SEAPORT SQUARE

Submitted to: Boston Planning and Development Agency One City Hall Square Boston, MA 02201

Submitted by:

Seaport Square Development Company LLC an affiliate of W/S Development Associates LLC 33 Boylston Street Chestnut Hill, MA 02467 Prepared by: **Epsilon Associates, Inc.** 3 Mill & Main Place, Suite 250 Maynard, MA 01754

In Association with: Goulston & Storrs Haley & Aldrich Howard Stein Hudson, Inc. James Corner Field Operations NADAAA Nitsch Engineering Sasaki Associates

February 7, 2017

Seaport Square

Submitted to: Boston Planning and Development Agency One City Hall Square Boston, MA 02109

Submitted by: Seaport Square Development Company LLC *an affiliate of* W/S Development Associates LLC 33 Boylston Street Chestnut Hill, MA 02467

> Prepared by: Epsilon Associates, Inc. 3 Mill & Main Place, Suite 250 Maynard, MA 01754

> In Association with: Goulston & Storrs Haley & Aldrich Howard Stein Hudson, Inc. James Corner Field Operations NADAAA Nitsch Engineering Sasaki Associates

> > February 7, 2017

Table of Contents

1.0	PROJECT DESCRIPTION			1-1
	1.1	Project S	1-1	
	1.2	Project [Project Description & Current Status	
		1.2.1	Public Spaces	1-8
		1.2.1.1	Seaport Boulevard	1-9
		1.2.1.2	Seaport Common	1-13
		1.2.1.3	Courthouse Square	1-17
		1.2.1.4	Harbor Way	1-17
		1.2.1.5	Harbor Square	1-23
		1.2.1.6	Sea Green (f/k/a Q Park)	1-31
		1.2.1.7	Block M Courtyard	1-31
	1.3	Develop	oment Program / Summary of Project Changes	1-32
		1.3.1	Distribution of Land Uses	1-39
		1.3.1.1	Ground Floor	1-40
		1.3.1.2	Grade Transition to Summer Street	1-40
		1.3.1.3	Typical Upper Floor Plan	1-44
		1.3.1.4	Roof Plan	1-48
		1.3.1.5	Parking Plan	1-48
		1.3.1.6	Public Realm Plan	1-51
		1.3.1.7	Street Sections	1-51
	1.4	Public B	enefits	1-53
		1.4.1	Extraordinary Public Improvements	1-68
		1.4.2	Cultural, Educational and Community Contributions	1-70
		1.4.3	Cultural Facilities Determination	1-71
	1.5	Develop	oment Context	1-73
		1.5.1	Other Area Projects and Cumulative Impacts	1-76
	1.6	Project F	Phasing	1-78
		1.6.1	Phasing Plan	1-78
		1.6.2	Community Benefits	1-78
		1.6.3	Schedule	1-81
2.0	GEN	ERAL INFO	PRMATION	2-1
	2.1	Project Identification and Project Team		
	2.2	2.2 City of Boston Zoning		2-3

	2.3	Legal Inf	ormation	2-4
		2.3.1	Legal Judgments Adverse to the Proposed Project	2-4
		2.3.2	History of Tax Arrears on Property Owned in Boston b	y the Proponent2-4
		2.3.3	Site Control/Public Easements	2-4
	2.4	Regulato	ory Controls and Permits	2-5
		2.4.1	City of Boston Article 80 Review	2-5
		2.4.2	Anticipated Permits, Reviews, and Approvals	2-5
3.0	TRAN	SPORTAT	ION	3-1
	3.1	Project [Description	3-1
		3.1.1	Study Area	3-2
		3.1.2	Study Methodology	3-3
	3.2	Existing	Condition	3-5
		3.2.1	Existing Roadway Conditions	3-5
		3.2.2	Existing Intersection Conditions	3-7
		3.2.2.1	Signalized Intersections	3-8
		3.2.2.2	Unsignalized Intersections	3-12
		3.2.3	Existing Parking	3-13
		3.2.3.1	On-Street Parking and Curb Usage	3-13
		3.2.3.2	Off-Street Parking	3-15
		3.2.3.3	Car Sharing Services	3-16
		3.2.4	Existing Traffic Data	3-16
		3.2.4.1	Seasonal Adjustment	3-16
		3.2.5	Existing Bicycle Volumes and Accommodations	3-20
		3.2.5.1	Bicycle Sharing Services	3-20
		3.2.6	Existing Pedestrian Volumes and Accommodations	3-20
		3.2.7	Existing Public Transportation	3-20
		3.2.8	Crash Data	3-26
	3.3	No-Build	d (2023) Condition	3-26
		3.3.1	Background Traffic Growth	3-26
		3.3.2	Specific Development Traffic Growth	3-27
		3.3.3	Proposed Infrastructure Improvements	3-30
		3.3.4	No-Build Traffic Volumes	3-30
	3.4	Build (20	023) Condition	3-30
		3.4.1	Site Access and Vehicle Circulation	3-33
		3.4.2	Loading and Service Accommodations	3-33
		3.4.3	Project Parking	3-33
		3.4.4	Trip Generation Methodology	3-36
		3.4.5	Mode Share	3-36
		3.4.6	Vehicle Occupancy Rates	3-38
		3.4.7	Existing Trip Generation	3-38

4.0

	3.4.8	NPC Project Trip Generation	3-38
	3.4.9	Trip Distribution	3-40
	3.4.10	Build Traffic Volumes	3-40
3.5	Transpor	rtation Demand Management	3-47
	3.5.1	Alternative Mode Benefits/Tactics	3-47
	3.5.2	Bicycle/Pedestrian Trips	3-48
	3.5.3	Public Transportation	3-48
	3.5.4	Electric Vehicle	3-49
	3.5.5	Ride Sharing	3-49
3.6	Transpo	rtation Mitigation Measures	3-49
	3.6.1	Pedestrian Mitigation	3-50
	3.6.2	Bicycle Mitigation	3-50
	3.6.3	Public Transportation Mitigation	3-52
	3.6.4	Vehicle Mitigation	3-52
3.7	Traffic V	olume Comparison	3-52
3.8	Transit C	Capacity Analysis	3-53
3.9	Traffic C	Capacity Analysis	3-57
	3.9.1	Existing (2016) Condition Traffic Capacity Analysis	3-59
	3.9.2	No-Build (2023) Condition Traffic Operations Analysis	3-68
	3.9.3	Build (2023) Condition Traffic Operations Analysis	3-79
	3.9.4	Traffic Operations Analysis Comparison	3-89
ENVI	RONMEN	TAL PROTECTION	4-1
4.1	Wind		4-1
	4.1.1	Introduction	4-1
	4.1.2	Overview	4-1
	4.1.3	Methodology	4-2
	4.1.4	Pedestrian Wind Comfort Criteria	4-8
	4.1.5	Test Results	4-9
	4.1.5.1	Seaport Square Development (Locations 1 through 54)	4-9
	4.1.5.2	Area Surrounding the Proposed Seaport Square Project (Lo	cations 55
		through 196)	4-15
	4.1.6	Conclusion	4-16
4.2	Shadow		4-16
	4.2.1	Introduction and Methodology	4-16
	4.2.2	Vernal Equinox (March 21)	4-17
	4.2.3	Summer Solstice (June 21)	4-17
	4.2.4	Autumnal Equinox (September 21)	4-18

	4.2.5	Winter Solstice (December 21)	4-19
	4.2.6	Conclusions	4-19
4.3	Daylight		4-34
	4.3.1	Introduction	4-34
	4.3.2	Methodology	4-34
	4.3.3	Daylight Analysis Results	4-35
	4.3.4	Conclusions	4-37
4.4	Solar Gla	re	4-42
4.5	Air Quali	ty	4-42
	4.5.1	Background Air Quality and Health Standards	4-42
	4.5.2	National Ambient Air Quality Standards	4-42
	4.5.3	Background Concentrations	4-44
	4.5.4	Stationary Sources	4-45
	4.5.4.1	Boilers	4-45
	4.5.4.2	Emergency Generators	4-46
	4.5.4.3	Cooling Towers	4-46
	4.5.4.4	Parking Garage Exhausts	4-46
	4.5.4.5	Combined Heat and Power	4-46
	4.5.4.6	Permitting	4-46
	4.5.5	Mobile Sources	4-47
	4.5.5.1	BPDA Air Quality Analysis Requirements	4-47
	4.5.5.2	Methodology	4-47
	4.5.5.3	Air Quality Results	4-55
	4.5.5.4	Conclusions	4-55
4.6	Noise		4-58
4.7	Tidelands	s: Chapter 91 and the South Boston Municipal Harbor Plan	4-58
	4.7.1	Block G	4-59
	4.7.1.1	Section 18 Standards	4-59
	4.7.1.2	Compliance with Chapter 91 Regulations and South Boston M	unicipal
		Harbor Plan	4-61
	4.7.2	The Landlocked Legislation: Public Benefits Determination	4-62
4.8	Flood Ha	zard Zones/Wetlands	4-63
4.9	Geotechr	nical/Groundwater	4-63
	4.9.1	Subsurface Geotechnical Conditions	4-63
	4.9.2	Foundation Methodology and Below-Grade Construction	4-64
	4.9.3	Groundwater Conditions	4-64
	4.9.4	Groundwater Conservation Overlav District	4-65
4.10	Hazardoi	us and Solid Waste	4-65
	4.10.1	Hazardous Waste	4-65
	4.10.2	Solid Waste	4-65

	4.11	Constru	action Impacts	4-67
5.0	SUSTAINABLE DESIGN AND CLIMATE CHANGE PREPAREDNESS			
	5.1	Sustaina	able Design	5-1
	5.2	2 Climate Change Preparedness		5-1
		5.2.1	Extreme Heat Events	5-2
		5.2.2	Sea Level Rise and Future Storms	5-2
		5.2.3	Rain Events	5-4
		5.2.4	Drought Conditions	5-5
6.0	URBA	N DESIG	iN	6-1
	6.1	Urban I	6-1	
	6.2	Project	Evolution	6-1
		6.2.1	Circulation	6-3
		6.2.2	Public Realm	6-3
		6.2.3	Building Massing	6-4
	6.3	Urban I	Design Framework	6-4
		6.3.1	Pedestrian Promenade to the Sea	6-4
		6.3.2	Signature Public Spaces	6-8
		6.3.3	Improvements to Key Thoroughfares	6-8
		6.3.4	Coordinated, Dynamic Massing Strategy	6-9
	6.4	Connec	6-9	
7.0	HISTO	ORIC RES	OURCES	7-1
	7.1	Introdu	ction	7-1
	7.2	The Ch	apel of Our Lady of Good Voyage	7-1
8.0	ACCESSIBILITY			8-1
	8.1	Assessn	8-1	
	8.2	Existing	surrounding Site Conditions	8-1
	8.3	Propose	ed Surrounding Site Conditions	8-1
	8.4	Propose	ed Accessible Parking	8-2
	8.5	Circulat	tion and Accessible Routes	8-2
	8.6	Accessi	ble Units in Residential Developments	8-2
9.0	INFR/	INFRASTRUCTURE		
	9.1	Introdu	9-1	
	9.2	Wastew	vater	9-1
		9.2.1	Existing Sewer Infrastructure – 2017	9-1
		9.2.2	Wastewater Generation	9-3
		9.2.3	Existing Sewage Capacity	9-6
		9.2.4	Infiltration/Inflow	9-9

	9.3	Water Sup	oply	9-9
		9.3.1	Existing Water Infrastructure	9-9
		9.3.2	Water Consumption	9-11
		9.3.3	Proposed Project	9-11
		9.3.4	Proposed Impacts	9-14
	9.4	Stormwate	er	9-14
		9.4.1	Existing Stormwater Infrastructure	9-14
		9.4.2	Proposed Conditions	9-16
		9.4.3	Water Quality Impact	9-18
		9.4.4	MassDEP Stormwater Management Policy Standards	9-18
	9.5	Protection	n Proposed During Construction	9-21
10.0	MITIGATION MEASURES		10-1	
	10.1	Description	on of Mitigation Measures	10-1

List of Appendices

Appendix A	Transportation
------------	----------------

- Appendix C Air Climate
- Appendix D Climate Change Preparedness and Resiliency Checklist

List of Figures

Figure 1-1	Project Status	1-2
Figure 1-2	Project Area	1-4
Figure 1-3	Project Context and Linkages	1-6
Figure 1-4	District Map Highlighting Added Connectivity	1-7
Figure 1-5	Major Public Open Spaces	1-10
Figure 1-6	Seaport Boulevard Median Improvements	1-11
Figure 1-7	Seaport Common (Block F) Aerial View	1-14
Figure 1-8	Seaport Common — Massachusetts Fallen Heroes Memorial Dedication	1-15
Figure 1-9	Seaport Common – Holiday Tree Lighting Event	1-16
Figure 1-10	Courthouse Square	1-18
Figure 1-11	Plan View of Harbor Way	1-19
Figure 1-12	Perspective and Plan Views of Harbor Way (Blocks L3-L4)	1-21
Figure 1-13	Perspective and Plan Views of Harbor Way (Blocks L5-L6)	1-22
Figure 1-14	Plan View of Harbor Square	1-24

List of Figures (Continued)

Figure 1-15	Eye-Level View of Harbor Square	1-25
Figure 1-16	Bird's-Eye View of Harbor Square	1-26
Figure 1-17	Harbor Square Concept	1-27
Figure 1-18	Harbor Square Ice Skating Rink Concept	1-28
Figure 1-19	Harbor Square Market Concept	1-29
Figure 1-20	Harbor Square Fashion Runway Concept	1-30
Figure 1-21	Bird's-Eye View of Seaport	1-33
Figure 1-22	Seaport Boulevard and Pier 4 Boulevard/East Service Road Elevations	1-41
Figure 1-23	Boston Wharf Road and Congress Street Elevations	1-42
Figure 1-24	Ground Floor Plan	1-43
Figure 1-25	Plan View of Summer Street Steps	1-45
Figure 1-26	View of Summer Street Steps from Congress Street	1-46
Figure 1-27	Typical Upper Floor Plan	1-47
Figure 1-28	Roof Plan	1-49
Figure 1-29	Parking Plan	1-50
Figure 1-30	Public Realm Plan	1-52
Figure 1-31	Seaport Boulevard Section at Blocks B and H (Existing Conditions)	1-54
Figure 1-32	Seaport Boulevard Section at Blocks B and H (Proposed Conditions)	1-55
Figure 1-33	Northern Avenue: Section View	1-56
Figure 1-34	Congress Street Section View	1-57
Figure 1-35	Congress Street Proposed Improvements & Mid-Block Crossing	1-58
Figure 1-36	East Service Road: Section View	1-59
Figure 1-37	East Service Road: Proposed Improvements Plan View	1-60
Figure 1-38	Boston Wharf Road: Section View	1-61
Figure 1-39	Boston Wharf Road: Proposed Improvements Plan View	1-62
Figure 1-40	Proposed Street Furniture Concepts	1-63
Figure 1-41	View North on East Service Road (at L4 and M2) from Congress Street	1-64
Figure 1-42	View South on East Service Road (at L2 and M1) from Seaport Boulevard	1-65
Figure 1-43	View East from Autumn Lane (at L2 and L4) toward M Way	1-66
Figure 1-44	Project Development Context	1-75
Figure 1-45	Phasing Plan	1-79
Figure 1-46	Pedestrian and Vehicular Circulation Patterns	1-83
Figure 3-1	Study Area Intersections	3-4
Figure 3-2	On-Street Parking Regulations	3-14
Figure 3-3	Car Sharing Services	3-17
Figure 3-4	Existing (2016) Condition Vehicular Traffic Volumes, a.m. Peak Hour	3-18
Figure 3-5	Existing (2016) Condition Vehicular Traffic Volumes, p.m. Peak Hour	3-19
Figure 3-6	Existing (2016) Condition Bicycle Volumes, a.m. and p.m. Peak Hours	3-21
Figure 3-7	Bicycle Sharing Locations	3-22

List of Figures (Continued)

Figure 3-8	Existing (2016) Condition Pedestrian Volumes, a.m. and p.m. Peak Hours	3-23
Figure 3-9	Public Transportation	3-24
Figure 3-10	Specific Background Project Locations	3-28
Figure 3-11	No-Build (2023) Condition Vehicular Traffic Volumes, a.m. Peak Hour	3-31
Figure 3-12	No-Build (2023) Condition Vehicular Traffic Volumes, p.m. Peak Hour	3-32
Figure 3-13	Site Access Plan (add traffic flow arrows to team provided figure)	3-34
Figure 3-14	Loading and Parking	3-35
Figure 3-15	Trip Distribution - Entering	3-41
Figure 3-16	Trip Distribution - Exiting	3-42
Figure 3-17	Vehicle Trip Assignment, a.m. Peak Hour	3-43
Figure 3-18	Vehicle Trip Assignment, p.m. Peak Hour	3-44
Figure 3-19	Build (2023) Condition Vehicular Traffic Volumes, a.m. Peak Hour	3-45
Figure 3-20	Build (2023) Condition Vehicular Traffic Volumes, p.m. Peak Hour	3-46
Figure 3-21	Future Mobility	3-51
Figure 3-22	Intersection Volume Comparison	3-54
Figure 3-23	Intersection Volume Comparison	3-55
Figure 4.1-1	Wind Tunnel Study – No Build	4-3
Figure 4.1-2	Wind Tunnel Study – Full Build	4-4
Figure 4.1-3	Direction Distribution of Wind – Spring and Summer	4-5
Figure 4.1-4	Direction Distribution of Wind – Fall and Winter	4-6
Figure 4.1-5	Directional Distribution of Wind – Annual	4-7
Figure 4.1-6	Pedestrian Wind Conditions – Mean Speed – No Build (Annual)	4-10
Figure 4.1-7	Pedestrian Wind Conditions – Mean Speed – Full Build (Annual)	4-11
Figure 4.1-8	Pedestrian Wind Conditions – Effective Gust – No Build (Annual)	4-12
Figure 4.1-9	Pedestrian Wind Conditions – Effective Gust – Full Build (Annual)	4-13
Figure 4.1-10	Pedestrian Wind Conditions - Comfort Category Change - No Build to Full Build	ld
	(Annual)	4-14
Figure 4.2-1	Shadow Study, March 21 9:00 a.m.	4-20
Figure 4.2-2	Shadow Study, March 21 12:00 p.m.	4-21
Figure 4.2-3	Shadow Study, March 21 3:00 p.m.	4-22
Figure 4.2-4	Shadow Study, June 21 9:00 a.m.	4-23
Figure 4.2-5	Shadow Study, June 21 12:00 p.m.	4-24
Figure 4.2-6	Shadow Study, June 21 3:00 p.m.	4-25
Figure 4.2-7	Shadow Study, June 21 6:00 p.m.	4-26
Figure 4.2-8	Shadow Study, September 21 9:00 a.m.	4-27
Figure 4.2-9	Shadow Study, September 21 12:00 p.m.	4-28
Figure 4.2-10	Shadow Study, September 21 3:00 p.m.	4-29
Figure 4.2-11	Shadow Study, September 21 6:00 p.m.	4-30
Figure 4.2-12	Shadow Study, December 21 9:00 a.m.	4-31

List of Figures (Continued)

Figure 4.2-13	3 Shadow Study, December 21 12:00 p.m.	4-32
Figure 4.2-14	4 Shadow Study, December 21 6:00 p.m.	4-33
Figure 4.3-1	Viewpoint and Area Context Locations	4-38
Figure 4.3-2	Proposed Conditions	4-39
Figure 4.3-3	Proposed Conditions	4-40
Figure 4.3-4	Area Context Viewpoints	4-41
Figure 4.5-1	Intersection of Sleeper St. and Seaport Blvd.	4-51
Figure 4.5-2	Intersection of Seaport Blvd., E. Service Road., and Pier 4 Blvd.	4-52
Figure 4.5-3	Intersection of Congress Street, B Street, and Interstate Ramps	4-53
Figure 4.5-4	Intersection of Summer St. and D. St.	4-54
Figure 4.7-1	Chapter 91 Jurisdiction	4-60
Figure 6-1	Seaport Urban Design Connectivity	6-2
Figure 6-2	Urban Room	6-5
Figure 6-3	Massing Scenario	6-6
Figure 6-4	Urban Design Framework Strategy	6-7
Figure 7-1	The Chapel of Our Lady of Good Voyage	7-2
Figure 9-1	Existing Sewer Systems	9-4
Figure 9-2	Proposed Sewer Systems	9-10
Figure 9-3	Existing Water Systems	9-12
Figure 9-4	Proposed Water Systems	9-13
Figure 9-5	Existing Storm Drain System	9-15
Figure 9-6	Proposed Storm Drain System	9-17

List of Tables

Project Program (including NPC Project changes) – Uses by Block Seaport Square Program – Total Comparison by Block	1-35 1-38
Seaport Square Program - Use Comparison	1-39
Anticipated Permits, Reviews, and Approvals for the NPC Project (if necessary)	2-6
Building Program Comparison	3-1
NPC Project Build Program for Transportation Analysis	3-2
Off-street Parking Lots and Garages within a Quarter-Mile of the Site	3-15
Existing Public Transportation Service Summary	3-25
	 Project Program (including NPC Project changes) – Uses by Block Seaport Square Program – Total Comparison by Block Seaport Square Program - Use Comparison Anticipated Permits, Reviews, and Approvals for the NPC Project (if necessary) Building Program Comparison NPC Project Build Program for Transportation Analysis Off-street Parking Lots and Garages within a Quarter-Mile of the Site Existing Public Transportation Service Summary

List of Tables (Continued)

Table 3-5	Travel Mode Share	3-37
Table 3-6	Vehicle Occupancy Rates	3-38
Table 3-7	Net New NPC Project Trip Generation	3-39
Table 3-8	Transit Trip Distribution	3-53
Table 3-9	MBTA Transit Operations – Peak Hour Capacities	3-56
Table 3-10	MBTA Transit Operations – Impact during a.m. Peak Period	3-56
Table 3-11	MBTA Transit Operations – Impact during p.m. Peak Period	3-57
Table 3-12	Vehicle Level of Service Criteria	3-58
Table 3-13	Existing (2016) Condition, Capacity Analysis Summary, a.m. Peak Hour	3-59
Table 3-14	Existing (2016) Condition, Capacity Analysis Summary, p.m. Peak Hour	3-63
Table 3-15	No-Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour	3-69
Table 3-16	No-Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour	3-73
Table 3-17	Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour	3-80
Table 3-18	Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour	3-84
Table 3-19	Level of Service Comparison NPC Project Conditions	3-89
Table 3-20	Level of Service Comparison, 2010 DPIR to NPC	3-90
Table 4 1-1	Roston Planning & Development Agency Mean Wind Criteria*	4-8
Table 4 3-1	Daylight Obstruction Values	4-35
Table 4 5-1	National (NAAOS) and Massachusetts (MAAOS) Ambient Air Quality Standards	4-43
Table 4 5-2	Observed Ambient Air Quality Concentrations and Selected Background Levels	4-45
Table 4 5-3	Summary of Microscale Modeling Analysis (Existing 2016)	4-55
Table 4 5-4	Summary of Microscale Modeling Analysis (No-Build 2023)	4-56
Table 4 5-5	Summary of Microscale Modeling Analysis (No Duild 2023)	4-57
Table 4 9-1	Subsurface Soils	4-64
Table 4 10-1	Solid Waste Generation – 2010 vs 2016^{*}	4-66
Table 4.11-1	Construction Schedule	4-67
Table 9-1	Project Wastewater Generation	9-5
Table 9-2	Existing Sewer Capacity	9-7
Table 9-3	Stormwater	9-16
Table 10-1	Summary of NPC Project Impacts and Mitigation	10-1

Chapter 1.0

Project Description

1.0 PROJECT DESCRIPTION

1.1 Project Site

After decades of promise, planning, and anticipation, South Boston's Seaport District ("Seaport") is now recognized as the next great neighborhood in the City of Boston. As new development is completed and new businesses, residents, and employers take root in this still emerging neighborhood, Seaport is developing its own unique identity as the center of gravity of Boston's innovation economy and as a major residential community within the city fabric. Physically, both the built environment and the public realm are taking shape on a block-by-block basis, and the potential to create a cohesive and extraordinary place of residence, business, and recreation is being realized. At the geographic center of this new neighborhood, the Seaport Square Project has a responsibility to provide the critical mass of residences, employers, retailers, entertainment venues, and civic amenities that form the heart and soul of a great 21st century Bostonian neighborhood. Seaport Square Development Company LLC and its affiliates (the "Proponent"), which are affiliates of W/S Development Associates LLC, acquired the remaining Seaport Square development parcels in October 2015 and propose an updated and enhanced vision for the District, detailed in this filing, which will foster the type of unique urban place making that will benefit all Bostonians and make Seaport a destination for visitors and employers from all neighborhoods of the city, from across the country, and from around the world.

