, where the existing sidewalk is carved out to accommodate on street parking. The pedestrian right-of-way (sidewalk) will be relocated inside the property line.

There are locations for potential outdoor seating but they are not within the pedestrian right-of-way. There are existing locations where the street lights, bus shelters and some other street furniture sit within the pedestrian right-of-way.

Article 80 | ACCESSIBILTY CHECKLIST

What is the total number of accessible spaces provided at the development site?	4 spaces
Will any on street accessible parking spaces be required? If yes, has the proponent contacted the Commission for Persons with Disabilities and City of Boston Transportation Department regarding this need?	1 on street accessible space can be accommodated pending coordination with City departments
Where is accessible visitor parking located?	1 on street accessible space can be accommodated pending coordination with City departments. This will also function as the accessible visitor parking
Has a drop-off area been identified? If yes, will it be accessible?	No drop-off area.
Include a diagram of the accessible routes to and from the accessible parking lot/garage and drop-off areas to the development entry locations. Please include route distances.	See attached drawings A103.1 and A103.2.

Circulation and Accessible Routes:

The primary objective in designing smooth and continuous paths of travel is to accommodate persons of all abilities that allow for universal access to entryways, common spaces and the visit-ability* of neighbors.

*Visit-ability – Neighbors ability to access and visit with neighbors without architectural barrier limitations

Provide a diagram of the accessible route connections through the site.	The accessible route is along the Hyde Park Avenue sidewalk. All entryways to the townhouse units and the apartment building will be accessible. See attached A100.1 for reference.	Please provide plan and diagram of
Describe accessibility at each entryway: Flush Condition, Stairs, Ramp Elevator.	Flush Condition at most if not all entryway locations. Ramps to be added where/if needed. The ground floor living spaces for the townhouses will be flush with the street grade. This will enable access and promote "Visit-ability". The apartment building is serviced by an elevator and flush condition at the entryway. All common areas are accessible and all units will have good "Visit-ability".	the accessible units. How many accessible units will also be affordable? If none, please describe reason.
		Do standard units have architectural barriers that would

Article 80 | ACCESSIBILTY CHECKLIST

Are the accessible entrance and the standard entrance integrated?	Yes
If no above, what is the reason?	-
Will there be a roof deck or outdoor courtyard space? If yes, include diagram of the accessible route.	Private roof decks CMR AAB). No roof or outdoor
Has an accessible routes way- finding and signage package been developed? If yes, please describe.	Not yet but all futu and Accessibility E
Accessible Units: (If applicable)	
In order to facilitate access to housi are proposed for the development s	ng opportunities tl ite that remove ba
What is the total number of proposed units for the development?	124 units +/-
How many units are for sale; how many are for rent? What is the market value vs. affordable breakdown?	48 +/- townhouse (80 +/- market rat
How many accessible units are being proposed?	7 units in the renta • Two x 1BF • Three x 2- • Two x 3-B
	The locations will I 103.3 for location

ks for the townhouses. (Townhouses are exempted from the 521

por spaces for the apartment building

uture way finding signage will be developed to meet Building Code y Board Requirements

this section addresses the number of accessible units that barriers to housing choice.

ses units for sale; 76 +/- rental apartment units rate units; 44 +/- affordable units)

ental apartment building LBR Units © 2-BRs Units 3-BRs Units

ill be distributed in the building, See attached drawings A103.1ons. (Townhouses are exempted from the 521 CMR AAB)

See attached drawing, A103.1-103.3

determined.

No

prevent entry or use of common

It will be a mix of affordable and market rate units. Final combination to be

Article 80 | ACCESSIBILTY CHECKLIST

ATTACHMENT	-
------------	---

space for persons with mobility impairments? Example: stairs at entry or step to balcony. If yes, please provide reason.	
Has the proponent reviewed or presented the proposed plan to the City of Boston Mayor's Commission for Persons with Disabilities Advisory Board?	Yes
Did the Advisory Board vote to support this project? If no, what recommendations did the Advisory Board give to make this project more accessible?	Decision Pending

Thank you for completing the Accessibility Checklist!