The Project Site consists of approximately 23 acres of land, defined by an L-shaped series of development blocks and generally bounded by Northern Avenue and Seaport Boulevard (between Old Sleeper Street and Pier 4 Boulevard) and by Stillings Street, Boston Wharf Road, East Service Road and Pier 4 Boulevard and B Street (between Seaport Boulevard and Summer Street). The Seaport Square Project received approval for the construction of approximately 6,335,200 square feet of gross floor area from the Boston Redevelopment Authority ("BRA") (now doing business as the Boston Planning and Development Authority and referred to herein as the BRA and the BPDA as appropriate) under Article 80B of the City of Boston Zoning Code (the "Code"), and the BRA and the City of Boston Zoning Commission approved a Planned Development Area Development Plan (as amended, the "Original PDA Plan") in 2010. The project also received approval from the Secretary of Energy and Environmental Affairs under the Massachusetts Environmental Policy Act ("MEPA") in 2010, as well as other master plan-level approvals. The project approved in 2010 is referred to herein as the "2010 Project."

Approximately 3.4 million square feet of structures approved as part of the 2010 Project have either been completed or are currently under construction. The status of the Project Blocks is shown on Figure 1-1. Specifically, within the Project Site, construction of structures on five blocks has been completed: the Envoy Hotel on Block A; District Hall on Block F; the Chapel of Our Lady of Good Voyage and the Boston Global Investors office

Seaport Square Boston, Massachusetts

building on Block H; the Watermark Apartments on Block K; and the 101 Seaport Boulevard (Price Waterhouse Coopers) building on Block L1. Five additional structures are under construction pursuant to the 2010 Project approvals: the One Seaport Boulevard project, consisting of the Benjamin and Via buildings on Blocks B and C respectively; the Yotel hotel on Block J; the 121 Seaport building on Block L2; and the residential and retail project on Block M. The sites of the development projects described above – Blocks A, B, C, F (the portion on which open space and District Hall have been constructed), H, J, K, L1, L2, and M1/M2, are described herein as the "Developed Blocks."

In addition to these structures, three major public open spaces have been completed within the Project Area: Seaport Common (formerly known as Seaport Square Green) on Block F; Sea Green (formerly known as Q Park) on Block Q; and the Old Sleeper Street Harborwalk connection. Each of these, in its own way, has become a vibrant, active public realm amenity that benefits the entire Seaport District. In addition to these spaces, Courthouse Square, a major public open space, is under construction in connection with the One Seaport project on Blocks B and C of the Project, and the Block M Courtyard is being built as part of the construction of the mixed-use structures on Block M.

Throughout this document, the term "Project Site" shall refer to the entire approximately 23acre Seaport Square Project area as described in the 2010 Project approvals, along with certain additional parcels of land described herein that the Proponent expects to acquire pursuant to agreements governing the assembly of the Project Site. As set forth in the approvals received in 2010, the Proponent has delineated twenty lettered "Blocks" within the Project Site. The subject of this Notice of Project Change ("NPC") is approximately 13 acres of land comprising approximately nine individual building sites currently owned by affiliates of the Proponent (the "NPC Project Site" and "NPC Project") which remain undeveloped and are occupied largely by surface parking lots, or, in the case of Blocks F and Q, are developed or partially developed but are the subject of certain changes as described herein. The NPC Project Blocks are comprised of Blocks D, F, G, L3-6, N, P, and Q. The term "Project" will be used herein to describe the totality of the structures and other improvements already completed or currently underway as part of the 2010 Project, in addition to those planned as part of the NPC Project.

The Proponent has participated as a member of the 2010 Project team since 2006 in the master planning of a larger 33.5 acre area (the "Project Area"), which includes the public ways within and bounding the Project Site, much of which will be improved in concert with the overall Project's development. The Project Area is shown on Figure 1-2. This NPC seeks to modify certain detailed design aspects of certain as yet unconstructed public realm improvements but does not seek to adjust the scope or extent of the Project Area. To date, approximately \$40 million has been spent on public realm improvements by individual development projects within the Project Area, with many of the public realm improvements contemplated within the Project Area still to come.

Seaport Square Boston, Massachusetts

To the north, south, east, and west of the Project Area, planning, permitting, and construction have moved forward in the past ten years to redevelop previously underutilized areas of South Boston, which has resulted in the transformation of many acres of other surface parking lots and major improvements to roadway infrastructure, particularly in the Seaport. Projects completed recently by others include five buildings within the Fan Pier development, 100 Pier 4, multiple historic rehabilitation projects within the Fort Point Channel Landmark District, 315 on A, Waterside Place, and many others. These nearby projects have added new uses and new attractions to the area, signaling renewed vitality for the Seaport.

1.2 Project Description & Current Status

The Project is rapidly transforming 23 acres of land formerly used as surface parking lots into a vibrant, 24/7 neighborhood, just steps from the waterfront and Boston's Financial District (see Figures 1-3 and 1-4 for the Project Context and District Map). Using thoughtful principles of urban planning and enhanced by a diverse and dense complement of retail, restaurant, and entertainment uses, this master planned development is weaving together a unique fabric of residences, offices, shops, restaurants, civic uses, hotels, and open spaces spanning 20 city blocks. Retail is a major component of the Project, occupying the ground floor, and the second and third floors in some cases, of most of the buildings within the Project Site. The retail and restaurant amenities throughout the Project are currently characterized by, and are planned to continue, as a blend of local and regional stores and boutiques mixed with larger national retailers to create a unique and vibrant retail mix that is already re-orienting the entire city's retail and restaurant landscape. Large retail tenants, such as a full-service neighborhood supermarket, will also be included. The entire development will be distinguished by its commitment to sustainable design; the Project is already a Pre-Certified LEED-ND Gold Plan.

The Project will continue to be served by the major public infrastructure improvements constructed in recent years, including the MBTA Silver Line and improved access to major local arteries and I-90 and I-93. The new growth contemplated by both the 2010 Project and the NPC Project has been guided by the BRA's Seaport Public Realm Plan and the South Boston Municipal Harbor Plan, as well as more recent initiatives such as Housing a Changing City: Boston 2030, ImagineBoston 2030, GoBoston 2030, the BostonCreates Cultural Plan, and the City of Boston's focus on growing the Innovation Economy sector by attracting new and innovative uses to the Seaport District.

While only partially completed, the Project has already created significant public realm benefits, including creating and activating a generous amount of publicly accessibly open space – green space, new pedestrian ways, and sidewalks. Approximately 8.8 acres or 37% of the privately-owned Project Site will be dedicated public open space including private streets. Approximately 7.0 acres or 30% of the Project Site will be devoted to pedestrian-only open space (e.g., Seaport Common, Courthouse Square, Sea Green, Harbor Way,

SEAPORT

Harbor Square, Block M Courtyard), and new pedestrian corridors and sidewalks. It is important to note that significant portions of the new pedestrian-oriented public open space to be built by the Proponent as part of the Project fall outside of the limits of the Project Site and therefore are not included in the calculations stated above (i.e. portions of public sidewalks and median improvements that fall within City-owned public ways, and public spaces built on land owned by others, such as the Farnsworth pedestrian link). These improvements provide an additional 3.4 acres of public open space, bringing the total pedestrian-oriented public space created or improved by the Project to over 10 acres.

In addition to the major new public green spaces already created by the Project's construction, the NPC Project will create a major new pedestrian and bicycle link between Summer Street and the edge of Boston Harbor that will redefine the public image of the Seaport District and open up new paths of travel for commuters, visitors, and residents alike that have never before been possible in the area. The NPC Project will also redefine the streetscape along Seaport Boulevard and create an improved pedestrian experience along Seaport Boulevard between the Moakley Bridge and Pier 4 Boulevard. The physical public realm will be dramatically improved over existing conditions, which will promote a dramatic increase in the retail and restaurant activation of the public realm. The Seaport Boulevard corridor will be re-prioritized into a 21st century place that promotes pedestrian and bicycle traffic over the motor vehicle – all without reducing the vehicular throughput capacity of the corridor, as it remains a critical corridor for vehicular travel as well, both by passenger vehicle and for commercial transport.

The Project has already begun to fill an existing urban void and link together separate clusters of diverse activity and urban fabric by establishing a series of connections between the Financial District, the waterfront area, the Fort Point Channel Landmark District and the Fan Pier and Pier 4 projects. These connections stitch together previously isolated entities such as the Institute of Contemporary Art, the Seaport World Trade Center, and the Boston Convention and Exhibition Center (BCEC). Building on the successes of the 2010 Project, the NPC Project seeks to apply the lessons learned over the intervening seven years, respond to the changing dynamics in the Seaport District and along the major streets in the Fort Point Channel Landmark District, and provide further public realm improvements that will help to organize and weave together the entire complement of buildings, streets, and public realm amenities, that together comprise the Seaport Project.

1.2.1 Public Spaces

The Project as a whole will result in the construction of seven new distinct major public spaces, several of which have been completed or are under construction. These new spaces establish important pedestrian and visual connections and provide open space amenities serving the entire district and beyond; Seaport Common, the home of the Massachusetts Fallen Heroes Memorial, is already an important public green space that has

become a destination for visitors from around the state and across the nation. The major public spaces that have been or will be created in connection with the Project's development include:

- Re-imagined Seaport Boulevard (NPC Project);
- Seaport Common (Block F) (2010 Project, as amended);
- Sea Green (f/k/a Block Q Park) (2010 Project);
- Harbor Way between Summer Street and the water's edge (NPC Project);
- Harbor Square within the Blocks L3-6 (f/k/a Seaport Hill) (NPC project);
- Block M Courtyard (2010 Project); and
- Courthouse Square on Blocks B & C (2010 Project).

This network of public open spaces is illustrated in Figure 1-5 and each individual element of this network is described in greater detail below. In total, the Project's open space network will represent the full spectrum of open space types, from larger green spaces intended mostly for passive and contemplative uses to well-appointed active recreational spaces for people of all ages and pets, to intensely activated, retail-lined hardscape spaces that contribute greatly to the vibrancy and energy of the entire district. The open spaces proposed specifically as part of the NPC Project are intended to further diversify the range of public spaces that populate the Seaport District and also to implement a vision for the unification and organization of previously constructed elements of the Seaport.

1.2.1.1 Seaport Boulevard

Seaport Boulevard is the main axis connecting Downtown Boston to the Seaport District and today has a physical scale and materials palette that is not conducive to a world-class pedestrian experience. Modest improvements along Blocks F, K, and L1 have already been made, but the NPC Project contemplates a corridor-wide series of improvements between Sleeper Street and Pier 4 Boulevard to complement recent improvements and those under construction or planned in connection with Blocks B, C, H, and J. Once improved as contemplated in the NPC Project, Seaport Boulevard will bring a new street experience to the City, as shown in Figure 1-6. Tree-lined and furnishing-rich sidewalks and a wide, landscaped median planted with mature trees and potential public art installations, will create a pleasant, visually interesting, tree-canopied stroll for pedestrians from the Financial District to Harbor Way and beyond to the World Trade Center complex. Small local shops and boutiques will be interspersed with national retailers and restaurants to create a vibrant streetscape consistent with the vision for a world-class 21st century Boston neighborhood. Already this transformation has begun, with modest improvements and the addition of new retail and restaurant amenities in Blocks K and L1, with many more such amenities under construction in Blocks B & C, which are expected to be completed in the fall of 2017. The

Seaport Boulevard pedestrian experience will also be enhanced dramatically by the addition of three levels of retail and entertainment amenities in Blocks B and C (One Seaport, the Benjamin and Via buildings). The theater, bowling, restaurant, and fitness amenities to be constructed in this complex will be major regional destinations for visitors to the Seaport District, adding significant street life and vitality at the gateway to the District.

The Project will also provide new restaurants, retailers, local services, and cafes for area employees and neighborhood residents to enjoy along Seaport Boulevard. The first new retail and restaurant amenities that have been opened along Seaport Boulevard have experienced great popularity among residents, office workers, and visitors to Seaport. For example, CVS Pharmacy has been opened in Block K along Seaport Boulevard, providing a long-sought major neighborhood amenity, alongside several other small restaurants, cafes, and local services.

Seaport Boulevard will continue to emerge as a retail promenade of regional prominence, not only enhancing the pedestrian experience but also providing safer and more efficient bicycle and motor vehicle circulation capacity. The NPC Project contemplates continuing and updating the improvements planned as part of the 2010 Approvals, some of which have been implemented on a block-by-block basis by individual projects. The NPC Project also enhances the already contemplated upgrades to Seaport Boulevard by increasing the density of planting and potentially adding public art installations within the median and sidewalk along Seaport Boulevard. The Landscape Architect of the High Line Park in New York City, James Corner Field Operations, is leading the design of the future improvements to Seaport Boulevard, which will synthesize with and complement the existing sidewalk improvements to ensure continuity of the materials palette throughout the Seaport Boulevard corridor.

A gracious sidewalk with a double row of trees is planned for (and in the case of Block F, has been constructed on) the north side of Seaport Boulevard to accommodate generous outdoor seating areas and sidewalk entertainment. A wide sidewalk with a single row of trees is planned for (and in the cases of Blocks K and L1, has been constructed on) the south side of the Boulevard.

The buildings that line Seaport Boulevard are designed to mediate two distinct urban fabrics: on the northern side of the Boulevard, a series of taller buildings matches the height of the Fan Pier buildings and provides a clear and activated urban edge to the waterfront area, while buildings along the southern side of the Boulevard along the length of the northern edge of the Fort Point Channel Landmark District extend the scale, massing, and height of the adjacent industrial brick warehouse fabric, creating an architecturally distinct edge to the Fort Point Channel Landmark District. The transition in scale and massing of these two different streetwall conditions along Seaport Boulevard has been further articulated by each building's planned architecture.

1.2.1.2 Seaport Common

As depicted on Figures 1-7, 1-8 and 1-9, Seaport Common is a multi-functional urban open space that is located alongside District Hall and directly across the street from Fan Pier Green. It stands at the intersection of the area's major urban axes and acts as a focal point of activity and public access for the Seaport District and adjacent developments. Defined by Seaport Boulevard on one side and Northern Avenue on the other, it connects to the Fan Pier Green, creating a continuous public space that reaches the waterfront and connects directly to the Harborwalk.

Construction of Seaport Common was completed in the spring of 2016 and already it has become a hub of neighborhood activity and a regional destination. In connection with the Proponent's ownership and stewardship of Seaport Common and commitment to creating a 21st century neighborhood for all Bostonians, the Proponent has engaged in a program of public events and activities on Seaport Common throughout the summer and fall of 2016. These activities have included regular fitness classes, a successful speaker series, a Boston Symphony Orchestra concert, a cooking demonstration, a neighborhood holiday festival (the first annual Seaport Holiday Tree lighting), and a series of other events all free and open to the public that are designed to create a sense of community centered on Seaport Common. The Massachusetts Fallen Heroes organization has also hosted a number of events in Seaport Common that have further activated the space since the dedication of the Massachusetts Fallen Heroes Memorial in May of 2016. Despite having been complete for less than one year, Seaport Common is already fulfilling its intended purpose as a major piece of common ground for the Seaport and beyond, and host to numerous public activities and events that add vitality and interest to the Seaport District for residents, workers, and visitors alike. The Proponent intends to expand its programming and public event series in Seaport Common in the summer of 2017 and in the years to come.

As contemplated in the 2010 Project, the Proponent will construct a new MBTA head house/station entrance adjacent to Seaport Common to further enhance and promote public access to this important public amenity and connection to the waterfront open space now completed on Fan Pier. When the Silver Line Phase II infrastructure was built and opened in 2004, it was the hope of the public and the MBTA that future development in the Seaport District would embrace the new bus rapid transit (BRT) mode of public transportation. Today, the Silver Line is indeed a major mode of commuting for residents and employees of the Seaport. A prominent Silver Line head house at the Seaport Boulevard corner of Seaport Common, which will be constructed in connection with the development of Block D, is a natural nexus for activity and people that will both enhance the success of the Silver Line for employees in the Fan Pier, Pier 4, and Block D, L1, L2, L4, and L5 office buildings than is offered by the current head house locations. The location of this head house, with

direct visual and pedestrian access to the water's edge, will promote public access to the waterfront through a network of permanent public open space, from Seaport Common and Fan Pier Green to the Harborwalk.

1.2.1.3 Courthouse Square

Courthouse Square is an outdoor public space located across from the Moakley Federal Courthouse. It connects Seaport Boulevard to Northern Avenue with a 17,000 square foot public piazza lined with retail, restaurants, and entries to upper-level restaurant and entertainment uses (see Figures 1-10). This broad public space, located on Blocks B and C, is being constructed to include electrical, digital, and other physical infrastructure and movable street furniture that will allow the space to be programmed with public activities that will make Courthouse Square an inviting and well-used public space. Complementing several more contemplative public spaces in the immediate vicinity, such as Seaport Common, Fan Pier Green, and the Fan Pier section of the Harborwalk, Courthouse Square is viewed as a lively, vibrant public place, situated among the almost 250,000 square feet of retail, restaurant, and entertainment uses, and between the two residential buildings that comprise the One Seaport Boulevard project.

1.2.1.4 Harbor Way

The NPC Project proposes to create a major new north-south multimodal connection between Summer Street and the Harbor's edge called Harbor Way, as shown on Figure 1-11. This new axis of travel will create a north-south pedestrian and bicycle thoroughfare through the heart of the Seaport District that will help to organize and unify the development blocks within the Project Area and serve as a major open space and transportation amenity to residents, commuters, and visitors. Harbor Way is emblematic of the Proponent's commitment to creating an extraordinary sense of place for people and bicycles throughout the Seaport, addressing many of the past concerns about the district's existing car-centric conditions. Harbor Way will also serve as a "Cultural Corridor" connecting the Institute of Contemporary Art (ICA) to the BCEC and multiple other cultural institutions and installations in the vicinity of the Project. The intent of the Cultural Corridor is to establish the area as a new cultural destination for the City, activating the South Boston waterfront and contributing to its economic success and neighborhood quality of life. Additional cultural and civic uses designed to reflect the diverse needs of the city cultural community will be infused into the Blocks along Harbor Way to help create a meaningful cultural destination in the Seaport. The nature of these cultural facilities will be consistent with the needs identified in conversations with local cultural organizations and with the BostonCreates Cultural Plan recently completed by the City of Boston. As described more fully in Section 1.4.3, additional cultural and civic uses designed to reflect the diverse needs of the city's cultural community will be infused into the blocks along Harbor Way to help create a meaningful cultural destination in the Seaport.

The NPC Project differs from the originally approved 2010 Project in that Harbor Way is envisioned as an entirely pedestrian and bicycle-oriented amenity; it no longer includes a new vehicular bridge over Congress Street to Summer Street. Furthermore, Harbor Way will extend from Summer Street all the way past Seaport Boulevard and Northern Avenue to the edge of Boston Harbor (working in collaboration with the Fallon Company to complete the landscape development of the final block of Harbor Shore Drive in a manner that is consistent with the landscape and hardscape vocabulary of the rest of Harbor Way and the new water transportation terminal recently completed by the Fan Pier development. This important connection will also facilitate travel from within the Project Area by water transport, helping to alleviate vehicular congestion on area roadways and reduce the Project Area's carbon footprint.

Anchoring the waterfront end of this corridor is the ICA's visionary building, a globally recognized icon of contemporary culture, and a catalyst for the arts in Boston. The ICA, Harborwalk, and the new water transportation terminal completed as part of the Fan Pier development will form the northern terminus of the Harbor Way.

Harbor Way is envisioned as a richly landscaped and hardscaped pedestrian boulevard of exceptional urban design quality and visual interest. It is being designed by James Corner Field Operations, the landscape architect for the High Line in New York and many other well-known public spaces throughout the country. Harbor Way will be lined along its entire length with active public uses such as restaurants and cafes, retail shops, entertainment/recreational venues, and cultural/civic uses. Public art installations will create visual interest all along the approximately 1/3-mile length of Harbor Way, and pedestrian wayfinding and visual cues – in addition to the direct view corridor to the Harbor from the top of the Summer Street stairs - will help to promote connectivity to the water's edge all the way back to Summer Street. Figures 1-12 and 1-13 provide imagery depicting the quality and visual interest of Harbor Way as a major public space for the City of Boston.

In addition to serving an important district-wide role as a linear pedestrian promenade, Harbor Way will be anchored at the center of the L3-6 blocks by a major public open space. This space, Harbor Square, is in the location of open space planned as part of the 2010 Project, but its design and purpose has been re-envisioned in the NPC Project to add more public vitality and pedestrian connectivity to the district as a whole.

Harbor Way will also create a new connection between the major east-west axes of Summer and Congress Streets and the Harborwalk at the edge of Boston Harbor, completing an approximately 1.5-mile "Harbor Loop" that provides pedestrians and bicyclists with a diverse set of experiences. Starting from the ICA, the first mile of the loop curves along Fan Pier and south along the edge of Fort Point Channel, then turns east through the historic architecture of the Fort Point Channel Landmark District, before turning north to close the loop along Harbor Way, a contemporary and bustling linear public open

space lined with world-class retail, cafes, and cultural amenities. The Harbor Loop will take its place alongside other beloved and quintessentially Bostonian walking routes, such as the Commonwealth Avenue Mall, Charles River Esplanade, Jamaica Pond circuit, Castle Island, and Rose Kennedy Greenway.

From a broader area-wide planning perspective, Harbor Way will also create a major axis of travel that will help to knit together future development on the U.S. Postal Service land located south of Summer Street. As a major organizing feature of the central Seaport, Harbor Way creates a strong framework for long-range future growth south of Summer Street and provides a future connection to open space networks beyond the Seaport District, such as the South Bay Harbor Trail and its connection to the Emerald Necklace via Melnea Cass Boulevard.

1.2.1.5 Harbor Square

The Harbor Way linear public open space will be anchored by a café-, restaurant-, and retail-lined multi-use public space called Harbor Square at the center of Blocks L3-L6. Designed by world-renowned landscape architecture firm James Corner Field Operations, Harbor Square is envisioned as a hub of year-round activity in the Seaport District and an active public open space. Harbor Square is designed like a European piazza that takes its landscape cues from the New England coastline, ringed with multiple levels of retail, cafes, and restaurants with hundreds of outdoor seats surrounding a central active gathering place that will play host to numerous seasonal events and activities. The central space within Harbor Square will be richly landscaped and hardscaped, but also built with active uses in mind through the provision of a dense network of event-related infrastructure including power, digital, water supply and natural gas connections, sanitary facilities, and other services that would be needed to support major public events. The flexibility built into the piazza is essential to hosting the variety and frequency of public events envisioned for the space. A plan of Harbor Square, renderings, and illustrative imagery of event possibilities is included as Figures 1-14 through 1-20. With Harbor Square as their center of gravity, events such as farmers' markets, fashion shows, seasonal festivals, and craft fairs will be able to spill onto Harbor Way to extend public activity north and south throughout the Project Area. In addition to the major axial connections to the north and south along Harbor Way, Harbor Square will also feature smaller, more intimate and distinctly Bostonian angled pedestrian passageways leading east and west, which are aligned visually with points of interest, the Sea Green (Block Q) open space to the west across Boston Wharf Road and the prominent "bullnose" architectural element of the Block M project to the east, which will be a major retail hub and destination.

The approach to Harbor Square as an active and heavily programmed urban piazza complements the open greenspace areas that have already been developed throughout the Seaport District, both as part of the 2010 Project (i.e. Seaport Common and Sea Green) and as part of other nearby projects (Fan Pier Green, Fan Pier Harborwalk, Eastport Park, 100

Acres Master Plan, Iron Street Park, and others). The Proponent has observed that a vibrant 21st century neighborhood needs both passive and active open spaces and Harbor Square will provide numerous opportunities for public activations and cultural events that will be regional draws in addition to providing neighborhood amenities to support the growing residential population and cultural identity of the Seaport District.

1.2.1.6 Sea Green (f/k/a Q Park)

The first major public realm amenity within the Seaport Square Project to be completed was a 3/4-acre active recreational use space located on Block Q of the Project. This public open space was initially known as Q Park but has been re-named Sea Green in reference to its large lawn area. In addition to a large green space, Sea Green features a popular neighborhood dog run and active use amenities such as a half-court basketball court and a well-appointed children's play area that includes a variety of active play equipment. In the two years since Sea Green's completion, it has become a focal point of neighborhood use by residents and employees, and a primary destination for dog owners in the area. To further enhance the community focus of Sea Green in 2016, including fitness classes, a popular and interactive public art installation, and a Boston Ballet performance. Sea Green is an important complement to the spectrum of public open spaces in the Seaport District because it includes both open green areas suited to passive use and spaces and installations dedicated to active recreational use by all ages.

1.2.1.7 Block M Courtyard

Anchoring the center of the 3.4-acre Block M development site will be an intimate and bustling public space modeled on the café-lined town squares found in small European towns and quieter pockets of large European cities. Dominated by a rich materials palette and diverse array of building architecture surrounding the central public space, the Block M Courtyard will be a place of respite from the surrounding city fabric, offering a range of café, dining, and boutique shopping experiences. The central courtyard is connected to surrounding streets on three sides of the project Block by intimately scaled, boutique-lined pedestrian ways that connect to Harbor Square across East Service Road to the west and the water's edge across Seaport Boulevard to the north and northeast. The Block M Courtyard, with a total public realm area of 14,050 square feet (1/3 acre), provides yet another type of urban room within the Seaport project that will contribute to the diversity of public experiences available within the Project Area and further enhance the public's enjoyment of the Seaport District.

1.3 Development Program / Summary of Project Changes

The 2010 Seaport Square Project included 23 buildings of varying sizes on 20 Blocks with a total of approximately 6.3 million square feet (sf) of gross floor area of total development. The NPC Project will include approximately 7.7 million square feet of gross floor area of development, representing a significant increase in the number of housing units and density of innovation office space spread across the Project Area. As shown in Figure 1-21, the NPC Project contemplates:

- Increasing the total gross floor area of residential uses for the Project from 2.8 million sf to up to 3.2 million sf (from approximately 2,500 residential units to up to approximately 3,200 residential units) to support the continued emergence of a thriving residential neighborhood in the Seaport District;
- Increasing the total gross floor area of office/innovation uses from approximately 1.2 million sf to up to 2.9 million sf to support the continued growth of the city's innovation economy;
- Maintaining approximately 1.1 million sf of retail, restaurant, services, and entertainment uses within the Project to create a vibrant retail and dining hub serving the city's residential, business, and visitor communities alike;
- Introducing a diverse array of cultural and civic uses across the NPC Project blocks that is reflective of the carried needs and interests of Boston's arts and cultural community;
- Building a total of up to 500,000 sf of hotel uses within the Project to support the visitor economy in Boston;
- Creating Harbor Way the pedestrian focused and amenity rich path through the L Blocks, across Seaport Boulevard and to the water's edge;
- Building the Summer Street Steps and a complementary accessible route to provide access from the elevated Summer Street corridor to Congress Street and the rest of the Seaport District,
- Reimagining the Seaport Boulevard Median design to bring a pedestrian sense of scale to the entrance of and main thoroughfare through the Seaport District; and
- Reducing the overall number of parking spaces to be constructed in order to moderate the number of vehicular trips into and out of the district on a daily basis.

The focus of the proposed increase in development density includes the provision of additional housing opportunities in the Project Area consistent with the City of Boston's policy objective of creating 53,000 additional housing units by 2030, and in support of the Seaport's continued emergence as a unique and vibrant residential neighborhood. The NPC Project will also provide additional spaces to accommodate the growth of the Seaport's innovation economy, since the 2010 Project's original formulation pre-dated the emergence of a robust innovation ecosystem in the Seaport District and the arrival of employers such as Vertex Pharmaceuticals, GE, LogMeln, and many others. Today, the NPC Project Site represents one of the last opportunities to attract major innovation economy companies to the Seaport due to the lack of other available development sites located in close proximity to transit, residential density, and the diverse array of community and cultural amenities that these types of employers seek out nationally.

The 2010 Project included approximately 6,500 parking spaces to be constructed in subsurface garages. In light of the importance of mitigating transportation impacts in the Seaport District and the rapidly changing dynamics surrounding personal vehicle usage in newly developed areas like the Seaport, the NPC Project is proposing to reduce significantly the number of parking spaces constructed within the Project Site to approximately 5,500 spaces – a 15% reduction in total parking count and an even further reduction in parking ratios. Empirical evidence described in Section 3.0 of this filing demonstrates that the actual vehicle utilization rates for both office and residential uses within the Project Area, based on projects completed to date, is well below projections made in 2009-2010, which preceded the advent of the shared MCCA shuttle service, ridesharing services such as Uber, Bridj, and Lyft, and the growth of the City of Boston's Hubway bicycle sharing system.

Every building within the Project Area, with the exception of the relocated Chapel on Block H, will include retail, restaurant, and/or service uses at ground level to provide an inviting and animated pedestrian experience throughout the district. Based on the lessons learned since the 2010 Project's approval and the emergence of a robust residential community in the area demanding local services, the Proponent is proposing to continue its practice of blending smaller, local boutiques, cafés, and restaurants with larger national retailers, restaurants, and entertainment venues to create a vibrant, authentic, and regionally attractive retail environment that provides a diverse array of local neighborhood amenities for local residents and employees as well as regional draws that will add street life and vitality to the district on an 18-hour basis.

The following three tables summarize the NPC Project. Table 1-1 shows the square footage of uses by Block.

Block	Total (GFA)	Retail / Entertainment (GFA)	Residential (GFA)	Office / Research (GFA)	Hotel (GFA)	Educational/ Cultural (GFA)
Block A*	85,800	-	-	-	85,800	-
Block B*	980,000	230,000	750,000	-	-	-
Block C*						
Block D	499,400	69,400	-	425,000	-	5,000
Block F	121,000	58,000	-	63,000	-	-
Block G	671,800	85,800	581,000	-	-	5,000
Block H*	22,400	-	-	16,200	-	6,200
Block J*	99,000	-	-	-	99,000	-
Block K*	298,732	23,732	275,000	-	-	-
Block L1*	455,300	20,925	-	434,375	-	-
Block L2*	432,038	59,638	-	372,400	-	-
Block L3	422,000	56,000	366,000	-	-	TBD
Block L4	523,540	81,000	-	442,540	-	TBD
Block L5	722,000	112,000	-	610,000	-	TBD
Block L6	343,000	51,000	-	-	292,000	TBD
Block M1*	1,012,000	125,000	887,000	-	-	-
Block M2*						
Block N	422,000	72,000	350,000	-	-	TBD
Block P	566,000	75,000	-	491,000	-	TBD
Block Q	4,000	4,000	-	-	-	-
Total	7,680,010	1,123,495	3,209,000	2,854,515	476,800	16,200 (minimum)

 Table 1-1
 Project Program (including NPC Project changes) – Uses by Block

Developed Blocks noted with *

This use table summarizes the distribution of land uses across the Project Site but is not intended to be a definitive determination of which uses will be located on which development sites within the NPC Project Site. For example, depending on multiple factors, hotel or residential uses may ultimately be located on any of the development blocks within the NPC Project Site, or commercial or retail uses may be redistributed within the NPC Project Site to accommodate specific user requirements.

Cultural uses are proposed to be interspersed throughout the NPC Project Site, rather than aggregated on a single block as previously contemplated, and Cultural Uses will be proposed to be interchangeable with any other use type on any block within the NPC Project Site in order to promote flexibility to respond to the diverse needs and interests of the City of Boston's cultural community.

Specific use and density changes proposed in this NPC include the following:

On Block D, the NPC Project, like the 2010 Project, proposes a new office/research building. The building will have at least one level of retail on the ground floor. The increased density on this Block will help accommodate the growing innovation economy in the Seaport District and make possible the extraordinary architectural quality and creativity that is envisioned for this building.

On Block F, the NPC Project proposes a new retail and innovation office building located east of Seaport Common with three levels of retail/restaurant uses over a parking garage that will connect to the garage for Block G. The scale of this building will provide a scalar transition between Seaport Common and the high-rise building located on Block G. The ground level of the building will be porous, both physically and visually, and will allow multiple paths of travel through the building with an emphasis on physical and visual connectivity through the building and the site between Harbor Way and Seaport Common. A major retail presence is envisioned along Seaport Boulevard and a public space related to the Massachusetts Fallen Heroes Memorial is planned for the Northern Avenue end of the building. The building is envisioned as one of extraordinary architectural quality and creativity and will play an important role in activating Seaport Common with retail, café, and other public uses, and will also provide an exciting workplace environment for innovation economy firms on the upper floors.

On Block G, the NPC Project proposes a new residential building (which could potentially include a hotel) with multiple levels of retail/commercial space on the lower floors to create a major node of activity and energy at this important central location. The change from office to residential use on Block G will provide additional housing opportunities adjacent to other residences recently constructed at the Fan Pier and Pier 4 developments in addition to Blocks B, C, K and M. Block G will also have retail use on all four sides of the ground floor.

The most significant change to the 2010 Project proposed in this NPC is located on Blocks L3, L4, L5, and L6, at the heart of the NPC Project Site. The 2010 Project envisioned an elevated and mostly enclosed passive lawn area surrounded by an access roadway and residential buildings. While commercial uses were allowed in the 2010 Project on Blocks L3-6, the NPC Project envisions a more diverse mix of uses on the L3-6 block and a much more public and accessible pedestrian and retail environment, which will play a central role in the open space network of the entire Seaport District by connecting Summer and Congress Streets directly to the water's edge at grade. The proposed upper level uses on Blocks L3, L4, L5 and L6 are residential, office/research/innovation, and hotel. The ground floor of all four blocks will be enlivened with retail, cafes, cultural and entertainment uses along Harbor Way, Autumn Lane, East Service Road, Congress Street and Boston Wharf Road, ensuring that the retail and public activity on these blocks benefits all of the surrounding streetscapes in addition to the major pedestrian spine of Harbor Way that runs through the middle of the block. There will be one parking garage under these blocks

(which may be constructed in phases) with two entrances/exits. The Proponent is adding density on these four blocks of both additional residential and additional office/R&D uses to support the city's innovation economy and the "live-work-play" dynamic of a great neighborhood. These blocks represent some of the last remaining opportunities to attract major innovation economy employers to the Seaport, especially so close to the kind of dense residential and retail environment that has proven compelling to new economy employers and employees alike. The diverse mix of residential, commercial, and retail uses envisioned on the nearly five acre L3-6 block will ensure an active, pedestrian-oriented 18-hour environment that will be unlike anything else in Boston.

On Blocks N and P, the NPC Project proposes a flexible mix of residential, possibly hotel, and office/research use above two to three levels of retail on the lower levels of each building facing both Congress and Summer streets, adjacent to the Summer Street Steps. This use mix, which is consistent with the mixed-use approach proposed for Blocks L3-6, is intended to support a vibrant, 18-hour retail district starting with a dramatically improved streetscape along Summer Street. The uses proposed for these Blocks generally are consistent with the 2010 Project, although given the infeasibility of constructing and operating a single cultural facility, as contemplated in the 2010 Project, the Proponent will instead seek to promote a diverse array of different types and sizes of cultural spaces throughout the Project, with the goal of making the Seaport a thriving cultural destination. The Proponent will incorporate a variety of cultural uses in multiple locations within the NPC Project Site as the NPC Project is built out (e.g., performance space, gallery space, studio/maker space, public art installation, rehearsal space), and will be allowed to substitute Cultural Uses for any other use category within the NPC Project Site to promote the organic growth of a series of cultural amenities in the district as the NPC Project is built out.

Educational uses will remain allowed in Blocks N and P, consistent with the 2010 Project. Modest increases in density are proposed for Blocks N and P, with the Block P site area expanding to include an additional air rights parcel over the I-90 ramp, which the Proponent is in the process of acquiring from MassDOT. This inclusion will allow for a continuous retail streetwall to be constructed almost as far east as the I-90 ventilation structure, providing a major public realm benefit for pedestrians on the currently barren stretch of Summer Street across from the BCEC.

In general, the NPC Project includes greater density of residential and innovation office space while maintaining the intense cluster of retail, restaurant, and entertainment uses originally envisioned for the District. The Proponent's vision of creating a dense, vibrant mix of land uses on one of the largest urban development sites remaining in the Boston area is intended to promote the continued emergence of a thriving residential neighborhood as well as promote continued growth of the city's and the region's innovation economy and cultural ecosystem in a uniquely pedestrian-oriented and amenity-rich urban environment.

Table 1-2 compares the block-by-block square footages for the 2010 Project and the NPC Project.

Block	2010 Project Total (GFA)	Project Total (including NPC Project changes) (GFA)	
Block A*	85,800	85,800	
Block B*	440,600	980,000	
Block C*	620,000		
Block D	465,200	499,400	
Block F Park Pavilion	9,200	121,000	
Block G	537,800	671,800	
Block H*	24,300	22,400	
Block J*	98,800	99,000	
Block K*	288,400	298,732	
Block L1*	494,500	455,300	
Block L2*	415,500	432,038	
Block L3	230,300	422,000	
Block L4	274,200	523,540	
Block L5	363,200	722,000	
Block L6	248,100	343,000	
Block M1*	543,800	1 012 000	
Block M2*	439,200	1,012,000	
Block N	347,700	422,000	
Block P + Air Rights	410,800	566,000	
Block Q	0	4,000	
Total	6,337,400	7,680,010	

 Table 1-2
 Seaport Square Program – Total Comparison by Block

Developed Blocks noted with *

Table 1-3 compares the square footage for each type of use for the 2010 Project and the NPC Project.

Development Program	2010 Project Total (GFA)	NPC Project Total (GFA)	Difference
Retail/Entertainment	1,237,100	1,123,495	(113,605)
Residential	2,840,800	3,209,000	368,200
Office/Research/Innovation	1,157,300	2,854,515	1,697,215
Hotel	859,200	476,800	(382,400)
		16,200	
Cultural/Civic*	243,000	(minimum)	(226,800)
TOTAL	6,337,400	7,680,010	1,342,610

Table 1-3Seaport Square Program - Use Comparison

*N.B.: In addition to the specific requirements noted above, Cultural Uses are intended to be interspersed throughout the NPC Project area and will be substitutable for any other Use type on any Block within the NPC Project Site. The ultimate GFA of Cultural Uses will be determined in accordance with the process described in Section 1.4.3.

1.3.1 Distribution of Land Uses

The Project has been planned (and partially constructed) with a coordinated mix of synergistic uses, which together have created a high quality of life for Seaport residents, workers, and visitors. The NPC Project will continue this successful model of mixing different uses across the NPC Project Site both in plan and in section to create a world-recognized exemplar of a 21st century "live-work-play" neighborhood in one of the world's great cities. This section presents a series of diagrams illustrating the horizontal and vertical distribution of these uses throughout the Project Site and especially within the NPC Project Site, where this blending of multiple uses will create great urban spaces unlike anything else in Boston.

Central to the Proponent's objective of creating multiple great urban spaces and a major regional retail, restaurant, and entertainment destination is the unique application of multi-level retail uses in all of the development blocks within the NPC Project Site. The strategy of enhancing public streets and open spaces with multi-level retail, restaurant, and entertainment uses creates a very high volume of pedestrian traffic and catalyzes the creation of places that people love to be and will return to for a variety of reasons. These most successful urban places, like Newbury Street in Boston or Fifth Avenue in Midtown Manhattan, become character-defining features of great cities. Based on the success of the modest amount of retail already opened by the Proponent in the Seaport District, and the Proponent's strong belief that great places "Start with the Street," the Proponent expects that nonetheless also serves the everyday needs of local residents in a way that most retail and entertainment destinations around the country do not.

There is a small overall reduction in the total amount of retail proposed in the NPC Project when compared to the 2010 Project. The Developed Blocks did not include as much retail as estimated in the 2010 Project (specifically the Skanska developments on Blocks K, L1, and L2, of which the Proponent purchased and tenanted the retail condominiums upon each building's completion by Skanska Commercial Development), though every block in the NPC project is projected to meet or exceed the retail programming from 2010 to further develop the neighborhood feeling of the Seaport District and increase the diversity of retail amenities available to residents of the area as the NPC Project is developed.

Figures 1-22 and 1-23 provide elevations showing proposed building uses.

1.3.1.1 Ground Floor

The Ground Floor Plan shows continuity of active retail uses between the elevated Summer Street and the grade-level balance of the NPC Project Site, and also show the active and inviting nature of the pedestrian environment Project-wide.

Throughout the NPC Project Site, retail uses, which will enliven the pedestrian experience with active entrances and seating areas outside, are proposed not only on the ground floor but also on multiple levels of building podia to raise the level of activity and visual interest. Ground-level uses are shown in Figure 1-24. This figure also indicates where parking and service/loading entrances are located (indicated with a "P" or an "S," respectively).

1.3.1.2 Grade Transition to Summer Street

The Proponent proposes to provide direct pedestrian, bicycle, and accessible connections between the elevated Summer Street viaduct and Congress Street by way of a set of richly landscaped and hardscaped stairs (the "Summer Street Steps"), a dedicated elevator, and a cycle ramp to provide a grand civic gesture that also solves a century-old urban design and access issue.

Rather than negatively impact the Congress Street streetscape by constructing a new bridge over the street just east of the Fort Point Channel Landmark District, the Proponent proposes to create a mid-block pedestrian crossing between Boston Wharf Road and East Service Road with pedestrian signals that are coordinated with and controlled by the existing traffic signals on either end of the block. Further discussion of this synchronization and the sufficiency of the walk time provided by this arrangement is discussed in Section 3.0 of this NPC, Transportation.

Congress Street has dramatically improved over the past 10 years as a destination for restaurants, cultural, and hotel attractions, as well as the city's innovation economy, leading the Proponent to seek a new approach to continuing the vibrant and active streetscape environment that has recently emerged along Congress Street in the Fort Point Channel Landmark District. To this end, no elevated structure will be constructed over Congress

IABAEC

T

Elevation 3 : Boston Wharf Road

Elevation 4 : Congress Street

Street within the Project Area and the public realm will be characterized by active retail and restaurant uses, anchored by the grade-level Harbor Way pedestrian and bicycle linear public open space. The 2010 Project proposed a truck loading dock facing Congress Street at the location of the NPC Project's proposed Harbor Way open space connection; this truck dock has been eliminated in the NPC Project.

The Summer Street Steps connecting between Summer and Congress streets will be lined on multiple levels with active retail, entertainment, and restaurant spaces on the lower two or three floors of Blocks N and P. The opportunity for a modestly scaled performance space or other civic amenity will also be explored in either Block N or P to further contribute to the cultural life of the Seaport District and create a critical mass of destination uses at the southern end of Harbor Way. A highly visible public accessible route will also be constructed alongside the Summer Street Steps for public use. The experience and design quality of this route will be similar to that of the Summer Street Steps and it is intended that the public would not need to enter into traditionally privatized space such as a residential or office building lobby in order to access this critical accessibility pathway.

Figures 1-25 and 1-26 show a plan view of the Summer Street Steps and illustrate the multimodal transition between Congress Street and Summer Street.

1.3.1.3 Typical Upper Floor Plan

The typical upper floor plan diagram, as shown on Figure 1-27, identifies the mix of residential, commercial/office, and hotel uses located above the retail podiums of the NPC Project blocks. Beginning north of Seaport Boulevard are the residential buildings at Blocks B and C (the One Seaport project), then the proposed office/research building on Block D. Block F is envisioned as a small innovation office building, while Block G is shown with residential and potentially hotel uses. The intention of this mix of upper-story use types is to create a variety of complementary uses along Seaport Boulevard to anchor the northern edge of the Project Site. On the south side of Seaport Boulevard, Block J is the Yotel hotel and Block K is the residential Watermark Apartments. Additional office buildings are located at Blocks L1 and L2. Blocks L3-L6 surround the Harbor Square public space and are comprised of a mix of residential, potential hotel, and office uses. Blocks M1 and M2 are residential towers above multi-level retail podia surrounding an intimate public space. Hospitality is shown on Block L6, and research uses are shown on Block P, rounding out the diverse array of uses that together comprise the mixed-use Seaport neighborhood. It should also be noted that the NPC Project explicitly attempts to "mix and match" upperfloor uses among neighboring buildings to avoid uniformity of building mass along a particular street wall and curate the most vibrant blend of building architecture possible. It is also envisioned that the use mix within the NPC Project Site will be flexible, to allow the remaining Blocks of the Seaport District to evolve organically over time as they are phased in, just as the city as a whole has evolved since its inception.

SUMMER ST.

1.3.1.4 Roof Plan

Green/planted roofs or reflective white/light gray roofs are planned for all buildings. Wherever there is not mechanical equipment on the rooftops, and space allows, the intent is to commit to planting where possible, or high-albedo roof coatings to reduce building energy use. This sustainable strategy will lead to a reduction in the "heat island effect" commonly found in large urban areas. Other aspects of the Project's sustainable strategy related to rooftops can be found in Section 5.0. Already, Blocks A, B, C, J, K, and L1, have dedicated large portions of their rooftops to active uses that provide a further distinguishing dimension to the Seaport District. For example, the public rooftop of Block A has become a regional destination, affording visitors with a unique vantage point from which to enjoy the Harbor's edge and the city skyline beyond. Refer to Figure 1-28 for the Roof Plan and zoning heights on the NPC Blocks.

1.3.1.5 Parking Plan

There are five underground parking garages built or underway at Blocks B and C, K, L1, L2, and M1/M2. The total number of underground parking spaces permitted in the 2010 Project is approximately 6,500, with approximately 320 legal metered or two-hour on-street parking spaces.

The NPC Project contemplates four additional underground garages at Block D (which would connect to B and C), Blocks F and G, Blocks L3-L6, and Blocks N and P. The Proponent is committing to reducing the total parking count for the Project to approximately 5,500 underground parking spaces and approximately 240 legal metered or two-hour on-street parking spaces to help promote more sustainable commuting patterns.

In addition to these parking facilities (which would include both public parking spaces and private/accessory spaces dedicated to serving the uses of the buildings above), the Proponent is planning a more robust car-sharing program than previously contemplated in the 2010 Project and more curb space dedicated for use by taxis, private ridesharing services, and private shuttle services, which have become an important mode of transport for commuters to the Seaport, significantly reducing private vehicle usage for commuting. This more public and shared approach to parking and vehicular service infrastructure, coupled with an expanded bicycle sharing infrastructure, is intended to further reduce the volume of private auto-based commuting into the Seaport and promote the use of shared transportation options, both vehicular and bicycle.

A plan of parking garage ramps and underground parking spaces is shown in Figure 1-29.

1.3.1.6 Public Realm Plan

To date, the 2010 Project's development has resulted in the creation of several major new public spaces within the Project Area and various other public realm improvements spread across the district. Among the over-arching objectives of the NPC Project is to unify the entire Project Area by planning and implementing a continuous tapestry of public realm improvements that will create an inviting and attractive pedestrian experience that causes residents, employees, and visitors to linger and enjoy all aspects of the Seaport District's offerings. To this end, the NPC Project includes a rich variety of green spaces, sidewalks, and pedestrian ways throughout the Project Area, as well as an intense dedication of ground level building areas to active public uses that add life and vibrancy to the public streetscape and to public open spaces lined with retail, cafes, restaurants, and other active public uses, as shown on the Public Realm Plan, Figure 1-30. As detailed elsewhere in this filing, the NPC Project also proposes to enhance the 2010 Project's commitment to the public realm by creating a major new axis of pedestrian travel and a major new public space at Harbor Square that will anchor a series of year-round public events and programs that will enhance the quality and interest of the public realm district-wide.