For questions or comments about this checklist or accessibility practices, please contact:

kathryn.quigley@boston.gov | Mayors Commission for Persons with Disabilities

S TO ACCESSIBILITY CHECKLIST

Basement Plan 16,075 gsf LEGEND:

	ARCHITECT	
	142 Berkeley St, Suite 402 Boston, MA 02116 T. 617-654-8900 F. 617-654-8901	
-		
-		
	05.08.2014 Consultant Set SP SC	
	06.12.2014 Design Meeting SP SC	
	PROJECT Parcel U Forest Hills	
	= DRAWING TITLE FLOOR PLAN - 5 story apartment	
ГЕ	A103.1	

1st Floor Plan 15,500 gsf

ARCHITE URE 142 Berkele Boston, MA T. 617-654-1 F. 617-654-1	ARCHITECT URBANICA 142 Berkeley St, Suite 402 Boston, MA 02116 T. 617-654-8900 F. 617-654-8901	
DATE 05.08.2014 06.12.2014 07.08.2014	ISSUE DESCRIPTION Consultant Set Design Meeting EPNF Final	BY CHECK SP SC SP SC SP SC
PROJECT Parce	EPNF Final	sp sc
DRAWING FLOO - 5 sto DRAWING	G TITLE R PLAN ory apartm R NUMBER 103	.2
	SCALE 1/32" =	= 1'-0"

Typical Upper Floor Plan - 2nd, 3rd, 4th Floors 16,435 gsf

5th Floor Penthouse Floor Plan 13,910 gsf

ARCHITE URE 142 Berkele Boston, MA T. 617-654- F. 617-654-	CT BANICA ay St, Suite 402 .02116 .8900 8901) design
_		
DATE 05.08.2014 06.12.2014 07.08.2014	ISSUE DESCRIPTION Consultant Set Design Meeting EPNF Final	BY CHECK SP SC SP SC SP SC
PROJECT	r I U Fores	t Hills
DRAWING FLOO - 5 stc	G TITLE R PLAN pry apartm	ient
	5 NUMBER	.4
	SCALE 1/32" =	= 1'-0"

APPENDIX F

CLIMATE CHANGE PREPAREDNESS AND RESILIENCY CHECKLIST FOR NEW CONSTRUCTION

Climate Change Resiliency and Preparedness Checklist

A.1 - Project Information

Project Name:	Parcel U
Project Address Primary:	Hyde Park Aver
Project Address Additional:	
Project Contact (name / Title / Company / email / phone):	Urbanica, Inc 617-654-8900

A.2 - Team Description

Owner / Developer:	Urbanica, Inc ;
Architect:	Urbanica Desig
Engineer (building systems):	TBD
Sustainability / LEED:	Conservation Se
Permitting:	MLF Consulting
Construction Management:	Urbanica Const
Climate Change Expert:	n/a

A.3 - Project Permitting and Phase

At what phase is the project - most recent completed submission at the time of this response?

PNF / Expanded PNF Submission	Draft / Final Project Impact Report Submission	BRA Board Approved	Notice of Project Change
Planned	BRA Final Design Approved	Under	Construction just
Development Area		Construction	completed:

A.4 - Building Classification and Description

List the principal Building Uses: Multifamily Res

List the First Floor Uses:

What is the principal Construction Type - select mos

Wood Frame

Residential, Am

Boston Climate Change Resiliency and Preparedness Checklist - Page 2 of 8

nue

/ Kamran Zahedi/ Principal/ kzahedi@urbanicaboston.com/

The Community Builders, Inc
י ו
ervices Group
ruction

iden	tial			
enity Space, Accessory Retail Space				
st ap	propriate type?			
è	Masonry	Steel Frame	Concrete	

Describe the building?

Site Area:	126, 070 SF	Building Area:	Approx. 190,000 GSF +/-
Building Height:	42'6"/ 55' / 65'	Number of Stories:	3/ 4 /5 Flrs. with basement
First Floor Elevation (reference Boston City Base):	Varying, 52.0- 54.0' +/- across the site. Final Elevation to be determined during Construction Drawing phase	Are there below grade spaces/levels, if yes how many:	No / ✓ 1 Number of Levels ** Due to the grade change, there is a partial basement level that is also at the service road grade

A.5 - Green Building

Which LEED Rating System(s) and version has or will your project use (by area for multiple rating systems)?

Select by Primary Use:	New Construction	Core & Shell	Healthcare	Schools
	Retail	Homes Midrise	☑ Homes	Other
Select LEED Outcome:	Certified	Silver	Gold	Platinum

Will the project be USGBC Registered and / or USGBC Certified?

Certified:	Yes / 🗹 No

A.6 - Building Energy

What are the base and peak operating energy loads for the building?

Electric:	128.3 (kW)		Heating:	2.14 (MMBtu/hr)
What is the planned building Energy Use Intensity:	7.45 kWh/SF)	Cooling:		97.6 (Tons/hr)
What are the peak energy deman	ds of your critical sys	stems in the event of	a service interruptio	n?
Electric:	11(kW)		Heating:	0 (MMBtu/hr)
			Cooling:	0 (Tons/hr)
What is nature and source of your back-up / emergency generators?				
Electrical Generation:	14(kW)		Fuel Source:	Natural Gas
System Type and Number of Units:	✓Combustion Engine	Gas Turbine	Combine Heat and Power	1 (Units)

B - Extreme Weather and Heat Events

Climate change will result in more extreme weather events including higher year round average temperatures, higher peak temperatures, and more periods of extended peak temperatures. The section explores how a project responds to higher temperatures and heat waves.