The public spaces constructed as part of the 2010 Project and proposed as part of the NPC Project connect the surrounding communities and existing public amenities, dramatically improve public access to and use and enjoyment of Boston's waterfront, and create multiple new urban places that already draw residents and visitors from throughout the South Boston neighborhood and citywide. The public realm plan also shows how the NPC Project's open spaces create a continuous system that ties the new neighborhood to its surroundings: extending the Fort Point Channel Landmark District's fabric, connecting to the new grid of the Fan Pier development and allowing its streets to feed into Seaport Boulevard, extending and connecting Seaport Common to Fan Pier Green, connecting to the 100 Acre Plan area via Boston Wharf Road and the Fort Point Channel Harborwalk, and strengthening the connection from the Project Site to the Harborwalk by providing more physical and visual links to it. The completed Harbor Way connection will also complete the "Harbor Loop," a 1.5-mile walking path circumnavigating the Seaport and the Fort Point Channel Landmark District and providing a recreational, commuting, and neighborhood shopping amenity for residents, employees, and visitors alike. The Harbor Way connection to the water's edge will also tie back to the South Bay Harbor Trail, leading to Dudley Square, and to the South Boston residential neighborhood over Summer Street.

Section 1.2 provides detailed information on the planning and design of Seaport Square.

1.3.1.7 Street Sections

The NPC Project will achieve an appropriate balance of neighborhood cohesion and design diversity that is imperative to the development of a project of this size. This approach to the design of buildings and continuity of lower-floor retail, restaurant, and other active public

uses will create streetscapes that change along their length and across their width, to provide a rich pedestrian environment and visual aesthetic as viewed from public ways and by occupants in nearby buildings. Modest examples of this dedication to improving street sections within the Project Area are already visible on Old Sleeper Street adjacent to Block A (the Envoy Hotel) and are currently under construction along Northern Avenue and Seaport Boulevard in connection with Blocks B and C, and Autumn Lane and East Service Road with Blocks L2 and M. Existing and proposed street sections and plan views of Seaport Boulevard, Northern Avenue, Congress Street, East Service Road, and Boston Wharf Road are included in Figures 1-31 to 1-39. Proposed Street Furniture concepts are shown on Figure 1-40. Rendered views of Autumn Lane and East Service Road are included in Figures 1-41 to 1-43.

1.4 Public Benefits

- New Jobs: The NPC Project will create approximately 12,000 construction jobs and approximately 23,000 permanent jobs. The permanent jobs will be created through the retail space, office and research uses, and services related to the residential and hotel uses.
- Increased Housing: The NPC Project includes the development of up to approximately 3,200 homes, including both for sale and rental units, with both Affordable and Innovation housing constructed on site (as with Blocks B, C, and K to date) or funded off-site on a block-by-block basis.
- Affordable Housing: Mayor Menino's Executive Order dated May 16, 2006, as amended by Mayor Martin J. Walsh, established as City policy that any residential project seeking zoning relief must set aside at least 15% of the number of market rate units as affordable to moderate income and middle income households, or contribute to a housing creation fund a per unit subsidy for 15% of the number of market rate units. On-site affordable housing will make up approximately 15% (415) of the number of market rate units, or affordable housing will be funded off site in accordance with the Executive Order. To date, Block K has provided 45 affordable units and Blocks B and C will provide 96 affordable units once open in Q2 2017.
- Innovation Housing: In addition to the number of affordable housing units described above, additional units equal to a minimum of 15% of the number of market rate units are proposed as innovation housing units. Innovation Housing may include smaller unit sizes, flexible unit layouts, combined living and working spaces, shared common areas and other design features to increase affordability and communication among residents ("Innovation Housing"). Each Residential Block shall provide the required Innovation Housing Units on-site, or the Proponent may

SEAPORT BLVD. EXISTING CONDITIONS - LOOKING EAST

SEAPORT BLVD. PROPOSED MEDIAN DESIGN - LOOKING EAST

MID-BLOCK CROSSING AT CONGRESS STREET

WOOD FRAGMENTS

DRIFTWOOD BENCH

SWINGS

STACKED STONE SLAB BENCH

STONE PLANTER

GROUP SEAT

WOOD LOUNGE

STONE SEATING CLUSTER

redistribute the Innovation Housing Units to other Blocks subject to the approval of the BPDA. To date, Block K has provided 45 innovation units and Blocks B and C will provide 96 innovation units once open in Q2 2017.

• **Open Space**: To reinforce the mission of the Seaport as a place for connecting with the South Boston waterfront, shopping, working, living, learning, and recreating, and inspired by the BPDA's civic vision, the Project will include a substantial amount of open space that will help create a continuous public realm.

Approximately 8.8 acres or 37% of the Project Site will be devoted to open space including green space, sidewalks, pedestrian ways and streets constructed on land owned by the Proponent or its affiliates, or their predecessors. Excluding streets and sidewalks, approximately 7.0 acres or 30% of the Project Site will be open space.

- Off-Site Public Realm Improvements: The Proponent will also create open spaces in areas outside of the Project Site but within the Project Area as defined in Section 1.1 and detailed in the Offsite Improvements bullet below. As described in Section 1.2, by constructing new sidewalks and pedestrian ways, and improving Seaport Boulevard with trees, extensive landscaping, public art, and outdoor seating to create an aesthetically pleasing connection through the Project to the Financial District and to other areas of the South Boston waterfront. This Project will add approximately 8.8 acres of open space constructed on land owned by the Proponent or its affiliates, and will improve approximately 3.4 acres of publicly-owned streets and other land.
- Sustainable Design/Green Building: The Project as a whole is envisioned as a national model for large-scale sustainable mixed-use development, both with respect to its pursuit of LEED-ND certification and with respect to its mix of uses located in close proximity to one another, promoting minimal carbon footprint living. To date, the Project as a whole has achieved LEED-ND Stage II Gold Certification for the master plan itself, and individual buildings have also achieved outstanding individual results; Block K (Watermark Residences) is targeting LEED Gold and Block L1 (101 Seaport) has achieved LEED Platinum certification, setting a new benchmark for sustainable working environments in the City of Boston.
- Smart Growth/Transit-Oriented Development: The ongoing redevelopment of the Project Site into an attractive 21st century mixed-use development will help create a thriving urban community in the South Boston waterfront district. With over 3,000 residential units located in the middle of a commercial employment core, the NPC Project is ideal for promoting a lifestyle for residents focused on walking between home, work, shopping, and other daily amenities. As a mixed-use development in close proximity to the MBTA's Red and Silver Lines, the Project embodies the major tenets of transit-oriented development (TOD), and includes the construction of a new MBTA head house adjacent to Seaport Common. In addition to being located

within a quarter-mile of public transit, the Project has planned for and designed a compact, walkable development incorporating over 100 retail stores, housing, hotels, offices, and recreational opportunities for residents, employees, and visitors. The Proponent also anticipates continuing to expand its commitment to the City of Boston's Hubway bicycle share program, which currently deploys six stations within or proximate to the Project Area. In addition, since the approval of the 2010 Project, new landside water transportation infrastructure has been completed, and the NPC Project will facilitate increased utilization of water transportation by providing a robust and attractive pedestrian and bicycle connection to the Fan Pier water transportation terminal in the form of Harbor Way, which will connect directly to Summer Street, the BCEC, and beyond.

- New Tax Revenue: The Proponent estimates that the Project will annually generate approximately \$50,000,000 in local property taxes, \$31,000,000 in state sales taxes, as well as additional state hotel occupancy tax, local occupancy tax, and convention center financing fee revenues whose amounts will depend on the ultimate number and type of hotel rooms built out as part of the NPC Project.
- Linkage: The Project as a whole is estimated to generate approximately \$41,500,000 in housing and jobs linkage funds to the City of Boston; approximately \$11.5 million of this amount has already been paid or is scheduled to be paid in connection with the development of Blocks B, C, H, J, K, L1, and L2.

1.4.1 Extraordinary Public Improvements

• New Streets and Sidewalks: The NPC Project proposes to continue and enhance the 2010 Project's objective of re-envisioning the public realm in the Project Area by reconstructing and dramatically improving most of the public streets and sidewalks within the Project Area including Northern Avenue, Seaport Boulevard, Boston Wharf Road, East Service Road, Sleeper Street, Summer Street, and Congress Street. In addition to these improvements to existing public streets, new streets will be constructed including Autumn Lane (partially complete with Block L1, to be finished with Block L2), Pier Street (Block D), Fan Pier Boulevard Extension (opening with Block C), Stillings Extension (Block K) and the portion of Harbor Way formerly known as North Harbor Street (earlier of Block F or Block G) which is envisioned as a potential shared street to allow for loading and garage access in addition to pedestrian use as part of Harbor Way, as well as a pedestrian-only extension of Farnsworth Street (opening of Block J) to connect Congress Street to Seaport Boulevard through the historic Fort Point Channel Landmark District.

- Open Space and Landscape Improvements: The Project includes three new major public open spaces, Seaport Common (Block F), Sea Green (Block Q), and Harbor Square (Blocks L3-L6). Detailed elsewhere in this Filing, these (and other) major open space improvements aim to provide a broad spectrum of options for public use and enjoyment of the Project Area and the Seaport as a whole.
- New Harborwalk Connection: As the Fort Point Channel Watersheet Activation Plan envisions, and in addition to the numerous pedestrian connections as previously described, a new waterfront pedestrian way has been created along the City-owned Old Sleeper Street to link existing sections of the Harborwalk from the Children's Museum to the Moakley Federal Courthouse. Outdoor restaurant seating from the Envoy Hotel and the Barking Crab enliven the area during both the day and evening hours. This improvement was completed in 2015 and has become a vibrant and popular place at the gateway to the Seaport.
- Summer Street Congress Street Connection: The NPC Project will create a muchneeded and long-desired major pedestrian and bicycle connection between the elevated Summer Street viaduct and Congress Street, which has experienced a renaissance in recent years as a hub of the city's innovation and culinary economies. By eliminating the vehicular roadway bridge over Congress Street proposed in the 2010 Project, the NPC Project will create a generous and inviting public open space between Blocks N and P that will be lined with retail, restaurants, and entertainment uses. This space will provide a pleasant and inviting pedestrian experience along the length of Congress Street by extending the urban fabric and active uses that now line the edges of Congress Street in the Fort Point Channel Landmark District. The Summer Street Steps, modeled conceptually on the Spanish Steps in Rome and other monumental stairs around the world, are being designed by High Line Landscape Architect James Corner Field Operations and will become an iconic part of the public realm in the Seaport District. Most importantly, the Summer Street Steps will solve one of the most vexing historical impediments to good pedestrian circulation in the entire district and facilitate the completion of the Harbor Loop, connecting Summer Street, the BCEC, and the Fort Point neighborhood beyond directly to the water's edges one-third mile to the north.
- New MBTA Silver Line Station Entrance: The Project will add a new MBTA head house/station entrance adjacent to Seaport Common. This head house/ station entrance will provide a landmark destination and convenient location along the major axis of pedestrian travel through the Seaport district to further promote the use of public transportation as a means of accessing the district and enhance the quality of the Silver Line user experience. In addition to the new MBTA head house, the Block J development also included improvements to the existing MBTA Silver Line head house within the footprint of the new building.

1.4.2 Cultural, Educational and Community Contributions

- Cultural Corridor: Created by developing a major physical link from Summer Street, the historic Fort Point Channel Landmark District, and the BCEC to the Institute of Contemporary Art on the waterfront, Harbor Way will become known as one of Boston's most interesting and inviting cultural destinations. An example of the diverse array of experience that this new connection will offer might involve a visitor to the Seaport district visiting Fort Point Open Studios in nineteenth-century historic warehouse structures, strolling past dozens of retail shops, galleries, and public art installations along Harbor Way, and ending with a visit to the Institute of Contemporary Art and the Cultural Connector ferry service operated by the Fan Pier project with service to the Children's Museum and Boston Tea Party Ships & Museum. The Cultural Corridor will build on the arts identity of the neighboring Fort Point Channel District, and create a strong cultural component at the central axis of the Project that will activate and provide year-round allure for visitors to the Seaport District.
- **Civic & Cultural Spaces:** Many buildings within the Project Area will include civic and cultural space allocations to enhance the diversity of experience within the public realm of the Project and provide opportunities for non-profits and community organizations to benefit from the central location and retail/restaurant adjacencies offered by buildings within the Project Area. To date, the Fort Point Arts Community will be occupying such civic space in the Envoy Hotel (Block A), and similar spaces are envisioned in Blocks D, G, N, and P. Consistent with prior approvals, the Proponent also seeks the flexibility to aggregate these types of smaller civic spaces into one or more larger spaces within one or more development blocks as the NPC Project is built out, or disperse the concept of a single large Performing Arts space on Block P into multiple smaller cultural uses located throughout the district to better respond to the needs of the city's arts community; this determination will be made in part based on the facilities needs identified in the BostonCreates Cultural Plan to ensure consistency with the stated desires of the wide range of organizations and stakeholders that participated in the process of crafting the City's Cultural Plan.
- Chapel: A new facility has been constructed to relocate the existing Chapel of Our Lady of Good Voyage on Northern Avenue to Block H of the Project, located at the foot of the Moakley Bridge, which is more conveniently located within the community. The new site provides better access to and visibility for the Chapel, allowing it to expand to better serve the needs of the growing neighborhood. The new Chapel is being fit out by the Roman Catholic Archdiocese of Boston and is slated to open to the public in the spring of 2017.

Programming & Activation: In addition to the myriad physical and public realm improvements that are proposed as part of the NPC Project (and have already been completed or are under construction as part of the 2010 Project), the Proponent is deeply committed to coordinating and implementing a rich array of free public events and programming on the major public open spaces within the Project Area. In 2016 alone, the Proponent arranged more than 100 free public events ranging from fitness classes and speaker series to live performances by the Boston Ballet, Boston Symphony Orchestra, students from the Berklee College of Music, cooking demonstrations, and a range of other events of public interest. Public art installations in partnership with the Institute of Contemporary Art also featured prominently in the district in 2016 and will continue. Signature events such as the first annual Seaport holiday tree lighting, which took place in December 2016 and attracted residents from all over South Boston, Fort Point, and the Seaport District as well as employees of local businesses and local retailers, are also part of the Proponent's commitment to promoting public use and enjoyment of the Project's numerous public open spaces. The Proponent believes strongly that a robust schedule of well planned and executed public events is an essential part of creating a vibrant 21st century urban neighborhood, and the Proponent has hired staff inhouse full-time to coordinate and execute on this commitment for the benefit of the entire Seaport District. The Proponent's commitment to an ongoing program of free public events and programming is a central component of the NPC Project's commitment to creating a cultural destination in the Seaport District. Based on the Proponent's belief that cultural attractions should not just be housed in permanent buildings, the Proponent envisions a long-range annual obligation for the NPC Project to host free public cultural events on the Project's multiple public open spaces as a more inviting, accessible, and innovative way of promoting public access to cultural uses in the district.

1.4.3 Cultural Facilities Determination

The Proponent is committed to introducing significant Arts and Cultural amenities into the NPC Project and intends to expand upon the objective of making the Seaport a regional cultural destination. The Proponent believes that the specific scale, program, development arrangement, and operating arrangement of the Cultural use component of the Project should closely reflect the actual needs and capacity of Boston's cultural community. Rather than proposing a single pre-defined and speculative cultural facility as part of a specific Block that may or may not meet the needs of the diverse array of cultural organizations that make up the cultural landscape in Boston, the Proponent will administer a Request for Proposals ("RFP") process for prospective cultural partner organizations in order to select one or more qualified cultural organizations with which to collaborate on the development of either a single cultural facility or a range of facilities that are tailored to the

specific programmatic needs of partner organizations and the city's broader cultural community. Examples of the types of facilities that the Proponent expects may result from this RFP process include, but are not limited to, the following:

- Single signature performing arts center, subject to funding and demand as stated in the existing Project approvals;
- Black box performance/rehearsal space sized to accommodate a theater company or large musical ensemble;
- Smaller rehearsal spaces for individual musicians/small ensembles, smaller theater companies, or other smaller-scale performing arts uses;
- Visual Arts studio/maker spaces, along with a common space that could accommodate gatherings and events; and
- Gallery and/or museum space curated and operated by a local museum or arts organization.

In addition to identifying potential Arts and Cultural facilities through the process outlined above, the RFP process will also seek to identify other Arts and Cultural commitments not related to physical facilities that may be desirable as part of the NPC Project's development, such as:

- Commitment for regular public programming, activation, art installations, etc. within or proximate to the Project Site or at a specific offsite location;
- A rotating partnership with a specific Performing Arts organization to provide seasonal outdoor programming in Harbor Square and/or at other locations in the vicinity of the Project;
- Financial support for Fort Point and South Boston arts organizations to help these organizations focus on mission/programming in the surrounding area rather than fundraising.

This deliberate, methodical, and need-based approach to establishing a specific program and scale for one or more cultural facilities in the Project area is intended to ensure that the Project's cultural facilities directly reflect the actual, real-time needs and capacity of specific Arts and Cultural organizations, which will also evolve over time – from startups and smaller community-based organizations to well-established members of the city's arts community – as well as the City of Boston's CreateBoston Cultural Plan.

1-72

1.5 Development Context

The South Boston Waterfront District has been the subject of extensive planning efforts since the conceptualization of the Central Artery/Tunnel project in the 1990s. While many years have passed and much development taken place since these planning processes were concluded, the NPC Project serves to further several of the major planning objectives that guide the South Boston Waterfront district's development, including the provision of diverse and high quality public realm assets that promote and enhance the public's access to and enjoyment of the water's edge; the creation of major pedestrian and bicycle infrastructure to facilitate the free flow of people and bicycles through the entire district; and the creation of regional destinations that will draw residents, employees, and visitors alike to Boston's vibrant and bustling Seaport district.

Master planning by Massport and the City of Boston in the 1990s established a framework for development in the South Boston Waterfront, while still preserving the needs of the working port. Plans that were created by the BRA include the South Boston Waterfront Municipal Harbor Plan, the Seaport Public Realm Plan, and other similar plans. In 2006, the BRA finalized the Fort Point Channel 100 Acres Master Plan, a continuation of the planning process of the South Boston waterfront for this portion of the Fort Point Channel area.

As these planning frameworks evolved, new development began with the World Trade Center complex, providing exhibition space, commercial office space, retail shops and meeting areas. Starting in 1998, the addition of the Seaport Hotel, West Office Building and East Office Building expanded the mix of uses in the area, and the opening of the John Joseph Moakley Federal Courthouse provided an important architectural anchor for the western end of the South Boston peninsula.

In the mid-2000s, prior to the recession of 2008, projects built included the John Hancock (formerly Manulife) office building, completed in 2003, and the BCEC, completed in 2004, among the largest convention centers in the nation. In 2006, a new Westin Hotel opened adjacent to the BCEC, and the Park Lane Seaport Apartments building was also completed. All of these projects took place on Massport or City of Boston-owned land. The opening of the Institute of Contemporary Art in December 2006 on Fan Pier further diversified the mix of uses in the area by adding an important cultural component.

Within the past ten years, development of the privately-owned Fan Pier and Seaport Square project sites has taken place, alongside many other projects throughout the Seaport District including new hotel, residential, office, and retail structures, rehabilitations of historic former Boston Wharf Company buildings, and development of several of the 100 Acres Master Plan parcels.

The City of Boston's designation of the South Boston Waterfront District as the city's Innovation District in 2010 also accelerated the growth of the region's innovation economy in the area and led to the location of thousands of new jobs and billions of dollars of private investment, including major investment by companies such as Vertex Pharmaceuticals, LogMeIn, Red Hat, and dozens of others, and exemplified by the recent announcement of General Electric's new headquarters location along Fort Point Channel.

Substantial public investment has also been made in the past two decades in public infrastructure to improve the transportation network and public amenities serving the Seaport district. These improvements are fundamental to the long-term build-out of the district, and help define the development densities and types of development suitable in the South Boston waterfront. Improvements to highway infrastructure are the result of careful planning and coordination between the Massachusetts Port Authority (Massport), the Central Artery/Tunnel project, and the City of Boston. The resulting series of highway on-and off-ramps provide direct vehicular access to I-90 and I-93 in all directions. The MBTA Silver Line, a rapid transit line opened in 2004, provides quick and convenient access to the South Boston waterfront area from South Station and the Downtown district.

The Project is located in the geographic center of the South Boston waterfront area and has great potential to link these development projects together into the seamless, vibrant, mixed-use neighborhood envisioned by the City of Boston in its master planning documents. The development of the Harbor Way and Harbor Square public realm amenities will create a major organizing element for the entire district and knit together the diverse array of experiences, pathways, and public spaces throughout the Seaport district and also help to create north-south connections to the South Boston residential neighborhood and the city beyond to promote and enhance citywide access to and enjoyment of Boston Harbor and all of the cultural, recreational, and open space amenities that the Seaport has to offer. The NPC Project will build upon and enhance the public realm network commenced as part of the 2010 Project's development and will fill what today remains a great void, connecting the low-rise, historic buildings in the Fort Point Channel District to the taller, new structures that are planned or have been built over the past decade in the waterfront area. Height and density will increase as one moves east from the Fort Point Channel, and south from Boston Harbor starting at Fan Pier. The NPC Project will also provide an essential and long-coveted pedestrian and bicycle connection between Congress Street and the Summer Street viaduct and the BCEC and Fort Point neighborhoods beyond. The proposed program of uses will complement current and planned uses for the area, provide an opportunity to further expand the Seaport's residential and innovation economy growth, and also add significant open and public spaces that will have regional implications. Figure 1-44 details the Project Development Context and existing and planned uses within the area.

DEVELOPMENT CONTEXT

- MASSPORT PARCEL D2
 RAYMOND L. FIYNN MARINE PARK PARCEL A
- 20 MASSPORT PARCEL K

DEVELOPMENT PROJECTS IN THE PIPELINE (ESTIMATED GSF AS OF JULY 2016 BASED ON AVAILABLE DATA)

1.5.1 Other Area Projects and Cumulative Impacts

The South Boston waterfront is a rapidly transforming area, a number of projects in the vicinity of Seaport Square are either under construction, approved by the BPDA, or in some stage of permitting or planning.

General Electric Headquarters involves the construction of a 388,700 sf building to serve as the new headquarters for General Electric. The project has been approved by the BPDA.

399 Congress Street is a 414 unit apartment building with parking for 144 vehicles. It project has been approved by the BPDA board.

Waterside Place Phase 1B is a 23-story, 345,000 sf building containing 312 residential units, 2,000 sf of retail space, and 84 parking spaces. The project has been approved by the BPDA board.

150 Seaport Boulevard comprises 124 residential units and 10,700 sf of commercial and retail space in a new 283,700 sf building. The project includes 179 parking spaces and has been approved by the BPDA board.

Marine Wharf is an approximately 320,000 sf hotel with 411 rooms and 3,500 sf of retail. It includes a parking garage with 75 spaces. The project has been approved by the BPDA board.

Fan Pier (Parcels D, E, & H) consists of the construction of buildings on the lots adjacent to the new Vertex Pharmaceuticals global headquarters. The build out of the rest of the parcels will be composed of 125,000 sf of office space, 29,000 sf of retail space, 150 hotel rooms, and 160 condominium units. This project has been approved by the BPDA board and is under construction.

Pier 4 (Lots 2 & 3) involves the build out of the lots adjacent to the newly completed Pier 4 mixed use development. The remainder of the lots consist of 353,000 sf of office space, 36,800 of retail space, and 106 condominium units. This project has been approved by the BPDA and is under construction.

Innovation Square at Northern Avenue calls for the construction of an approximately 360,000 sf research and development/manufacturing facility with 60 parking spaces. The project has been approved by the BPDA board.

25 Fid Kennedy Avenue involves the rehabilitation of an approximately 157,000 sf building for use as a plumbing, HVAC, fire-protection, and related construction product assembly plant. The project has been approved by the BPDA board.

Benjamin and Via (Blocks B/C) is part of the Seaport Square Project that has already been permitted. It consists of 230,000 sf of retail space and 832 residential units. The project is under construction and scheduled to open in 2017.

Yotel (Block J) is located across from Blocks B/C and is also part of the Seaport Square Project that has already been permitted. It consists of a 99,000 sf hotel with 12,000 sf of ground floor retail. The project is under construction and set to open in 2017.

121 Seaport (Block L2), located next to the existing 101 Seaport PWC building, is another part of the Seaport Square Project that has already been permitted. The project consists of 372,400 sf of office space and 59,638 sf of retail space. It is under construction and set to open in 2018.

Block M, located east of 121 Seaport, is another part of the Seaport Square Project that has already been permitted. It consists of 750 residential units and 125,000 sf of retail. The project has been approved by the BPDA board and is scheduled to open in 2019.

22 Boston Wharf Road consists of a two floor addition to the existing structure totaling 56,000 sf of new office space. It also involves a conversion of 3,000 sf of parking into ground floor retail. The project has been approved by the BPDA and is under construction.

Omni Boston Hotel (Parcel D2) calls for the construction of a 1,050 room hotel, consisting of regular and micro-hotel units and 61,000 SF of retail. This project is not currently in the permitting process.

South Station Air Rights consists of construction above South Station totaling 1,375,000 sf of office space, 170,000 sf of residential space, 200-room hotel and 934 parking spaces. The project has been approved by the BPDA.

Parcel Q1 involves the construction of an approximately 298,700 sf office building with a small amount of ground floor retail and approximately 150 parking spaces. This project is under review by the BPDA.

Parcel K calls for the construction of two buildings consisting of 304 residential units, 293 hotel units, 17,928 sf of retail space, and 14,400 sf of office space with parking for 640 vehicles. This project is under review by the BPDA.

The projects above, coupled with the individual buildings approved as part of the 2010 Project (some of which have been completed or are currently under construction), have been included in analyses completed on the NPC Project, where appropriate, to determine cumulative impacts resulting from all of the previously completed, currently underway, and BPDA-approved projects to determine the incremental impacts of the NPC Project buildings. For example, all of the projects listed above have been included in the transportation analysis, but only the projects within the extent of the shadow and wind analyses, such as Fan Pier (but not South Station Air Rights) have been included for those studies.

1.6 Project Phasing

To date, the 2010 Project has proceeded in phases on a Block-by-Block basis. The Proponent of the 2010 Project sold individual development Blocks as unimproved land to different third parties, who proceeded with individual buildings on each Block. The current Proponent intends to develop all of the remaining development blocks itself and will control the phasing of the NPC Project's buildout without third party involvement. Nevertheless, the Proponent anticipates that the NPC Project will be built out on a phased basis, as shown in Figure 1-45, with key public realm improvements delivered alongside each phase of development.

1.6.1 Phasing Plan

A tentative Project phasing plan is set forth below, which provides dates for development Blocks already completed or currently under construction and projects future delivery dates for development Blocks to be completed as part of the NPC Project. The Proponent may construct the phases in a different sequence if market conditions or other factors so warrant.

- Phase 0 (Completion in 2013): Blocks Q, District Hall
- Phase 1 (Completion 2015): Blocks A, K, and L1
- Phase 2 (Completion 2016): Block H, Seaport Common (Block F)
- Phase 3: (Completion in 2017): Blocks B, C, and J
- Phase 4: (Completion 2018): Block L2
- Phase 5: (Completion in 2019): Block M
- Phase 6: (Completion projected in 2020): Blocks D, F, and N or P
- Phase 7: (Completion projected in 2021): Blocks L3-6
- Phase 8: (Completion 2022): Blocks G, N or P

1.6.2 Community Benefits

Certain public and community benefits, such as affordable housing, linkage payments and job creation are linked to the construction and or completion of each building within the Project, while others may be linked to construction or completion of all buildings within a specific phase of the Project. Because the construction of the NPC Project is not anticipated

to be completed in one continuous construction sequence, the Proponent proposes to continue the 2010 Project's approach of allocating community benefits and improvements that reasonably reflects the pro –rata portion attributable to an individual NPC Project component.

Community Benefits of Future Seaport Blocks:

Phase 6 (Completion projected in 2020): Blocks D, F, and N or P

- Lower overall parking ratio within the Project Site;
- Advance the design of the planned Summer Street/Massport Haul Road/Drydock Avenue/Pappas Way Connector connection to 25% with BTD;
- Civic/Cultural Space located in Block D;
- Civic/Cultural Space located in Block F;
- Summer Street Steps, an accessible route connecting Summer Street to Congress Street with the earlier of Block N or P;
- Reconstruction of Seaport Boulevard, Northern Avenue, Summer Street and Congress Street along Blocks D, F, and P respectively to provide new street trees, landscaping, street furniture, bicycle infrastructure, and other pedestrian amenities;
- Completion of Pier Street between Northern Avenue and Seaport Boulevard with Block D;
- Construction of a new MBTA Silver Line head house entrance in front of District Hall with Block D, including an escalator; and
- Completion of Seaport Common and North Harbor Street (Shared Street) with Block F.

Phase 7 (Completion projected in 2021): Blocks L3-6

- Lower overall parking ratio within the Project Site;
- Harbor Way and Harbor Square from Congress Street to Autumn Lane;
- Bicycle improvements on Boston Wharf Road from Congress Street to Seaport Boulevard;
- The mid-block pedestrian link to Blocks N, P and the Summer Street Steps; and

• Reconstruction of Autumn Lane, Congress Street, Boston Wharf Road, and East Service Road along applicable blocks to provide new street trees, landscaping, street furniture, bicycle infrastructure, and other pedestrian amenities.

Phase 8 (Completion 2022): Blocks G & N or P

- Lower overall parking ratio within the Project Site;
- Bicycle improvements on West Service Road to Melcher Street Extension; and
- Reconstruction of Seaport Boulevard, Northern Avenue, Pier 4 Boulevard (for Block G), and Congress Street, West Service Road and Summer Street (for Block N) to provide new street trees, landscaping, street furniture, bicycle infrastructure, and other pedestrian amenities.

Master Plan Completion

- 37% of the Project Site will be publically accessible open space including new streets, green spaces, sidewalks and pedestrian ways.
- Completion of the "Harbor Loop," a 1.5-mile walking path circumnavigating the Seaport district and Fort Point Channel Landmark District and providing both a recreational, commuting, and neighborhood shopping amenity for residents, employees, and visitors alike.
- The Project achieved a LEED-ND Stage II Gold Certification, and when completed, will be a model of sustainably designed masterplan developments in the United States.
- District-wide transportation improvements and participation in water transportation operating subsidy to provide service between Seaport and North Station.

1.6.3 Schedule

The Proponent has developed both a Phasing Plan and a Construction Schedule designed to take advantage of construction efficiencies for the remaining build-out of the NPC Project. It is intended that the remaining NPC Project blocks will be built on a series of shared "bathtubs" with below-grade floor plates for parking and access. Each bathtub will serve as the foundation upon which multiple buildings will then be constructed (i.e. F/G, N/P, L3-6). Considerable construction efficiencies will be realized by constructing these bathtubs sequentially. Block D will stand alone but will be connected below-grade to the existing Block B + C garage to provide an eastern egress for this facility.

In addition, the phasing and construction schedule for the remaining development blocks will allow the Proponent to take maximum advantage of the remaining site for storage, parking and construction lay-down areas. This is designed to minimize the impact on local streets and neighboring property owners. It is anticipated that the parking lots will remain in operation until such time as work commences on a specific phase. Figure 1-46 provides a site circulation plan illustrating how motor vehicles, pedestrians and cyclists will be accommodated on the site.

Because of the central nature of the public realm improvements contemplated along Harbor Way, the Proponent will construct the finished Harbor Way condition adjacent to each neighboring block as it is constructed. In addition, if Blocks L3-L6 are phased, the Proponent intends to construct the finished Harbor Way condition between Congress Street and Autumn Lane as part of the first L-Block (or Blocks) to be developed. In the event that this portion of Harbor Way is completed before the construction of either N or P Block (the earlier of which would include the construction of the Summer Street Steps as well as the accompanying accessible route), an interim pedestrian connection between Summer Street and Congress Street will be constructed on Blocks N and P to ensure functionality of Harbor Way all the way to Summer Street as early as possible. This interim connection will not be constructed on the location of the Summer Street Steps to avoid disruption during the construction of the final Summer Street Steps connection.

Chapter 2.0

General Information

2.0 GENERAL INFORMATION

2.1 Project Identification and Project Team

Seaport Square		
The Project Site includes approximately 23 acres in South Boston, generally bounded by Northern Avenue and Seaport Boulevard (between Old Sleeper Street and East Service Road) and by Stillings Street, Boston Wharf Road, East Service Road, Pier 4 Boulevard, and B Street (between Seaport Boulevard and Summer Street).		
Seaport Square Development Company LLC and its affiliates c/o W/S Development Associates LLC 33 Boylston Street Chestnut Hill, MA 02467 (617) 232-8900 Jeremy Sclar Dick Marks Yanni Tsipis		
Sasaki Associates 64 Pleasant Street Watertown, MA 02472 (617) 926-3300 Alexandra Toteva Martin Zogran James Corner Field Operations 475 Tenth Avenue, 9 th Floor New York, NY 10018 (212) 433-1450		

Lisa Switkin

2-1

Master Planners: (Continued)	NADAAA 1920 Washington Street, #2 Boston, MA 02118 (617) 442-6232 Nader Tehrani Katie Faulkner
Permitting Consultant:	Epsilon Associates, Inc. 3 Mill & Main Place, Suite 250 Maynard, MA 01754 (978) 897-7100 Cindy Schlessinger Laura Rome
Legal Counsel:	Goulston & Storrs PC 400 Atlantic Avenue Boston, MA 02110 (617) 482-1776 Doug Husid Peter Kochansky
Transportation and Parking Consultant:	Howard Stein Hudson 11 Beacon Street, Suite 1010 Boston, MA 02108 (617) 482-7080 Brian Beisel Andrew Fabiszewski
Geotechnical Consultant:	Haley & Aldrich 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886-7400 Marya Gorczyca
Civil Engineer:	Nitsch Engineering 2 Center Plaza, Suite 430 Boston, MA 02108 (617) 338-0062 John Schmid

2-2

Landscape Architect:

James Corner Field Operations. 475 10th Avenue, 9th Floor New York, NY 10018 (212) 433-1450 Keith O'Connor Ksenia Kagner

2.2 City of Boston Zoning

On October 13, 2010, the City of Boston Zoning Commission ("BZC") adopted a map amendment establishing Planned Development Area No. 78, Seaport Square Project, which approved zoning regulations for the 2010 Project. The BZC subsequently adopted six amendments to the Development Plan for Planned Development Area No. 78 (such plan, as amended, the "Original PDA Plan"). The Proponent will seek approval of an Amended and Restated Development Plan for Planned Development Area No. 78, which will add an additional air rights parcel to the Block P portion of the Project Site and address the other changes to the Project described in this NPC.

With respect to underlying zoning, the Project Site is within the Fort Point Waterfront Subdistrict of the Harborpark District (the "Fort Point Waterfront") governed by Article 42E of the Boston Zoning Code (the "Code"), except for Block Q and a portion of Block K, which are within the M-4 Restricted Manufacturing Subdistrict. The entire Project Site is also within the Restricted Parking Overlay District. Blocks H, J, K, and Q are within the Groundwater Conservation Overlay District. The regulations of the Code other than the Original PDA Plan constitute the Underlying Zoning for the Project Site.

In the Fort Point Waterfront, most of the uses contemplated to be included in the Project are allowed, including: Open Space/Recreational Uses; Community Uses and Cultural Facilities; Residential Uses; Hotel Uses; Office Uses; Research Center Uses; Local Retail and Service Uses; General Retail Uses; Restaurant Uses; Place of Worship; Exhibition/ Conference use; and Art/Artists' Mixed Use. Parking is a conditional use in the Fort Point Waterfront, but allowed in the Original PDA Plan.

As in the Original PDA Plan, the Amended and Restated PDA Plan will include deviations from underlying zoning with respect to the NPC Project to allow (1) Parking Uses (for commercial parking on Blocks D, F, G, L, N, and P); and (2) for any other uses not listed as Allowed in Section 42E-21. Day care facilities will be provided on previously developed Blocks within the PDA Site in the amount required by the Code for the entire Project.

The maximum Floor Area Ratio ("FAR") for the PDA Site will be approximately 7.65; individual zoning lots within the remaining Project Site (including adjacent lots in common ownership) will have FARs ranging from 0.2 to 15; the FAR for the NPC Project Site will be approximately 9.0. The maximum building heights for the NPC Project Blocks range from

15 feet to 270 feet. Underlying Zoning (Section 42E-12 and Section 42E-16) provides that the maximum FAR in the Fort Point Waterfront is 3.0, except that an FAR of 4.25 is allowed in the PDA Height Zone pursuant to an approved PDA. The maximum building heights for the Project Site pursuant to Underlying Zoning range from 155 feet to 250 feet (within the PDA Height Zone). Like the 2010 Project, the NPC Project will require zoning relief, which will be provided through the adoption of the Amended and Restated PDA Plan. Underlying Zoning (Section 42E-16.2(a)) provides, however, that they maximum FAR and maximum building heights for Planned Development Area No. 78 shall be as set forth in the corresponding Development Plan, so no zoning text amendment will be required in connection with the adoption of the Amended and Restated PDA Plan.

In the Fort Point Waterfront, projects south of the old configuration of Northern Avenue must provide open space of at least 30% of lot area. All of the Project Site is located south of the old layout of Northern Avenue and is thus subject to the 30% open space requirement, with the exception of a triangular portion of Blocks F and G, to which a 50% open space requirement would apply. Including the new streets that have been constructed and will be constructed within the Project Site, the Project will have approximately 8.8 acres or 37% open space; using the zoning definition yields approximately 7.0 acres or 30% open space. Section 42E-16.3 provides that open space for Planned Development Area No. 78 shall be as set forth in the corresponding Development, so again, no zoning text amendment will be required in connection with the approval of the Amended and Restated PDA Plan.

Off-street parking and loading requirements will be determined by the BPDA during its review of this NPC during Large Project Review.

2.3 Legal Information

2.3.1 Legal Judgments Adverse to the Proposed Project

The Proponent is not aware of any legal judgments in effect or legal actions pending that are adverse to the Project.

2.3.2 History of Tax Arrears on Property Owned in Boston by the Proponent

The Proponent is not in tax arrears on any property owned within the City of Boston.

2.3.3 Site Control/Public Easements

In October 2015, 2006, the Proponent acquired title to the NPC Project Site from MS Boston Seaport, L.L.C. the original proponent of the Project. Affiliates of the Proponent own or will own the retail components of Blocks B and C, K, L1 and L2, and M1 and M2. A portion of Block D is currently owned by the Archdiocese of Boston, and occupied by the original Chapel of Our Lady of Good Voyage. When construction and fit-out of the new

chapel is complete on Block H, estimated to occur in the second quarter of 2017, the portion of Block D owned by the Archdiocese will be conveyed to the Proponent, and the old chapel will be demolished.

Within the Project Area, a parcel with an area of 2,469 square feet located between the current end of Farnsworth Street and Seaport Boulevard is owned by the MBTA, which intends to convey such parcel to the BRA. The Proponent will license the parcel from the BRA to allow for the construction and maintenance of the publicly-accessible Farnsworth Street Pedestrian Link.

Similarly, a parcel with an area of 3,614 square feet located between Blocks J and K, at the northern end of Thomson Place, is owned by the MBTA.

Pursuant to a 1997 Omnibus Settlement Agreement among MBLP, the Massachusetts Department of Highways (MHD), the Massachusetts Bay Transportation Authority (MBTA), and Energy International, Inc. (the "OSA"), MassDOT (as the successor to MHD) is required to transfer to the Proponent fee or easement interests in parcels of land previously taken from MBLP outside final roadway and transit rights of way, including an air rights parcel on Block P. The OSA establishes a procedure to determine the final configuration of Block P. In addition, MassDOT owns an approximately 236 square foot parcel at the southeast corner of Block G, within the current layout of Seaport Boulevard, which the Proponent intends to acquire from MassDOT. The Proponent intends to work with MassDOT to finalize any transfers required by the OSA.

2.4 Regulatory Controls and Permits

2.4.1 City of Boston Article 80 Review

The proposed NPC Project is subject to review by the BPDA pursuant to Article 80, Section 80A-6, Project Changes of the Boston Zoning Code. The 2010 Project, as defined herein, was approved by the BRA (now BPDA) Board on September 21, 2010, and the Director issued a Preliminary Adequacy Determination Waiving Further Review pursuant to Article 80B-5.4 of the Code on November 19, 2010. Changes to individual Blocks were made by the developers of those Blocks, and approved by the BRA and BZC through the amendments to the PDA Plan described in Section 2.2 above. The NPC Project proposes certain changes to the 2010 Project and thus is subject to additional BPDA review of this Notice of Project Change pursuant to Section 80A-6 of the Code.

2.4.2 Anticipated Permits, Reviews, and Approvals

The following permits, reviews, and approvals may be required for the NPC Project.

Agency Name	Permit, Review, or Approval		
FE	DERAL		
Environmental Protection Agency	National Pollution Discharge Elimination System		
Federal Aviation Administration	FAA Height Restriction Notice; Section 19 Determination		
S	TATE		
Executive Office of Energy and Environmental Affairs	Massachusetts Environmental Policy Act review of Notice of Project Change		
	Review of Notice of Project Change pursuant to Landlocked Tidelands Public Benefit Determination		
Department of Environmental Protection, Division of Wetlands and Waterways	Chapter 91 License (for Block G)		
Department of Environmental Protection, Division of Air Quality Control	Air Plan Approval, if required		
Department of Environmental Protection	Notification of Demolition and Construction		
Massachusetts Water Resources Authority	Sewer Use Discharge Permit		
Massachusetts Historical Commission	State Register Review		
Massachusetts Department of Transportation	Change of Access Designation, Access Permit		
Massachusetts Bay Transportation Authority	Approvals related to Silver Line facility connections		
L	OCAL		
Boston Planning and Development Agency	80A Review of Notice of Project Change; Recommendation of Approval of Amended and Restated PDA Plan pursuant to Article 80C		
Boston Zoning Commission	Approval of Amended and Restated PDA Plan pursuant to Article 80C		
Boston Civic Design Commission	Review and Approval		
Fort Point Channel Landmark District Approval	Certificate of Appropriateness, Protection Area Guidelines (Block Q only)		
Boston Conservation Commission	Orders of Conditions		
Boston Air Pollution Control Commission	Parking Freeze Permits, Confirmation of Exemptions		
Boston Water and Sewer Commission	Sewer Use Discharge Permit; Site Plan Approval; Construction Dewatering Permit; Sewer Extension/ Connection Permit; Stormwater Connection; Cross Connection/Backflow Prevention Permit; Hydrant Meter Permit; Construction Permit for Facilities; and Termination Verification Permit (Chapel).		
City of Boston Inspectional Services Department	Building and Occupancy Permits; Termination Verification Permit (Chapel)		

Table 2-1 Anticipated Permits, Reviews, and Approvals for the NPC Project (if necessary)

Agency Name	Permit, Review, or Approval				
LOCAL					
Boston Public Improvement Commission	Acceptance of New Public Way or Private Way Open to Public Travel; Street and Sidewalk Occupancy Permits; Tieback/Earth Retention System License Agreement; Subsurface/Surface Discontinuances; Specific Repair Plan Approval; Licenses for Canopy or Projections.				
Boston Department of Public Works	Street Occupancy Permit; Curb Cut Permit				
Boston Transportation Department	Transportation Access Plan Agreement; Construction Management Plan				
Boston Landmarks Commission	Article 85 Demolition Delay Review (Block D only)				
Boston Public Safety Commission, Committee on Licenses	Permit to erect and maintain parking garage; Flammable storage license				
Boston Fire Department	Storage tank permit; Burner and permit for fuel oil; Cross connection backflow preventer; Approval for sprinkler systems; Permit for maintenance of fire protection/equipment; Permit for safe access to the site; and Permit for welding and cutting equipment.				

Table 2-1Anticipated Permits, Reviews, and Approvals for the NPC Project (if necessary)
(Continued)

Chapter 3.0

Transportation

3.0 TRANSPORTATION

The Proponent engaged Howard Stein Hudson (HSH) to conduct an evaluation of the transportation impacts of the Project in the South Boston Waterfront neighborhood of Boston, Massachusetts. This transportation study adheres to the Boston Transportation Department (BTD) Transportation Access Plan Guidelines and Boston Planning and Development Agency (BPDA) Article 80 Large Project Review process. This study includes an evaluation of existing conditions, future conditions with and without the Project, projected parking demand, loading operations, transit services, and pedestrian activity.

3.1 Project Description

The proposed Project includes redefining the remaining blocks of the 2010 Project. Figure 1-1 shows the blocks that comprise the Project Site. Several of the Blocks of the Project Site have already gone through the block specific permitting process and have been constructed or are under construction (Blocks A, B, C, H, J, K, L1, L2, M1, M2, and Q). Table 3-1 compares the 2010 Project development program with the Project building program with units in square feet (sf).

Land Use	2010 Project	Project	Net
Retail	1,237,100 sf	1,123,495 sf	-113,605 sf
Office	1,157,300 sf	2,854,515 sf	+1,697,215 sf
Residential	2,840,800 sf	3,209,000 sf	+368,200 sf
Hotel	859,200 sf	476,800 sf	382,400 sf
Cultural	243,000 sf	16,200 sf	-226,800 sf
Total	6,337,400 sf	7,680,010 sf	+ 1,342,610 sf

Table 3-1Building Program Comparison

Blocks D, F, G, L3, L4, L5, L6, N, and P (cumulatively, the "NPC Project") have yet to proceed through the block specific permitting process. As such, these blocks are considered the NPC Project for the purpose of this transportation study. The blocks of the 2010 Project that have already gone through the block specific permitting process are not considered part of this Project for the NPC transportation study. The NPC transportation study will determine the impacts of the new building programs for the Project Blocks. Table 3-2 summarizes the NPC Project development by use.

3-1

Land Use	2010 Project Built/Underway	Project	NPC Project Increase
Retail	459,295 sf	1,123,495 sf	664,200 sf
Office	822,975 sf	2,854,515 sf	2,031,540 sf
Residential	1,912,000 sf	3,209,000 sf	1,297,000 sf
Hotel	184,000 sf	476,800 sf	292,800 sf
Cultural	6,200 sf	16,200 sf	10,000 sf
Total	3,384,470 sf	7,680,010 sf	4,295,540 sf

Table 3-2NPC Project Build Program for Transportation Analysis

The NPC Project also includes a reduction in the number of parking spaces that have been permitted. The 2010 Project included parking for up to 6,500 vehicles in new, below-grade parking garages (approximately 2,100 have been approved through Block permitting). The Project now proposes a total of up to 5,500 parking spaces, which results in approximately 3,400 parking spaces associated with the NPC Project.

3.1.1 Study Area

The study area was confirmed by BTD and BPDA and comprises the following 22 intersections, categorized by their current traffic control devices. The corresponding intersections are shown in Figure 3-1.

- Northern Avenue/Sleeper Street (unsignalized);
- Northern Avenue/Courthouse Way (unsignalized);
- Northern Avenue/Fan Pier Boulevard (unsignalized);
- Northern Avenue/Marina Park Drive (unsignalized);
- Northern Avenue/Harbor Shore Drive (unsignalized);
- Northern Avenue/Pier 4 Boulevard (signalized);
- Seaport Boulevard/Sleeper Street (signalized);
- Seaport Boulevard/Boston Wharf Road (signalized);
- Seaport Boulevard/East Service Road/Pier 4 Boulevard (signalized);
- Seaport Boulevard/B Street (signalized);
- Seaport Boulevard/Seaport Lane (unsignalized);
- Seaport Boulevard/Northern Avenue/D Street/Boston Fish Pier (signalized);
- Congress Street/Sleeper Street (unsignalized);
- Congress Street/Farnsworth Street (unsignalized);
- Congress Street/Thomson Place/A Street (signalized);
- Congress Street/Boston Wharf Road/West Service Road (signalized);
- Congress Street/I-90 EB Off-Ramp/I-93 NB Off-Ramp/East Service Road (signalized);
- Congress Street/B Street/I-93 On-Ramps/I-90 Off-Ramps (signalized);
- Congress Street/D Street (signalized);
- D Street/Silver Line Way (signalized);
- D Street/Massport Haul Road (I-90 On-Ramps) (signalized); and
- Summer Street/D Street (signalized).

3.1.2 Study Methodology

This transportation study and its supporting analyses were conducted in accordance with BTD guidelines, and are described below.