B.1 - Analysis

What is the full expected life of the project?

Select most appropriate:	10 Years	25 Years	50 Years	✓ 75 Years	
What is the full expected operational life of key building systems (e.g. heating, cooling, ventilation)?					
Select most appropriate:	10 Years	25 Years	50 Years	75 Years	
What time span of future Climate C	onditions was conside	ered?			
Select most appropriate:	10 Years	25 Years	50 Years	☑ 75 Years	
Analysis Conditions - What range of	temperatures will be	used for project plan	ning – Low/High?		
	7F/87F Deg.				
What Extreme Heat Event character	ristics will be used for	project planning – Pe	eak High, Duration, an	d Frequency?	
	N/A Deg.	N/A Days	N/A Events / yr.		
What Drought characteristics will be	e used for project plar	nning – Duration and	Frequency?		
	N/A Days	N/A Events / yr.			
What Extreme Rain Event characteristics will be used for project planning – Seasonal Rain Fall, Peak Rain Fall, and Frequency of Events per year?					
	N/A Inches / yr.	N/A Inches	N/A Events / yr.		
What Extreme Wind Storm Event characteristics will be used for project planning – Peak Wind Speed, Duration of Storm Event, and Frequency of Events per year?					
	N/A Peak Wind	N/A Hours	N/A Events / yr.		

B.2 - Mitigation Strategies

At least 20 % Building energy use below code:

How is performance determined: ASHRAE Energy Modeling

What specific measures will the project employ to reduce building energy consumption?

Select all appropriate:	High High performance building envelop
	☑High performance HVAC equipmen

Describe any added measures:

What will be the overall energy performance, based on use, of the project and how will performance be determined?

р	High performance lighting & controls	Building day lighting	☑ EnergyStar equip. / appliances
nt	Energy recovery ventilation	No active cooling	No active heating

What are the insulation (R) values for building envelop elements?

	Roof:	R = 50	Walls / Curtain Wall Assembly:	R = 40	
	Foundation:	R = 40	Basement / Slab:	R =	
	Windows:	R = / U = 0.2	Doors:	R = / U = 0.2	W
What specific measures will the pro	pject employ to reduce	e building energy dem	ands on the utilities a	nd infrastructure?	
	On-site clean energy / CHP system(s)	Building-wide power dimming	Thermal energy storage systems	Ground source heat pump	
	☑ On-site Solar PV	On-site Solar Thermal	Wind power	None	
Describe any added measures:			1		
Will the project employ Distributed	Energy / Smart Grid Ir	nfrastructure and /or	Systems?		C - Se
Select all appropriate:	Connected to local distributed electrical	Building will be Smart Grid ready	Connected to distributed steam, hot, chilled water	Distributed thermal energy ready	Rising the ex impac
Will the building remain operable w	ithout utility power for	r an extended period?	>		C.1 -
	Yes / 🗹 No		If yes, for how long:	Days	D
If Yes, is building "Islandable?					
If Yes, describe strategies:					D
Describe any non-mechanical strate interruption(s) of utility services and	egies that will support d infrastructure:	building functionality	and use during an ex	tended	Si
Select all appropriate:	Solar oriented – longer south walls	Prevailing winds oriented	External shading devices	Tuned glazing,	В
	Building cool zones	✓ Operable windows	✓ Natural ventilation	Building shading	ls
	Potable water for drinking / food preparation	Potable water for sinks / sanitary systems	Waste water storage capacity	✓ High Performance Building Envelop	w
Describe any added measures:					C
What measures will the project emp	ploy to reduce urban h	neat-island effect?			
Select all appropriate:	High reflective	Shade trees &	High reflective	Vegetated roofs	W.

Select all appropriate:	High reflective paving materials	☑ Shade trees & shrubs	High reflective roof materials	Vegetated roofs
Describe other strategies:				

What measures will the project employ to accommodate rain events and more rain fall?

Select all appropriate:	On-site retentio systems & pond
Describe other strategies:	
What measures will the project emp	ploy to accommo
Select all appropriate:	Hardened build structure & elements
Describe other strategies:	

ea-Level Rise and Storms

Sea-Levels and more frequent Extreme Storms increase the probability of coastal and river flooding and enlarging xtent of the 100 Year Flood Plain. This section explores if a project is or might be subject to Sea-Level Rise and Storm cts.