The Existing (2016) Condition analysis includes an inventory of the existing transportation conditions, such as traffic characteristics, parking, curb usage, transit, pedestrian circulation, bicycle facilities, loading, and site conditions. Existing counts for vehicles, bicycles, and pedestrians were collected at the study area intersections. A traffic data collection effort forms the basis for the transportation analysis conducted as part of this evaluation. The 2010 Project Blocks A, K, L1, and Q were constructed and occupied during the data collection and are therefore included as part of the Existing Condition.

The future transportation conditions analysis evaluates potential transportation impacts associated with the Project. The long-term transportation impacts are evaluated for the year 2023, based on a seven-year horizon from the year of the filing of this traffic study.

The No-Build (2023) Condition analysis includes general background traffic growth, traffic growth associated with specific developments (not including the NPC Project), and transportation improvements that are planned in the vicinity of the Project Site. 2010 Project Blocks B, C, H, J, L2, M1, and M2 have undergone Block-specific permitting and are, therefore, included as part of the No-Build Condition.

SEAPORT

Figure 3-1 Study Area Intersections The Build (2023) Condition analysis includes a net increase in traffic volume due to the addition of Project-generated trip estimates to the traffic volumes developed as part of the No-Build (2023) Condition analysis. As previously discussed, the NPC Project includes Blocks D, F, G, L3, L4, L5, L6, N, and P. The transportation study identified expected impacts to roadway, parking, transit, pedestrian, and bicycle accommodations, as well as loading capabilities and deficiencies.

The final part of the transportation study identifies measures to mitigate NPC Project-related impacts and to address traffic, pedestrian, bicycle, transit, safety, or construction related issues that are necessary to accommodate the NPC Project.

An evaluation of short-term traffic impacts associated with construction activities is also provided.

3.2 Existing Condition

This section includes descriptions of existing study area roadway geometries, intersection traffic control, peak-hour vehicular and pedestrian volumes, average daily traffic volumes, public transportation availability, parking, curb usage, and loading conditions.

3.2.1 Existing Roadway Conditions

The study area includes the following roadways, which are categorized according to the Massachusetts Department of Transportation (MassDOT) Office of Transportation Planning functional classifications:

Seaport Boulevard is an urban extension of a minor arterial and generally runs east–west from Purchase Street in downtown Boston across the Evelyn Moakley Bridge to D Street in South Boston. East of D Street, Seaport Boulevard becomes Northern Avenue. Seaport Boulevard consists primarily of two lanes in each direction. Metered parking is available on both sides of Seaport Boulevard east of Sleeper Street to D Street. Parking is also allowed east of B Street. Sidewalks along Seaport Boulevard are in good condition and vary in width from 6 to 30 feet. Seaport Boulevard will be the main street of Seaport Square, providing the spine for much of its mixed-use development.

Northern Avenue in the study area is a public local connector roadway that extends from the closed Northern Avenue Bridge to Pier 4 Boulevard. While most vehicular traffic was removed from this street when the new Evelyn Moakley Bridge was constructed, Old Northern Avenue still serves as the primary corridor for local vehicular access into the Fan Pier development, as well as the Moakley United States Federal Courthouse, Institute of Contemporary Art, and Pier 4 parcels. The easterly segment of the street was recently realigned to connect with an extension of East Service Road (named Pier 4 Boulevard) in a standard four-way signalized intersection. *Sleeper Street* is an urban collector that runs north–south from Northern Avenue to Congress Street. It consists of one lane in each direction. Residential parking is allowed along the east side of Sleeper Street south of Seaport Boulevard. In the study area, sidewalks on both sides of Sleeper Street vary from 5 to 15 feet wide.

Boston Wharf Road (formerly West Service Road) is a local street running north–south from Seaport Boulevard to below the elevated Summer Street. The street then curves toward the east and intersects with South Boston Bypass Road. North of Congress Street, West Service Road is called Boston Wharf Road. The road consists primarily of one lane in each direction. Parking is allowed only on Boston Wharf Road north of Congress Street. The entire length of the road is newly constructed, so sidewalks are in good condition and vary from 6 to 13 feet wide.

East Service Road is a one-way, northbound urban collector running from Congress Street to Seaport Boulevard. The road consists of two northbound travel lanes with parking on both sides until it nears the Seaport Boulevard intersection. Near that intersection, East Service Road has three lanes, with no parking allowed. East Service Road was recently constructed, so sidewalks are in good condition and are 7 feet wide on the east side and 11 feet wide on the west side of the road.

B Street is an urban minor arterial in the study area running north–south from Congress Street to Northern Avenue. B Street generally consists of two travel lanes in each direction, with a raised median and no parking on either side of the street. Sidewalks on B Street are in generally good condition and vary from 7 to 15 feet wide.

D Street is an urban minor arterial south of Summer Street and an urban extension of a minor arterial north of Summer Street. D Street runs generally north–south between Seaport Boulevard to the north and Dorchester Avenue to the south. D Street generally consists of two lanes in each direction separated by a raised median north of Summer Street. North of Congress Street, the D Street north- and southbound approaches diverge into two one-way sections in what is known as the "D Street Couplet." At Northern Avenue, the north- and southbound roadways are separated by a 150-foot median. Parking is allowed only between Ramp DB and Congress Street on the east side and is unrestricted on the east side of D Street, south of Summer Street. Sidewalks are located on both sides of D Street throughout the study area and are generally in good condition and vary from 7 to 15 feet wide.

Congress Street is an urban minor arterial extending from New Sudbury Street in Boston to Northern Avenue in South Boston. In the study area, Congress Street runs east–west and generally comprises two lanes in each direction. It functions as a major access point for ramp system connections to I-90 and I-93. West of Atlantic Avenue, Congress Street is four lanes in the eastbound direction only. Throughout most of the study area, the roadway and sidewalks are newly constructed and in good condition and vary from 7 to 18 feet wide. Between Sleeper Street and Boston Wharf Road, the road and sidewalk are in poor condition. Parking is allowed on the north side of Congress Street in most of the study area, and on the south side between West Service Road and East Service Road.

Thomson Place is a local road that runs north–south from Congress Street to Seaport Boulevard. Access to Seaport Boulevard is currently blocked by barricades and a construction trailer. Sidewalks between 7 and 8 feet in width run along the length of Thomson Place and are in generally good condition. The east side of Thomson Place near Congress Street has private perpendicular parking spaces for the adjacent building. When Construction on Block J is complete (mid 2017), Thomson Place will connect to Seaport Boulevard with one lane in each direction.

I-90 EB Off-Ramp is an off-ramp from the Massachusetts Turnpike (Mass Pike) eastbound at Exit 25. The road splits into the Off-ramp and South Boston Bypass when it emerges from underground. This off-ramp terminates at an intersection with the I-93 NB Off-ramp, East Service Road, and Congress Street. The Off-ramp headed east terminates at an intersection with the Massport Haul Road. Parking and pedestrian traffic are prohibited along the Off-ramp.

I-93 NB Off-Ramp comes from I-93 northbound, Exit 20, and terminates at its intersection with the I-90 EB Off-Ramp, Congress Street, and East Service Road. No parking or pedestrians are allowed along the off-ramp.

I-93 On-Ramp provides access from Congress Street and B Street to I-93 north- and southbound. On-Ramp D begins at its intersection with Congress Street, B Street, and the I-90 WB Off-Ramp. Parking and pedestrian traffic are prohibited along the I-93 On-Ramp.

I-90 WB Off-Ramp, Exit 25 from the Mass Pike westbound, terminates at its intersection with Congress Street, B Street, and I-93 On-Ramp. Parking and pedestrian traffic are prohibited along the I-90 WB Off-Ramp.

Summer Street is an urban principal arterial that runs generally east-west between Washington Street in Downtown Crossing to the west and East Second Street in South Boston to the east, where it then becomes L Street within the study area. Summer Street has two lanes in each direction. On-street parking is allowed on various sections of Summer Street throughout the study area. Sidewalks are provided on both sides of the street. Pavement markings on Summer Street are in good condition in the study area and vary from 9 to 40 feet wide.

3.2.2 Existing Intersection Conditions

Existing conditions at the study area intersections are described below.

3.2.2.1 Signalized Intersections

Northern Avenue/Pier 4 Boulevard is a signalized intersection with four approaches. The eastbound Northern Avenue approach consists of a shared left-turn/through lane and an exclusive right-turn lane. The westbound approach is a driveway consisting of a shared left-turn/through/right-turn lane. The northbound Pier 4 Boulevard approach consists of an exclusive left-turn lane and a shared through/right-turn lane. The Pier 4 Boulevard southbound approach consists of a shared left-turn/through/right-turn lane. This intersection has been recently constructed as a result of the realignment of Northern Avenue. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

Seaport Boulevard/Sleeper Street is a signalized intersection with four approaches. The eastbound Seaport Boulevard approach consists of a shared left-turn/through lane, a through lane, and an exclusive right-turn lane. The westbound Seaport Boulevard approach consists of an exclusive left-turn lane, a through lane, and a shared through/right-turn lane. Metered parking is provided along both sides of Seaport Boulevard east of the intersection; no parking is allowed along Seaport Boulevard west of the intersection. The northbound approach of Sleeper Street consists of a left-turn/through/right-turn lane and an eight-foot lane for residential parking only. The Sleeper Street southbound approach has a shared left-turn/through lane and a right-turn lane. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

Seaport Boulevard/Boston Wharf Road is a signalized T intersection. The eastbound approach, Seaport Boulevard, consists of a through lane and a shared through/right-turn lane. The westbound Seaport Boulevard approach consists of an exclusive left-turn lane, a through lane, and a through lane. The northbound approach of Boston Wharf Road consists of a left-turn lane and a shared left-turn/right-turn lane. Metered parking is provided along both sides of Seaport Boulevard and Boston Wharf Road. The Boston Wharf Road northbound approach serves as a drop-off zone for shuttles serving Block L1. All approaches have crosswalks and ADA compliant pedestrian ramps.

Seaport Boulevard/East Service Road/Pier 4 Boulevard is a signalized intersection with four approaches. The eastbound Seaport Boulevard approach consists of a left-turn lane and two through lanes. The westbound Seaport Boulevard approach consists of a through lane and a shared through/right-turn lane. Metered parking is provided along both sides of Seaport Boulevard west of the intersection; no parking is allowed along Seaport Boulevard east of the intersection. The northbound approach of East Service Road is one-way northbound and consists of an exclusive left-turn lane, through lane, and an exclusive right-turn lane. The Pier 4 Boulevard southbound approach consists of an exclusive left-turn lane. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

Seaport Boulevard/B Street is a signalized T intersection. The eastbound Seaport Boulevard approach consists of a through lane and an exclusive right-turn lane. The westbound Seaport Boulevard approach consists of a shared left-turn/through lane and a through lane. The northbound approach of B Street consists of two left-turn lanes and a right-turn lane. Metered parking is provided along both sides of Seaport Boulevard east of the intersection; no parking is allowed along B Street or on Seaport Boulevard west of the intersection. All approaches have crosswalks and ADA compliant pedestrian ramps.

Seaport Boulevard/Northern Avenue/D Street (southbound)/Fish Pier Road is a four-leg, signalized intersection with four approaches. The eastbound Seaport Boulevard approach consists of a shared left-turn/through lane and a shared through/right-turn lane. The west-bound Northern Avenue approach consists of a left-turn/through lane and a through/right-turn lane. The southern leg of the intersection, D Street, consists of a pair of one-way roads, southbound and northbound, separated by the South Boston Maritime Park. The northbound approach consists of an exclusive left-turn lane and an exclusive right-turn lane. Crosswalks and ADA compliant pedestrian ramps are located across all sides of the intersection.

Congress Street/A Street/Thomson Place is a four-leg, signalized intersection. The eastbound Congress Street approach consists of a shared left-turn/through lane, a through lane, and an exclusive right-turn lane. Parking is provided along Congress Street west of the intersection prior to the right-turn lane. The westbound Congress Street approach consists of an exclusive left-turn lane and a shared through/right-turn lane. The north-south approaches are offset, with the southern approach 23 feet to the west of the northern approach. The northbound A Street approach consists of an exclusive left-turn lane and an exclusive right-turn lane. The southbound Thomson Place approach operates as a single left-turn/through/right-turn lane. Private, angled parking is located on the east side of Thomson Place. A bus stop is located south of the Thomson Place approach, just to the east of the A Street approach. Pavement markings and lane markings are in excellent condition along Congress Street but in poor condition along A Street and Thomson Place. Sidewalks on the northwest side of the intersection were recently reconstructed and in excellent condition. Other sidewalks are in fair condition. Crosswalks are provided across all approaches, and each crossing has ADA compliant pedestrian ramps. One traffic signal controls traffic operations at the intersection.

Congress Street/West Service Road/Boston Wharf Road is a four-way, signalized intersection. The eastbound Congress Street approach consists of a shared left-turn/ through lane and an exclusive right-turn lane. The westbound Congress Street approach consists of a leftturn lane, a through lane, and a shared through/right-turn lane. Parking is provided along both sides of Congress Street east of the intersection, but no parking is allowed along Congress Street west of the intersection. The northbound West Service Road approach consists of an exclusive left-turn lane and a through/right-turn lane. The Boston Wharf Road southbound approach consists of a left-turn/through lane and an exclusive right-turn lane. Parking is allowed along Boston Wharf Road north of the intersection on the east side only. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

Congress Street/I-90 EB Off-Ramp/I-93 NB Off-Ramp/East Service Road is a five-leg, signalized intersection with four approaches. The eastbound Congress Street approach consists of a left-turn lane, a through lane, and a through lane. The westbound Congress Street approach consists of a through lane and a through lane with a channelized right turn. Parking is allowed along both sides of Congress Street west of the intersection, but no parking is allowed along Congress Street east of the intersection. The northbound approaches are I-90 EB Off-Ramp and I-93 NB Off-Ramp. I-90 EB Off-Ramp is the western of the two northbound approaches and consists of a through lane and a shared through/right-turn lane. The I-93 NB Off-Ramp approach consists of a shared leftturn/though lane, a through lane, and an exclusive right-turn lane that is channelized at the intersection. On the north side of the intersection, East Service Road consists of two northbound receiving lanes. Parking is allowed on East Service Road north of the intersection on the east side only. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

Congress Street/I-93 On-Ramp/I-90 WB Off-Ramp/B Street is a five-leg, signalized intersection with four approaches. The eastbound Congress Street approach consists of a shared left-turn/through lane, an exclusive through lane, and an exclusive right-turn lane. The westbound Congress Street approach consists of a left-turn lane; a shared left-turn/through lane; and a shared through/right-turn lane. Parking is provided along the north side of Congress Street west of the intersection, but no parking is allowed along Congress Street east of the intersection. I-93 On-Ramp and I-90 WB Off-Ramp are both located on the south side of the intersection. The I-93 On-Ramp is one-way southbound with access to I-93 north- and southbound. The I-90 WB Off-Ramp approach, which provides access from I-90 westbound, consists of an exclusive left-turn lane, a through lane, and a channelized right-turn lane. The southbound B Street approach consists of two through lanes and an exclusive right-turn lane. Left turns are not allowed from the B Street approach. No parking is allowed along B Street or the ramps. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

Congress Street/D Street is a signalized intersection with four approaches. The eastbound Congress Street approach consists of a shared left-turn/through lane, a shared through/right-turn lane, and an exclusive right-turn lane. The westbound Congress Street approach consists of a shared left-turn/through lane and a shared through/right-turn lane. Parking is provided along the north side of Congress Street west of the intersection, but no parking is allowed along Congress Street east of the intersection. D Street runs north–south through the intersection with the directions separated by a wide median. The median is planted and widens gradually as D Street travels northward from the south. The median is 45 feet wide on the south side of the intersection and 85 feet wide on the north side. The northbound D

Street approach consists of a dual left turn and a shared through/right-turn lane. The southbound D Street approach consists of a shared left-turn/through lane and a shared through/right-turn lane. Parking is allowed on the east side of D Street south of the intersection, but no parking is allowed on D Street north of the intersection. All approaches have sidewalks, ADA compliant pedestrian ramps, and crosswalks.

D Street/Silver Line Way is a four-leg, signalized intersection. The eastbound Silver Line Way approach is a gated, exclusive way for the MBTA Silver Line busway and consists of a through lane. No private vehicles or pedestrians are allowed on the eastbound approach. The westbound approach, the Transitway, consists of a shared left-turn/ through/right-turn lane. The through maneuver is for the Silver Line and authorized MBTA vehicles. The northbound D Street approach consists of a shared left-turn/though lane and a through lane. The southbound approach consists of a shared left-turn/though lane and a through lane. Parking is located on the east side of D Street. Crosswalks and ADA compliant pedestrian ramps are located across the eastbound and westbound approaches only. Sidewalks are located along all approaches except the eastbound approach. Both Silver Line Way approaches are actuated, but no signal preemption or priority is currently in place for Silver Line vehicles.

D Street/Massport Haul Road (I-90 On-Ramps) is a three-leg, signalized intersection. The northbound D Street approach consists of an exclusive left-turn lane and two through lanes. The southbound D Street approach consists of a shared through/right-turn lane and a through lane. The western leg of the intersection, Massport Haul Road, is one-way westbound and provides access to both directions of I-90. Crosswalks, pedestrian signal equipment, and ADA compliant pedestrian ramps are provided across the D Street southbound approach and Massport Haul Road.

Summer Street/D Street is a four-leg, signalized intersection at the southeasterly corner of the Seaport Square Project area. The Summer Street eastbound approach consists of an exclusive left-turn lane, an exclusive through lane, and a shared through/right-turn lane. Summer Street westbound consists of a shared left-turn/ through lane, a through lane, and a channelized exclusive right-turn lane. D Street northbound is a three-lane approach with an exclusive left-turn lane, a through lane, and a shared through/right-turn lane with an eight-foot adjacent parking lane. Southbound D Street is a three-lane approach with an exclusive left-turn lane, a shared left-turn/through lane, and a shared through/right-turn lane. Parking is allowed along the north side of Summer Street west of the intersection and along both sides of D Street south of the intersection. All approaches have crosswalks and ADA compliant pedestrian ramps. Pedestrian pushbuttons activate concurrent pedestrian phases at the intersection.

3.2.2.2 Unsignalized Intersections

Northern Avenue/Sleeper Street is an unsignalized intersection with three approaches. The Northern Avenue eastbound approach consists of a shared through/right-turn lane. The Northern Avenue westbound approach consists of a shared left-turn/through lane. The Sleeper Street northbound approach consists of a shared left-turn/right-turn lane. All approaches have crosswalks and ADA compliant pedestrian ramps; however due to construction south of Northern Avenue the southern sidewalk is currently inaccessible.

Northern Avenue/Courthouse Way is an unsignalized intersection with three approaches. The Northern Avenue eastbound approach consists of a shared left-turn/through lane. The Northern Avenue westbound approach consists of a shared through/right-turn lane. The Courthouse Way southbound approach consists of a shared left-turn/right-turn lane. All approaches have crosswalks and ADA compliant pedestrian ramps; however due to construction south of Northern Avenue at Blocks B and C the southern sidewalk is currently inaccessible.

Northern Avenue/Fan Pier Boulevard is an unsignalized intersection with three approaches. The Northern Avenue eastbound approach consists of a shared left-turn/through lane. The Northern Avenue westbound approach consists of a shared through/right-turn lane. The Fan Pier Boulevard southbound approach consists of a shared left-turn/right-turn lane. The westbound and southbound approaches both have crosswalks and ADA compliant pedestrian ramps. Due to construction, the sidewalk south of Northern Avenue is currently inaccessible. In the future condition at the completion of Block C (mid 2017), Fan Pier Boulevard will continue to Seaport Boulevard, creating a four-way intersection.

Northern Avenue/Marina Park Drive is an unsignalized intersection with three approaches. The Northern Avenue eastbound approach consists of a shared left-turn/through lane. The Northern Avenue westbound approach consists of a shared through/right-turn lane. The Marina Park Drive southbound approach consists of a shared left-turn/right-turn lane. The westbound and southbound approaches of the intersection have crosswalks and ADA compliant pedestrian ramps.

Northern Avenue/Harbor Shore Drive is an unsignalized intersection with three approaches. The Northern Avenue eastbound approach consists of a shared left-turn/through lane. The Northern Avenue westbound approach consists of a shared through/right-turn lane. The Harbor Shore Drive southbound approach consists of a shared left-turn/right-turn lane. There are crosswalks and ADA compliant pedestrian ramps at all approaches of the intersection.

Seaport Boulevard/Seaport Lane is an unsignalized intersection with two approaches and a one-way southbound lane. The Seaport Boulevard eastbound approach consists of a through lane and a shared through/right-turn lane. The Seaport Boulevard westbound

approach consists of a shared left-turn/through lane and a through lane. Seaport Lane is one-way southbound exiting the intersection. Crosswalks and ADA compliant pedestrian ramps are at all approaches of the intersection.

Congress Street/Sleeper Street is an unsignalized intersection with three approaches. The Congress Street eastbound approach consists of a shared left-turn/through lane. The Congress Street westbound approach consists of a shared through/right-turn lane. The Sleeper Street southbound approach consists of a shared left-turn/right-turn lane. Only the southbound approach of the intersection has a crosswalk and ADA compliant pedestrian ramps.

Congress Street/Farnsworth Street is an unsignalized intersection with three approaches. The Congress Street eastbound approach consists of a shared left-turn/through lane. The Congress Street westbound approach consists of a shared through/right-turn lane. The Farnsworth Street southbound approach consists of a shared left-turn/right-turn lane. The southbound and eastbound approaches of the intersection have crosswalks and ADA compliant pedestrian ramps.

Seaport Boulevard/Thomson Place/Fan Pier Boulevard is an unsignalized intersection with three approaches, but the northbound approach is not currently open to traffic. The eastbound Seaport Boulevard approach consists of a U-turn lane and two through lanes. The westbound Seaport Boulevard approach consists of two through lanes. Metered parking is provided along both sides of Seaport Boulevard east of the intersection, and on the south side west of the intersection. No parking is permitted along the north side of Seaport Boulevard west of the intersection. Sidewalks are provided along Seaport Boulevard and the northbound approach of Thomson Place. Crosswalks with ADA compliant pedestrian ramps are located across both approaches of Seaport Boulevard. Since the northbound approach of Thomson Place is currently not in use, this location does not currently operate as an intersection.

Under future conditions this location will become a signalized four-way intersection. Thomson Place at the completion of Block J (mid 2017) will connect to Seaport Boulevard acting as the northbound approach. The fourth leg of this intersection, the southbound approach, will be the extension of Fan Pier Boulevard south from Northern Avenue.

3.2.3 Existing Parking

An inventory of the existing on-street and off-street parking in the vicinity of the Project Area was collected. A description of each follows.

3.2.3.1 On-Street Parking and Curb Usage

On-street parking surrounding the Project Site consists of predominately metered parking. The on-street parking regulations within the study area are shown in Figure 3-2.

SEAPORT

Figure 3-2 On-Street Parking

3.2.3.2 Off-Street Parking

There are more than 11,275 off-street parking spaces within one-quarter mile, or a fiveminute walk, of the Project Site. These parking spaces consist of a mix of public parking spaces, residential parking spaces, and private parking spaces. Approximately 3,901 parking spaces are found in parking lots and 7,374 are in parking garages. A detailed summary of all parking lots and garages is shown in Table 3-3.

Facility	Facility Capacity		Capacity	
Parking Garages	•	Parking Lots		
17 Farnsworth Street	361	Martin Richard Park/Sleeper Street	24	
22 Boston Wharf Road/29-49 Stillings St	500	390 Congress Street (Seaport Blocks L3- L6)	683	
30-60 Necco Street Garage	585	145 Seaport Boulevard (Seaport Block M)	373	
One Seaport Lane Hotel Garage	2,390	321 Congress Street	85	
425 Summer Street Westin Garage	400	381 Congress Street	28	
Fan Pier Garage	2,161*	391 Congress Street (Seaport Blocks N & P)	299	
Fish Pier Garage	110	284 A Street Channelside Lot	622	
Waterside Place	140*	309 A Street	1,787*	
100 Pier 4	258*			
Watermark (Seaport Block K)	144			
PWC (Seaport Block L1)	325			
Parking Garages Subtotal	7,374	Parking Lots Subtotal	3,901	
Total Parking Spaces		11,275		

Table 3-3 Off-street Parking Lots and Garages within a Quarter-Mile of the Site

*Not all of the capacity is available for public parking.

In the future build condition of the Project, several of the surface parking lots will be replaced with parking garages located beneath the new buildings. The parking lots at 390 Congress Street, 391 Congress Street, and 145 Seaport Boulevard (Blocks L3, L4, L5, L6, M, N, and P) will all be built over, eliminating the existing 1,355 public surface parking spaces and replacing them with garage spaces that will mostly be used by the on-site tenants.

3.2.3.3 Car Sharing Services

Car sharing enables easy access to short-term vehicular transportation. Vehicles are rented on an hourly or daily basis, and vehicle costs (gas, maintenance, insurance, and parking) are included in the rental fee. Vehicles are checked out for a specific time period and returned to their designated location.

Zipcar is the primary company in the Boston car sharing market. There are currently eleven Zipcar locations and one Enterprise CarShare location within a half-mile walk of the Project Site. The nearby car sharing locations are shown in Figure 3-3.

3.2.4 Existing Traffic Data

Traffic volume data was collected at the twenty-two study area intersections on November 1, 2016. Turning Movement Counts (TMCs) and vehicle classification counts were conducted during the weekday a.m. and weekday p.m. peak periods (7:00 – 9:00 a.m. and 4:00 – 6:00 p.m., respectively). The traffic classification counts included car, heavy vehicle, pedestrian, and bicycle movements. The Existing (2016) weekday a.m. Peak Hour and weekday p.m. Peak Hour traffic volumes are shown in Figures 3-4 and Figure 3-5, respectively. The detailed traffic counts are provided in Appendix A.

3.2.4.1 Seasonal Adjustment

To account for seasonal variation in traffic volumes throughout the year, data provided by MassDOT was reviewed. The most recent (2011) MassDOT Weekday Seasonal Factors were used to determine the need for seasonal adjustments to the November 2016 TMCs. The seasonal adjustment factor for roadways similar to the study area (Group 6) is 0.97. This indicates that average month traffic volumes are approximately three percent less than the traffic volumes that were collected for the Project study. The collected traffic counts were not adjusted downward to reflect average month conditions; therefore they provide a conservatively high analysis of existing conditions. The MassDOT 2011 Weekday Seasonal Factors table is provided in Appendix A.

SEAPORT

Figure 3-3 Car Sharing Services

Figure 3-5 Existing (2016) Condition Traffic Volumes, Weekday p.m. Peak Hour

3.2.5 Existing Bicycle Volumes and Accommodations

In recent years, bicycle use has increased dramatically throughout the City of Boston. The Project Area is conveniently located near several bicycle facilities. The City of Boston's "Bike Routes of Boston" map designates Northern Avenue as a beginner route, suitable for all types of bicyclists, including newer cyclists, cyclists with limited on-road experience, and children. The "Bike Routes of Boston" map also designates Seaport Boulevard, Congress Street, A Street, and D Street as intermediate routes. Intermediate routes are suitable for riders with some on-road experience.

Bicycle counts were conducted concurrent with the vehicular TMCs and are presented in Figure 3-6. As shown in the figure, bicycle volumes are heaviest along Seaport Boulevard and Congress Street during the peak periods.

3.2.5.1 Bicycle Sharing Services

The Project Area is also located near bicycle sharing stations provided by Hubway. Hubway is the bicycle sharing system in the Boston area, which was launched in 2011 and consists of over 140 stations and 1,300 bicycles. There are six Hubway locations within a quarter mile of the site. Figure 3-7 shows the Hubway stations within one quarter mile radius. Once the construction of Blocks B and C (located east of Sleeper Street at Seaport Boulevard) is completed, the previously existing Hubway Station will be reinstalled.

3.2.6 Existing Pedestrian Volumes and Accommodations

In general, sidewalks are provided along all roadways and are in good condition. Crosswalks are provided at all study area intersections. Pedestrian signal equipment is provided at all of the signalized study area intersections.

To determine the amount of pedestrian activity within the study area, pedestrian counts were conducted concurrent with the TMCs at the study area intersections and are presented in Figure 3-8. As shown in the figure, pedestrian activity is heavy throughout the study area, particularly along Northern Avenue and Congress Street.

3.2.7 Existing Public Transportation

The Project Site is within one-half mile (a 10-minute walk) of South Station, a transportation hub that provides access to the MBTA Red Line, Silver Line, and eight commuter rail branches. In addition, the MBTA Silver Line Courthouse and World Trade Center stations are located near the Project Area The MBTA operates six bus routes, as well as two Silver Line routes, near the Project Area as well. South Station is also the terminus for Amtrak train service along the Northeast Corridor. Greyhound and Peter Pan provide regional and commuter bus service from South Station. Figure 3-9 maps the public transportation service located in close proximity of the Project Area, and Table 3-4 provides a summary of the routes.

SEAPORT

SEAPORT

Figure 3-7 Bicycle Sharing Services

SEAPORT

SEAPORT

Figure 3-9 Public Transportation

Transit Service	Description	Rush-hour Headway (in minutes)*			
Subway R	Subway Routes				
Red	Alewife – Braintree/Ashmont	9			
Bus Route	25				
SL1	South Station – Logan Airport/South Boston	2-3			
SL2	Design Center/South Boston – South Station				
4	North Station – World Trade Center	15			
7	City Point – Otis & Summer Streets	4-7			
11	City Point – Downtown Crossing				
448	Marblehead – Downtown Crossing	60			
449	Marblehead – Downtown Crossing	60			
459	Salem Depot – Downtown Crossing	75			

 Table 3-4
 Existing Public Transportation Service Summary

* Headway is the time between trains/buses.

The Project Site is located about a half-mile (a 10-minute walk) from South Station, a transportation hub that provides access to eight commuter rail branches serving communities to the west and south of Boston. Commuter trains from South Station serve Plymouth, Kingston, Middleborough/Lakeville, Stoughton, Providence, Forge Park-495, Needham Heights, and Worcester. South Station is also the terminus for Amtrak train service along the Northeast Corridor.

Commuter rail service to communities north of Boston operates out of North Station, located farther from the Project Site. Five commuter rail lines operate from North Station, including Rockport, Newburyport, Haverhill, Lowell, and Fitchburg. While North Station is fairly distant from the Project Site, the Orange Line provides a direct transit connection from Downtown Crossing station to North Station.

The MBTA Water Shuttle Route F1 operates from Rowe's Wharf to Hingham. Routes F2 and F2H operate from Hull to Logan Airport to Long Wharf. Route F4 runs between Charlestown and Long Wharf. Two water taxi services also serve Fan Pier directly. Boston Harbor Cruise's City Water Taxi provides year-round water shuttle service in Boston's inner harbor. Water taxi pick-up and drop-off locations in the Seaport area include Anthony's Pier Four, Fan Pier, the Barking Crab restaurant, the Children's Museum, the Seaport World

Trade Center, the Bank of America Pavilion, and the Black Falcon Cruise Terminal. Water taxis serve seven locations along the downtown waterfront, three in Charlestown, and two in East Boston, including Logan Airport. Project area water taxi stops are shown in Figure 3-9.

3.2.8 Crash Data

Motor vehicle crash data from the MassDOT Crash Records System were compiled from available data for the most recent three-year period (2012–14). Crash rates for the study area intersections were calculated and compared to the district averages for signalized and unsignalized intersections. In MassDOT District 6, where Seaport Square is located, the average number of crashes at a signalized intersection is 0.88 crashes per million entering vehicles (MEV). For unsignalized intersections, the average is 0.63 crashes per MEV. Of the 22 intersections studied, none of the locations had an average crash rate greater than the District average. Of the 13 crashes that have occurred at the study area intersections within the past three years, none involved a fatality.

A summary of crash data for study area locations is included in Appendix A.

3.3 No-Build (2023) Condition

The No-Build (2023) Condition reflects a future scenario that incorporates anticipated traffic volume changes associated with background traffic growth independent of any specific project, traffic associated with other specific planned developments, and planned infrastructure improvements that will affect travel patterns in the study area. These infrastructure improvements include roadway, public transportation, pedestrian, and bicycle improvements.

3.3.1 Background Traffic Growth

The methodology to account for generic future background traffic growth, independent of the NPC Project, may be affected by changes in demographics, smaller scale development projects, or projects unforeseen at this time. Based on a review of recent and historic traffic data collected recently and to account for additional unforeseen traffic growth, a traffic growth rate of one percent per year, compounded annually, was used. The following projects were accounted for in the background traffic growth:

Innovation Square at Northern Avenue – This project calls for the construction of approximately 360,000 sf for a research and development/manufacturing facility and 60 parking spaces. This project has been approved by the BPDA.

Stavis Seafood (Former Boston Cargo Terminal) – This project calls for the construction of a new state-of-the-art seafood processing and marine warehousing and industrial facility totaling 201,000 sf.

South Boston Waterfront Transportation Center – This project calls for the construction of a new multi-modal transportation center consisting of 2,229 parking spaces with connections to the MBTA Silver Line and bike and car-sharing services. The facility is being developed by the Massachusetts Port Authority (Massport) to support other Massport development parcels (some are already occupied, some are under construction, and some have not begun the permitting process). The traffic associated with the garage was determined based on the building program of each individual parcel.

3.3.2 Specific Development Traffic Growth

Traffic volumes associated with known development projects can affect traffic patterns throughout the study area within the future analysis time horizon. Nine such projects were specifically accounted for in the traffic volumes for future scenarios, while others were included in the general background traffic growth (the site-specific background projects are mapped on Figure 3-10):

General Electric Headquarters - This project calls for the construction of a 388,700 sf building to serve as the new headquarters for General Electric. This project has been approved by the BPDA board.

399 Congress Street - This project calls for the construction of a 414 unit apartment building with parking for 144 vehicles. This project has been approved by the BPDA Board.

Waterside Place Phase 1B (Massport)– This project calls for the construction of a new 23story, 345,000 sf building containing 312 residential units, 2,000 sf of retail space, and 84 parking spaces. This project has been approved by the BPDA Board.

150 Seaport Boulevard – This project calls for 283,700 sf of new development comprising 124 residential units, 10,700 sf of commercial and retail space, and 179 parking spaces. This project has been approved by the BPDA Board.

Marine Wharf – This project calls for the construction of an approximately 320,000 sf hotel with 411 rooms and 3,500 sf of retail and parking for 75 space garage. This project has been approved by the BPDA Board.

Fan Pier (Parcels D, E, & H) – This project consists of the construction of buildings on the lots adjacent to the new Vertex Pharmaceuticals global headquarters. The build out of the rest of the parcels will include 125,000 sf of office space, 125,000 sf, 29,000 sf of retail space, 150 hotel rooms, and 160 condominium units. This project has been approved by the BPDA Board and is under construction.

Pier 4 (Lots 2 & 3) – This project consists of the build out of the lots adjacent to the newly completed Pier 4 mixed use development. The remainder of the lots consists of 353,000 sf of office space, 36,800 of retail space, and 106 condominium units. This project has been approved by the BPDA and is under construction.

SEAPORT

Figure 3-10 Background Projects *25 Fid Kennedy Avenue* – This project calls for the rehabilitation of an approximately 157,000 sf building for use as a plumbing, HVAC, fire-protection, and related construction product assembly plant. This project has been approved by the BPDA Board.

Benjamin and Via (Blocks B/C) – This project is part of the Seaport Square development that has been permitted. The project consists of 230,000 sf of retail and 832 residential units. This project is under construction and scheduled to open in 2017

Yotel (Block J) – This project, located across from Blocks B/C, is part of the Seaport Square development that has already been permitted. The project consists of 99,000 sf of hotel with 12,000 sf of ground retail. This project is under construction and set to open in 2017.

121 Seaport (Block L2) – This project, located next to the existing 101 Seaport PWC building, is another part of the Seaport Square development that has already been permitted. The project consists of 372,400 sf of office space and 59,638 sf of retail space. This project is under construction and set to open in 2018.

Blocks M1/M2 – This project, located east of 121 Seaport, is another part of the Seaport Square development that has already been permitted. The project consists of 750 residential units and 125,000 sf of retail. The project has been approved by the BPDA Board and is set to open in 2019.

22 Boston Wharf Road – This project consists of a two-floor addition to the existing structure totaling 56,000 sf of new office space, as well as a conversion of 3,000 sf of parking into ground floor retail. This project has been approved by the BPDA and is under construction.

Omni Boston Hotel (Massport Parcel D2) – This project calls for the construction of a 1,050 room hotel, consisting of regular and micro-hotel units, and 61,000 sf of retail. This project was previously approved in 2007 as part of a master plan but will need to go through a site specific permitting process.

South Station Air Rights – This project consists of construction above South Station totaling 1,375,000 sf of office space, 170,000 sf of residential space, a 200-room hotel, and 934 parking spaces. This project was recently approved by the BPDA.

Parcel Q1 – This project calls for the construction of an approximately 298,700 sf office building with a small amount of ground floor retail and approximately 150 parking spaces. This project was recently approved by the BPDA.

Parcel K – This project calls for the construction of two buildings consisting of 304 residential units, 293 hotel units, 17,928 sf of retail space, and 14,400 sf of office space with parking for 640 vehicles. This project was recently approved by the BPDA.

105 West 1st Street – This project calls for the development of an eight-story, 266,750 sf office/research and development building. This project has filed a letter of intent with the BPDA.

3.3.3 Proposed Infrastructure Improvements

A review of planned improvements to roadway, transit, bicycle, and pedestrian facilities was conducted to determine if there are any improvement projects in the vicinity of the study area. Based on this review, it was determined that the future condition will see infrastructure improvements along the Seaport Boulevard and Northern Avenue corridors. Fan Pier Boulevard, which currently terminates at Northern Avenue, will continue south and connect to Seaport Boulevard at Thomson Place to create a new signalized intersection.

Two new mid-block signalized pedestrian crossings will connect Farnsworth Street and Courthouse Way as well as a signalized crossing linking Harbor Way north and south of Seaport Boulevard.

The Seaport Boulevard corridor between Sleeper Street and B Street will undergo modifications, including improved streetscapes, buffered bicycle lanes (where possible), and signal timing improvements. The signal timing modifications will provide longer walk times for pedestrians and improve the coordination between the intersections to allow for better traffic progression through the corridor.

A new link between Northern Avenue and Seaport Boulevard will be created at the intersection of Marine Park Drive/Northern Avenue will be known as Pier Street. The new road will operate as one-way northbound.

3.3.4 No-Build Traffic Volumes

The one percent per year annual growth rate, compounded annually, was applied to the Existing (2016) Condition traffic volumes. Then the traffic volumes associated with the background development projects listed above were added to develop the No-Build (2023) Condition traffic volumes. The No-Build (2023) weekday morning and evening peak hour traffic volumes are shown on Figures 3-11 and Figure 3-12, respectively.

3.4 Build (2023) Condition

As previously mentioned, the proposed NPC Project consists of the build out of Blocks D, F, G, L3-L6, N, and P. The remaining build out includes approximately 4.29 million square feet in addition to the approximately 3.38 million square feet that has already been through block specific permitting as part of the 2010 Project. This includes approximately 2.0 million square feet of office space, 1.3 million square feet of residential space, 660,000

Figure 3-11 No Build (2023) Condition Traffic Volumes, Weekday a.m. Peak Hour

Figure 3-12 No Build (2023) Condition Traffic Volumes, Weekday p.m. Peak Hour square feet of retail space, and 292,000 square feet of hotel space. The remaining development will include an increase of approximately 3,400 parking spaces to the block specific permitted 2,100 parking spaces. The transportation circulation in the Project Area is shown in Figure 3-13.

3.4.1 Site Access and Vehicle Circulation

The NPC Project will be served by multiple parking garages. Garages will be located under Block D (connecting to the Blocks B & C garage), Blocks F & G, L3-L6, and N & P. Access to the Block D garage is proposed via a driveway on Fan Pier Boulevard. Access to the Blocks F & G garage is proposed on the west side of the G Block. Block L3-L6 garage is proposed to have one driveway on Boston Wharf Road and one driveway on East Service Road. The Block N & P garage entrance is proposed along Boston Wharf Road south of Congress Street. Figure 3-14 shows the proposed parking garage driveway locations.

3.4.2 Loading and Service Accommodations

The NPC Project will be served by multiple loading areas. Blocks D, G, and N & P will each have a loading area adjacent to its respective garage entrances. Block L3-L6 will have two loading areas along Autumn Lane (one each at L3 and L4). Blocks L5 and L6 will be served by a combined loading area with access along Boston Wharf Road that is located adjacent to the garage entrance. Figure 3-14 shows the proposed loading area locations.

3.4.3 Project Parking

The 2010 Project included 6,500 parking spaces. The NPC Project proposes to lower this total to approximately 5,500. With approximately 2,100 spaces already permitted, the NPC Project includes an additional 3,400 spaces.

As documented in unpublished surveys conducted by HSH in several downtown neighborhoods, based on current Boston parking trends, parking demand has been declining over the last few years. This trend is only expected to continue with the continued use of new mobility options (including Uber/Lyft and shuttle services, both private and public such as Bridj) and the advent of autonomous vehicles within a few years.

A parking supply and demand study conducted in November 2016 at the two occupied Seaport Square buildings (Block K - Residential and Block L1 - Office) determined that the respective on site uses are not utilizing all of the spaces within the garage. The additional spaces are being leased as monthly public parking. Providing public parking for commuters will only encourage motorists not destined for the South Boston Waterfront to continue to drive in the area, as has historically occurred due to the surface parking lots. Reducing the excess parking that is not needed by the proposed uses is expected to reduce the existing traffic volume traveling in the area.

Boston, Massachusetts

SEAPORT

Figure 3-13 Transportation Circulation Plan

SEAPORT

Figure 3-14 Loading and Parking

3.4.4 Trip Generation Methodology

Determining the future trip generation of a project is a complex, multi-step process that produces an estimate of vehicle trips, transit trips, and walk/bicycle trips associated with a proposed development and a specific land use program. A project's location and proximity to different travel modes determines how people will travel to and from a site.

To estimate the number of trips expected to be generated by the NPC Project, data published by the Institute of Transportation Engineers (ITE) in the *Trip Generation Manual*⁴ were used. ITE provides data to estimate the total number of unadjusted vehicular trips associated with a project. In an urban setting well-served by transit, adjustments are necessary to account for other travel mode shares such as walking, bicycling, and transit.

To supplement the ITE trip generation rates, HSH performed detailed field counts on November 1, 2016 to determine the trip rates and mode share percentages for the occupied Block K residential building (Watermark) and Block L1 office building (PWC). The counts and resulting trip generation rates were used to determine the trip rates for the proposed residential and office uses of the NPC Project. For the other land uses (retail and hotel), the ITE trip rates were used. To estimate the unadjusted number of vehicular trips for the NPC Project, the following ITE land use codes (LUCs) were used:

Land Use Code 310 – Hotel. Hotels are places of lodging that provide sleeping accommodations and supporting facilities such as restaurants, cocktail lounges, meeting and banquet rooms or convention facilities, limited recreational facilities (pool, fitness room), and/or other retail and service shops. Calculations of the number of trips use ITE's average rate per 1,000 sf.

Land Use Code 820 – Shopping Center. The Shopping Center land use code is defined as an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. Shopping center trip generation estimates are based on average vehicle rates per square footage of retail space. Calculations of the number of trips use ITE's average rate per 1,000 sf.

3.4.5 Mode Share

In addition to performing field counts to establish trip generation rates, the counts performed by HSH were also used to establish mode shares for the residential and office uses for Seaport Square. The field counts involved counting pedestrians, vehicles, shuttles, and taxi/rideshare services. As with the2010 Project, the standard BTD mode share data was not used for this study because the mode share zone (Zone 13) that Seaport Square is in is a large zone that covers the South Boston Waterfront area as well as the Boston Marine

¹ Trip Generation Manual, 9th Edition; Institute of Transportation Engineers; Washington, D.C.; 2012.

Industrial Park (BMIP) and the traditional South Boston residential neighborhood. Since these neighborhoods are not conveniently located next to downtown Boston, the overall Zone 13 mode share does not adequately represent the transit and walk/bike modes.

The observations determined that the mode share used in the 2010 Project were consistent with the existing conditions. However, the advent of rideshare services and an extensive private shuttle service in the area, split the previously expected vehicle mode share into three categories; rideshare/taxi, shuttle, and private auto. The mode shares are shown in Table 3-5.

Land	Use	Walk/Bicycle Share	Transit Share	Shuttle Share	Rideshare/ Taxi Share	Auto Share		
Daily								
Residential	In	39%	35%	0%	9%	17%		
	Out	39%	35%	0%	9%	17%		
Office	In	19%	55%	9%	7%	10%		
	Out	19%	55%	9%	7%	10%		
Hotel	In	39%	27%	0%	10%	24%		
	Out	39%	27%	0%	10%	24%		
Retail	In	39%	27%	0%	0%	34%		
	Out	39%	27%	0%	0%	34%		
	a.m. Peak							
Residential	In	39%	35%	0%	9%	17%		
	Out	39%	35%	0%	9%	17%		
Office	In	19%	55%	9%	7%	10%		
	Out	19%	55%	9%	7%	10%		
Hotel	In	39%	27%	0%	10%	24%		
	Out	39%	27%	0%	10%	24%		
Retail	In	39%	27%	0%	0%	34%		
	Out	39%	27%	0%	0%	34%		
			p.m. Peak					
Residential	In	39%	35%	0%	9%	17%		
	Out	39%	35%	0%	9%	17%		
Office	In	19%	55%	9%	7%	10%		
	Out	19%	55%	9%	7%	10%		
Hotel	In	39%	27%	0%	10%	24%		
	Out	39%	27%	0%	10%	24%		
Retail	In	39%	27%	0%	0%	34%		
	Out	39%	27%	0%	0%	34%		

Table 3-5Travel Mode Share

3.4.6 Vehicle Occupancy Rates

The field observations also determined vehicle occupancy rates (VOR) for each of the vehicular mode share options for the residential and office land uses. Table 3-6 summarizes the VOR for each land use by vehicle option.

Land	Use	Shuttle Vehicle Occupancy Rate	Rideshare/Taxi Vehicle Occupancy Rate	Private Auto Vehicle Occupancy Rate
Residential	In	N/A	1.10	1.13
	Out	N/A	1.10	1.13
Office	In	14.00	1.10	1.84
	Out	14.00	1.10	1.84
Hotel	In	N/A	1.20	1.84
	Out	N/A	1.20	1.84
Retail	In	N/A	N/A	1.78
	Out	N/A	N/A	1.78

Table 3-6Vehicle Occupancy Rates

3.4.7 Existing Trip Generation

Currently, there are 1,355 surface lot spaces that are publicly used within the Project Area. These parking spaces, located in Blocks L3-6, M, and N & P, will be built over in the future conditions (Block M in the No Build Condition, and the rest in the Build Condition). The traffic volumes in and out of the surface parking lots were counted on November 1, 2016 along with the rest of the traffic counts. These volumes were removed from their respective future condition.