- Location Description and Classification:

Do you believe the building to susc	eptible to flooding now	or during the full expected life of the build	ling?
	Yes / 🗹 No		
Describe site conditions?			
Site Elevation – Low/High Points:	Boston City Base 36/55 Elev.(Ft.)		
Building Proximity to Water:	More than 5,000 Ft.		
Is the site or building located in any	of the following?		
Coastal Zone:	Yes / 🗹 No	Velocity Zone:	Yes / 🗹 No
Flood Zone:	Yes∕⊠ No	Area Prone to Flooding:	Yes∕⊠ No
Will the 2013 Preliminary FEMA Flo Change result in a change of the cla	od Insurance Rate Ma assification of the site	aps or future floodplain delineation updates or building location?	s due to Climate
2013 FEMA Prelim. FIRMs:	Yes / 🗹 No	Future floodplain delineation updates:	Yes / 🗹 No
What is the project or building prox	mity to nearest Coast	al, Velocity or Flood Zone or Area Prone to I	Flooding?
	More than 500		

More than 500
Ft.

on ds	✓ Infiltration galleries & areas	vegetated water capture systems	Vegetated roofs
date	extreme storm events	and high winds?	
ling	Buried utilities & hardened infrastructure	Hazard removal & protective landscapes	Soft & permeable surfaces (water infiltration)

If you answered YES to any of the above Location Description and Classification questions, please complete the following questions. Otherwise you have completed the questionnaire; thank you!

C - Sea-Level Rise and Storms

This section explores how a project responds to Sea-Level Rise and / or increase in storm frequency or severity.

C.2 - Analysis

How were impacts from higher sea levels and more frequent and extreme storm events analyzed:

Ft.	Frequency of st

orms:	per year

C.3 - Building Flood Proofing

Describe any strategies to limit storm and flood damage and to maintain functionality during an extended periods of disruption.

What will be the Building Flood Proof Elevation and First Floor Elevation:

Flood Proof Elevation:	Boston City Base	First Floor Elevation:	Boston City Base
	Elev.(Ft.)		Elev. (Ft.)

Will the project employ temporary measures to prevent building flooding (e.g. barricades, flood gates):

	Yes / No	If Yes, to what elevation	Boston City Base Elev. (Ft.)
If Yes, describe:			

What measures will be taken to ensure the integrity of critical building systems during a flood or severe storm event:

Systems located above 1st Floor.Water tight utility conduits	Waste water back flow prevention	Storm water back flow prevention
--	----------------------------------	----------------------------------

Were the differing effects of fresh water and salt water flooding considered:

Yes / No Will the project site / building(s) be accessible during periods of inundation or limited access to transportation: If yes, to what height above 100 Yes / No Year Floodplain: Will the project employ hard and / or soft landscape elements as velocity barriers to reduce wind or wave impacts? Yes / No

If Yes, describe:

Will the building remain occupiable without utility power during an extended period of inundation:

Yes /

vei v	during an extended period of mandation.	
Vo	If Yes, for how long:	

Describe any additional strategies to addressing sea level rise and or sever storm impacts:

Climate Change Resiliency and Preparedness Checklist

A.1 - Project Information Project Name: Parcel U Project Address Primary: Hyde Park Avenue Project Address Additional: Project Contact (name / Title / Urbanica, Inc / Kamran Zahedi/ Principal/ kzahedi@urbanicaboston.com/ Company / email / phone): 617-654-8900 A.2 - Team Description Owner / Developer: Urbanica, Inc; Urbanica Desig Engineer (building systems): TBD Sustainability / LEED: Conservation Se **MLF** Consulting Permitting: **Construction Management:** Urbanica Const

A.3 - Project Permitting and Phase

Climate Change Expert:

Architect:

At what phase is the project - most recent completed submission at the time of this response?

n/a

PNF / Expanded PNF Submission	Draft / Final Project Impact Report Submission	BRA Board Approved	Notice of Project Change
Planned Development Area	BRA Final Design Approved	Under Construction	Construction just completed:

A.4 - Building Classification and Description

List the principal Building Uses:

List the First Floor Uses:

What is the principal Construction Type - select mos

Boston Climate Change Resiliency and Preparedness Checklist - Page 7 of 8	

Boston City Base

Elev. (Ft.)

days

The Community Builders, Inc		
n		
ervices Group		
ruction		

Multifamily Residential				
Residential, Amenity Space, Accessory Retail Space				
ype – select most appropriate type?				
Wood Frame	Masonry	Steel Frame	Concrete	

PAGE IS LEFT INTENTIONALLY BLANK

URBANICA

142 Berkeley St, Suite 402 Boston, MA 02116

T. 617.654.8900 **F.** 617.654.8901