3.4.8 NPC Project Trip Generation

The mode share percentages and VOR shown in Table 3-5 and Table 3-6 were applied to the number of person trips to develop walk/bicycle, transit, and vehicle (including shuttle and automobile) trip generation estimates for the Project. The trip generation for the Project by mode is shown in Table 3-7. The detailed trip generation information is provided in Appendix A.
Land Use		Walk/Bicycle Trips	Transit Trips	Shuttle Trips	Vehicle Trips
		Daily	•	•	•
Residential ¹	In	1,901	1,705	31	733
	Out	1,901	1,705	31	733
Retail ²	In	7,338	5,079	-	3,595
	Out	7,338	5,079	-	3,595
Office ³	In	4,940	4,430	82	1,904
	Out	4,940	4,430	82	1,904
Hotel ⁴	In	1,141	789	-	626
	Out	1,141	789	-	626
Existing Parking ⁵	In	-	-	-	-
	Out	-	-	-	-
Total Net New Project	In	15,320	12,003	113	6,858
Generated	Out	15,320	12,003	113	6,858
		a.m. Peak H	lour	1	
Residential ¹	In	28	26	0	11
	Out	109	98	3	43
Retail ²	In	232	165	-	112
	Out	122	89	-	64
Office ³	In	1,827	1,639	30	705
	Out	65	56	0	23
Hotel ⁴	In	88	88	-	48
	Out	61	61	-	33
Existing Parking ⁵	In	-	-	-	-178
	Out	-	-	-	-11
Total Net New Project	In	2,175	1,918	30	698
Generated	Out	357	304	3	152
		p.m. Peak I	lour		1
Residential ¹	In	85	77	1	34
	Out	52	47	0	19
Retail ²	In	612	424	-	299
	Out	679	470	-	332
Office ³	In	65	56	0	23
	Out	1,745	1,567	29	675

Table 3-7Net New NPC Project Trip Generation

Land Use		Walk/Bicycle Trips	Transit Trips	Shuttle Trips	Vehicle Trips			
p.m. Peak Hour								
Hotel⁴ In		86	86 59		46			
	Out	82	57	-	45			
Existing Parking ⁵	In	-	-	-	-14			
	Out	-	-	-	-188			
Total Net New Project	In	848	616	1	388			
Generated	Out	2,558	2,141	30	883			

Table 3-7Net New Project Trip Generation (Continued)

1. HSH Field Count Rate (Apartment), 1,297 units.

2. ITE Trip Generation Rate, 9th Edition, LUC 820 (Shopping Center), 660,200 square feet.

3. HSH Field Count Rate (Office Building), 2,031,540 square feet.

4. ITE Trip Generation Rate, 9th Edition, LUC 310 (Hotel), 389 rooms.

5. Traffic counts conducted on November 1, 2016 for the 1,355 parking spaces

As shown in Table 3-7, there is expected to be 15,320 new pedestrian/bicycle trips, 12,003 new transit trips, and 6,971 new vehicle trips throughout the day. During the a.m. peak hour, there is expected to be 2,532 pedestrian trips (2,175 in and 357 out), 2,222 transit trips (1,918 in and 304 out), and 883 vehicle trips (728 in and 155 out). During the p.m. peak hour, there is expected to be 3,406 pedestrian trips (848 in and 2,558 out), 2,757 transit trips (616 in and 2,141 out), and 1,302 vehicle trips (389 in and 913 out).

3.4.9 Trip Distribution

The trip distribution identifies the various travel paths for vehicles associated with the Project. Trip distribution patterns for the Project were based on BTD's origin-destination data for Area 15 and trip distribution patterns presented in the 2010 Project. The trip distribution patterns for the Project are illustrated in Figure 3-15 and Figure 3-16.

3.4.10 Build Traffic Volumes

The vehicle trips were distributed through the study area. The Project-generated trips for the a.m. and p.m. peak hours are shown in Figure 3-17 and Figure 3-18, respectively. The trip assignments were added to the No-Build (2023) Condition vehicular traffic volumes to develop the Build (2023) Condition vehicular traffic volumes. The Build (2023) Condition a.m. and p.m. peak hour traffic volumes are shown on Figure 3-19 and Figure 3-20, respectively.

SEAPORT

Figure 3-15 Trip Distribution Entering

SEAPORT

Figure 3-16 Trip Distribution Exiting

SEAPORT

SEAPORT

Figure 3-19 Build (2023) Condition Traffic Volumes, Weekday a.m. Peak Hour

Figure 3-20 Build (2023) Condition Traffic Volumes, Weekday p.m. Peak Hour

3.5 Transportation Demand Management

The Proponent is committed to implementing Transportation Demand Management (TDM) measures to minimize automobile usage and Project related traffic impacts. TDM will be facilitated by the nature of the Project (which does not generate significant peak hour trips) and its proximity to numerous public transit alternatives.

On-site management will keep a supply of transit information (schedules, maps, and fare information) to be made available to the residents and patrons of the Project Site. The Proponent will work with the City to develop a TDM program appropriate to the Project and consistent with its level of impact.

The Proponent is prepared to take advantage of good transit access in marketing the Project Site to future residents by working with them to implement the following TDM measures to encourage the use of non-vehicular modes of travel.

The TDM measures for the Project may include, but are not limited, to the following:

3.5.1 Alternative Mode Benefits/Tactics

The primary alternative transportation modes to be encouraged will be public transportation, bicycling, and walking.

- The Proponent will designate a transportation coordinator to oversee transportation issues, including parking, service and loading, and deliveries;
- On-site management will work with tenants/residents as they move in to help facilitate transportation for new arrivals;
- The Proponent will provide orientation packets to new tenants/residents containing information on available transportation choices, including public transportation routes/schedules, nearby vehicle sharing and bicycle sharing locations, and walking opportunities;
- Provide an annual (or more frequent) newsletter or bulletin summarizing transit, ride-sharing, bicycling, alternative work schedules, and other travel options;
- Provide information on travel alternatives for employees/residents and visitors via the Internet and in the building lobby;
- Join and participate in a local Transportation Management Association on behalf of commercial tenants and residents; and
- The building management will join and participate in A Better City Transportation Management Association on behalf of commercial tenants and residents.

3.5.2 Bicycle/Pedestrian Trips

Promotions and incentives to encourage bicycle and pedestrian trips include:

- Providing bike and pedestrian access information on the Project website;
- Providing covered, secure bicycle storage for building occupants;
- Providing on-site external bike racks for visitors;
- Installing a Hubway bike sharing station on site;
- Encouraging tenants to provide a "Guaranteed Ride Home" for those commuting on foot or by bike; and
- Encouraging the hotel operator to provide loaner umbrellas for hotel guests.

The hotel operator will also be encouraged to supply hotel guests with Walk Boston's walking map of downtown.

3.5.3 Public Transportation

The goal of the following promotion and incentive measures are to increase public transit use to and from the site:

- Posting information about public transportation;
- Providing transit access information on the Project website including information on bus and subway routes and schedules;
- Providing one free annual MBTA subway pass per residential unit during the first year of operation;
- Encouraging employers to subsidize on-site full-time employees' purchase of monthly transit passes;
- Promoting to commercial tenants that, as employers, they can save on payrollrelated taxes and provide employee benefits when they offer transportation benefits such as subsidized public transportation;
- Encouraging employers to arrange to provide Guaranteed Ride Home during hours in which public transit service is no longer available to employee's home; and
- Assisting the hotel in arranging for on-site sale of short-term MBTA visitor passes to hotel guests.

3.5.4 Electric Vehicle

The goal of the following promotion and incentive measures is to accommodate tenants/residents/guests traveling to the site in an electric vehicle:

- Provide electric vehicle charging stations to accommodate 5 percent of the total parking and sufficient infrastructure capacity for future accommodation of at least 15 percent of the total parking spaces; and
- Designate up to 5 percent of the parking spaces as preferred parking for low emission vehicles.

3.5.5 Ride Sharing

The goal of the following promotion and incentive measures are to increase ridesharing:

- Encouraging tenants to participate in area airport shuttle services;
- Providing access to information on area carpool and vanpool participants;
- Encouraging tenants to provide on-line registration for the RideSource ride-matching program;
- Encouraging tenants to organize an internal ride-matching program for employees who would be more willing to participate in a ride-matching service with fellow employees than with a large regional database; and
- Exploring the feasibility of providing spaces in the garage for a car sharing service (e.g., Zipcar or Enterprise CarShare).

3.6 Transportation Mitigation Measures

The Proponent has developed a physical design and management program for Seaport Square that emphasizes transit, walking, and bicycle connections in order to reduce auto dependency and create a vibrant urban neighborhood. The Proponent is committed to continuing to work with the City to foster sustainable development that balances the needs of the various transportation modes and to implement infrastructure and management improvements that will mitigate the impact of development on the surrounding transportation system.

The Proponent is working with the BPDA and BTD to assist in the creation of a neighborhood that can easily implement future transportation improvements through increased mobility options. This potentially includes a more robust water transportation network which replaces the current water taxi service with regularly scheduled ferry service, Silver Line and bus signal prioritization, improved curb side use for the expected

continued increase in pick-up/drop-off activity over long term parking, improved bicycle infrastructure in the area, and an improved pedestrian experience creating a public realm that emphasizes people in the area over motorists/vehicles traveling through the area.

Some of the future potential mobility options are shown in Figure 3-21. The following are specific transportation measures that the proponent has agreed to implement as part of the NPC Project.

3.6.1 Pedestrian Mitigation

As the various Blocks within the site area are developed, Seaport Square will enhance the pedestrian environment adjacent to its buildings along the major east–west corridors of Northern Avenue, Seaport Boulevard, and Congress Street, as well as along the north–south streets of Sleeper Street, Fan Pier Boulevard, Pier Street, Pier 4 Boulevard, Boston Wharf Road, East Service Road, and B Street, as described above. Restaurants and outdoor seating will enliven the area during day and evening hours.

Harbor Way, was previously a north south connection from the elevated Summer Street to Autumn Lane between Boston Wharf Road and East Service Road envisioned as a vehicular and pedestrian connection. However, this roadway had a very low projected traffic volume and would have required a bridge structure over Congress Street. Harbor Way is now envisioned as an active, destination worthy pedestrian and bicycle only connection between Summer Street to Seaport Common and the water's edge at Fan Pier Marina. Midblock pedestrian crossings will be provided at Congress Street and Autumn Lane (as well as the previously proposed Seaport Boulevard mid-block connection). The Summer Street Steps eliminate the need for the previous overpass which would not be in keeping with the urban design standards in the area. The public accessible route for the Summer Street Steps will be provided through the new building to be constructed at Block P. This is discussed in further detail in Section 1.3.1.2.

3.6.2 Bicycle Mitigation

The Proponent is committed to improving bicycle accessibility and use in the Project Area. BTD has established guidelines requiring projects subject to Transportation Access Plan Agreements to provide secure bicycle parking for residents and short-term bicycle racks for visitors. Based on BTD guidelines, the Project will meet these guidelines by supplying approximately 2,235 secure bicycle parking/storage spaces within the Project Site for the residents and employees, as well public bicycle racks throughout the Project Site for visitors. Hubway stations will continue to be implemented throughout the site in coordination with BTD, BPDA, and BostonBikes. In addition, the Proponent has agreed to design and construct buffered bike lanes along Boston Wharf Road.

SEAPORT

Figure 3-21 Future Mobility

3.6.3 Public Transportation Mitigation

The Project is envisioned as a transit-oriented development that will provide significant improvements to the public realm. The 2010 Project included a new Silver Line entrance to the existing Courthouse Station. This new headhouse will be located along Seaport Boulevard in front of District Hall on Block F. The headhouse previously included stairs and an elevator to the concourse level of Courthouse Station. As part of this NPC Project, the Proponent is committing to construct escalators as well.

3.6.4 Vehicle Mitigation

As part of the 2010 Project, the Proponent is in the design process for improvements to traffic operations (vehicular and pedestrian) along the Seaport Boulevard corridor between Sleeper Street and B Street. These improvements include turning lane modifications, pavement marking improvements, signal installation (including two signalized mid-block pedestrian crossings), and signal timing improvements. The NPC Project involves a similar scope of pavement marking and signal retiming along the Congress Street corridor from the A Street/Thomson Place intersection to the B Street/On and Off Ramp intersection. The intent of the signal timing modifications to each corridor is to provide more efficient vehicle travel east-west through the corridors, while also providing pedestrian improvements via concurrent pedestrian phasing that will allow for longer walk times.

3.7 Traffic Volume Comparison

Development within the South Boston waterfront is continuing to evolve. Over the past thirty years, the South Boston Waterfront has evolved from being a neighborhood primarily consisting of industrial/manufacturing, surface parking lots, underutilized buildings, and abandoned warehouses, to a growing area with new office, retail, hotel, and residential uses that are more appropriate for an urban neighborhood located adjacent to downtown. The catalyst for redevelopment was the Central Artery/Tunnel (CA/T) Project, which created new I-93 and I-90 access points and surface roads providing the area with direct connections to the regional highway system.

While many South Boston Waterfront automobile travellers have the benefit of being close to these ramps, the disadvantage is that traffic related to non area uses also travel on the streets to and from the regional connections. With the typical peak period congestion that exists on the regional highways, the area can experience congestion on the local streets adjacent to the ramps. This congestion is not caused by the traffic associated by the local area uses (either historical or newly constructed developments), but rather by the over capacity regional highways causing the ramps to not operate efficiently. This is true for all neighborhoods in Boston that abut the regional highway system. The Build (2023) Condition traffic volumes were compared to the Build traffic volumes contained in the 2010 DPIR. Overall, the traffic volumes are very similar to the previous projections. Due to proposed modifications and mitigation, some intersections will experience slightly higher volumes, while others will experience a reduction compared to previous projections. Figure 3-22 and Figure 3-23 show the incremental impact of the NPC Project as well the comparison to the 2010 DPIR traffic volume projections.

3.8 Transit Capacity Analysis

To determine the impacts of the Project on transit capacity, several steps were followed. The peak load point for each line and direction was identified and ridership established for each from the most recent available MBTA Automated Passenger Count (APC) data. It was determined that the Silver Line and #4 bus capacity constraint is outbound (from Downtown Boston) during the weekday a.m. peak hour and inbound during the weekday p.m. peak hour. The #7 bus capacity constraint runs in the opposite direction, inbound during the weekday a.m. peak hour and outbound during the weekday p.m. peak hour. The #7 bus capacity constraint runs in the opposite direction, inbound during the weekday a.m. peak hour and outbound during the weekday p.m. peak hour. The net new inbound transit riders generated by the NPC Project during the a.m. peak hour and the net new outbound transit riders during the p.m. peak hour were assigned to the various transit lines based on the distribution presented in Table 3-8.

Service	Percent Distribution
Silver Line	88%
MBTA #4	2%
MBTA #7	2%
South Station ¹	8%

Table 3-8Transit Trip Distribution

¹ The South Station percentage accounts for transit trips walking to Seaport Square and not impacting the buses.

According to MBTA procedures, capacity was established in two ways. First, MBTA Planning Capacity assumes 140% of the seated capacity to determine the capacity of a bus when considering seated and standing passengers on each bus. Second, Crush Capacity allows for more standees, with an overall average of two square feet per passenger. The Planning Capacity and Crush Capacity of each bus route analyzed are summarized in Table 3-9.

SEAPORT

SEAPORT

Tronsit Line	Direction	Origin	Peak Time	Peak Load	Capacity ¹	
Transit Line	Direction	Origin	Period	Point	Planning	Crush
Silver Line	Outbound	South Station	8-9 AM	Approaching Courthouse	1,820	2,688
Silver Line	Inbound	Silver Line Way	5-6 PM	Approaching South Station	1,755	2,592
MBTA #4	Outbound	North Station	8-9 AM	Approaching Sleeper St	162	225
MBTA #4	Inbound	Northern Ave at Tide St	5-6 PM	Approaching Purchase St	162	225
MBTA #7	Outbound	City Point Terminal	8-9 AM	Approaching Melcher St	756	1,050
MBTA #7	Inbound	Otis St at Summer St	5-6 PM	Approaching WTC Ave	540	750

 Table 3-9
 MBTA Transit Operations – Peak Hour Capacities

1) Determined based on MBTA schedules and Planning Capacity and Crush Capacity per bus.

The expected transit trips were added to the existing peak load point data to establish future peak ridership. The resulting No-Build Condition and Build Condition peak load point characteristics for Planning Capacity and Crush Capacity during the weekday a.m. peak hour and the weekday p.m. peak hour are shown in Table 3-10 and Table 3-11, respectively.

	Existing Condition			N	No-Build Condition			Build Condition		
Transit Line	Peak Load	% Planning Capacity	% Crush Capacity	Peak Load	% Planning Capacity	% Crush Capacity	Peak Load	% Planning Capacity	% Crush Capacit	
Silver Line	1,390	76%	52%	1,652	91%	61%	4,161	229%	155%	
Outbound										
MBTA #4	63	39%	28%	77	48%	34%	133	82%	59%	
Outbound										
MBTA #7	672	89%	64%	819	108%	78%	875	116%	83%	
Inbound										

	Existing Condition			N	No-Build Condition			Build Condition		
Transit Line	Peak Load	% Planning Capacity	% Crush Capacity	Peak Load	% Planning Capacity	% Crush Capacity	Peak Load	% Planning Capacity	% Crush Capacit	
Silver Line Inbound	1,071	61%	41%	1,273	73%	49%	3,945	225%	152%	
MBTA #4 Inbound	42	26%	19%	51	31%	23%	111	69%	49%	
MBTA #7 Outbound	410	76%	55%	500	93%	67%	560	104%	75%	

Table 3-11MBTA Transit Operations – Impact during p.m. Peak Period

As shown, the Silver Line and #7 currently operate near Planning Capacity under the Existing Condition. Seven years out in the No-Build Condition, the MBTA #7 bus is expected to be over Planning Capacity during the a.m. peak hour and at Planning Capacity during the p.m. peak hour. Under the No-Build Condition, the Silver Line is at 91% and 73% policy capacity during the a.m. and p.m. peak hours respectively.

The 2010 DPIR outlined projected Silver Line peak hour capacity under the assumption that the Silver Line bus service frequency would be greatly increased. The increased capacity would have resulted from the planned Silver Line Phase III project that would have connected the different Silver Line routes. The increased connectivity would have decreased headways as the entire Silver Line fleet would have been traveling through the area. With the suspension of Phase III, the planned increase in bus service that was projected in the 2010 DPIR can no longer be considered in the capacity calculations.

Due to this decreased expected capacity, the Silver Line is projected to operate well over the capacity during the a.m. and p.m. peak hours respectively. Using the 2010 DPIR expected capacity of 3,977 passengers; the projected Silver Line Build Condition trips would not place the line over capacity. The 2010 DPIR outlines that the long-term plan of the MBTA was to have a deployment of 89 peak hour/peak direction Silver Line buses. In order to meet the demand of the Build Condition, the Silver Line would have to run approximately 64 peak hour/peak direction buses.

3.9 Traffic Capacity Analysis

The criterion for evaluating traffic operations is level of service (LOS), which is determined by assessing average delay experienced by vehicles at intersections and along intersection approaches. Trafficware's Synchro (version 9) software package was used to calculate average delay and associated LOS at the study area intersections. This software is based on the traffic operational analysis methodology of the Transportation Research Board's 2000 Highway Capacity Manual (HCM).

LOS designations are based on average delay per vehicle for all vehicles entering an intersection. Table 3-12 displays the intersection LOS criteria. LOS A indicates the most favorable condition, with minimum traffic delay, while LOS F represents the worst condition, with significant traffic delay. LOS D or better is typically considered desirable during the peak hours of traffic in urban and suburban settings.

	Average Stopped Delay (sec/veh)					
Level of Service	Signalized Intersections	Unsignalized Intersections				
А	≤10	≤10				
В	>10 and ≤20	> 10 and ≤15				
С	>20 and ≤35	> 15 and ≤25				
D	>35 and ≤55	>25 and ≤35				
E	>55 and ≤80	>35 and ≤50				
F	>80	>50				

Table 3-12Vehicle Level of Service Criteria

Source: 2000 Highway Capacity Manual, Transportation Research Board.

In addition to delay and LOS, the operational capacity and vehicular queues are calculated and used to further quantify traffic operations at intersections. The following describes these other calculated measures.

The volume-to-capacity ratio (v/c ratio) is a measure of congestion at an intersection approach. A v/c ratio below one indicates that the intersection approach has adequate capacity to process the arriving traffic volumes over the course of an hour. A v/c ratio of one or greater indicates that the traffic volume on the intersection approach exceeds capacity.

The 95th percentile queue, measured in feet, denotes the farthest extent of the vehicle queue (to the last stopped vehicle) upstream from the stop line. This maximum queue occurs five percent, or less, of the time during the peak hour, and typically does not develop during off-peak hours. Since volumes fluctuate throughout the hour, the 95th percentile queue represents what can be considered a "worst case" condition. Queues at an intersection are generally below the 95th percentile length throughout most of the peak hour. It is also unlikely that 95th percentile queues for each approach to an intersection occur simultaneously.

3.9.1 Existing (2016) Condition Traffic Capacity Analysis

Table 3-13 and Table 3-14 summarize the Existing (2016) Condition capacity analysis for the study area intersection during the a.m. and p.m. peak hours, respectively. The detailed analysis sheets are provided in Appendix A.

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Signal					
Northern Avenue/Pier 4 Boulevard	A	6.8	-	-	-
Northern Ave EB left/thru	D	48.5	0.07	6	18
Northern Ave EB right	А	0.5	0.13	0	3
Driveway WB left/thru/right	E	58.8	0.42	33	54
Pier 4 Blvd NB left	А	2.3	0.27	3	m5
Pier 4 Blvd NB thru/right	А	0.2	0.01	0	m0
Pier 4 Blvd SB left/thru/right	А	0.0	0.01	0	0
Seaport Boulevard/Sleeper Street	D	53.4	-	-	-
Seaport Blvd EB left/thru thru/right	F	89.7	>1.00	~ 425	m#461
Seaport Blvd WB left	А	7.1	0.05	8	m15
Seaport Blvd WB thru thru/right	А	10.0	0.30	128	113
Sleeper St NB left/thru/right	D	41.3	0.67	52	m#158
Sleeper St SB left/thru	D	36.7	0.28	45	91
Sleeper St SB right	А	9.8	0.32	14	57
Seaport Boulevard/Boston Wharf Road	A	9.3	-	-	-
Seaport Blvd EB thru thru/right	А	4.9	0.44	2	m77
Seaport Blvd WB left	А	6.4	0.20	9	42
Seaport Blvd WB thru thru	А	5.2	0.23	40	102
Boston Wharf Rd NB left left/right	D	42.6	0.51	32	74
Seaport Boulevard/East Service Road/Pier 4 Boulevard	С	28.9	-	-	-
Seaport Blvd EB left	В	12.8	0.13	14	m14
Seaport Blvd EB thru thru	В	11.7	0.34	84	46
Seaport Blvd WB thru thru/right	С	22.6	0.47	109	158
East Service Rd NB left	D	43.2	0.39	102	145
East Service Rd NB thru	E	60.6	0.81	215	268
East Service Rd NB right	А	6.4	0.12	3	m10
Pier 4 Blvd SB left	Е	73.2	0.62	68	113
Pier 4 Blvd SB right	В	15.5	0.36	0	26

Table 3-13 Existing (2016) Condition, Capacity Analysis Summary, a.m. Peak Hour

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)					
Signal	Signalized Intersections									
Seaport Boulevard/B Street	С	24.4	-	-	-					
Seaport Blvd EB thru thru/right	С	22.9	0.56	171	112					
Seaport Blvd WB left/thru thru	С	26.2	0.46	88	98					
B St NB left left	С	24.6	0.43	88	121					
B St NB right	С	26.0	0.40	76	126					
D Street/Northern Avenue/Boston Fish Pier	В	18.8	-	-	-					
Seaport Blvd EB left/thru thru/right	В	10.2	0.38	86	154					
Northern Ave WB left/thru thru/right	А	8.8	0.16	22	47					
D St NB left	E	56.6	0.69	91	148					
D St NB right	А	0.3	0.05	0	0					
Boston Fish Pier SB left/thru/right	D	47.3	0.50	37	79					
Congress Street/A Street/Thomson Place	D	38.5	-	-	-					
Congress St EB left/thru thru	D	37.3	0.54	100	138					
Congress St EB right	D	36.8	0.36	67	109					
Congress St WB left	С	34.1	0.49	155	249					
Congress St WB thru/right	D	36.8	0.56	302	441					
A St NB left/thru	E	69.7	0.75	109	#211					
A St NB right	А	1.6	0.25	0	0					
Thomson Pl SB left/thru/right	D	40.8	0.34	18	53					
Congress Street/Boston Wharf Road	С	20.7	-	-	-					
Congress St EB left/thru	В	12.6	0.39	27	288					
Congress St EB right	А	3.7	0.25	0	142					
Congress St WB left	В	15.1	0.39	41	91					
Congress St WB thru thru/right	В	12.3	0.49	95	157					
Boston Wharf Rd NB left	D	42.7	0.33	60	102					
Boston Wharf Rd NB thru/right	D	54.5	0.72	107	170					
Boston Wharf Rd SB left/thru	E	62.0	0.58	71	104					
Boston Wharf Rd SB right	А	3.5	0.15	0	6					
Congress Street/East Service Road/Highway	С	31.0	-	-	-					
Congress St EB left	В	12.2	0.08	5	m14					
Congress St EB thru thru	В	11.3	0.23	37	54					
Congress St WB thru thru/right	В	19.5	0.41	113	144					
I-93 NB Off-Ramp NB left/thru thru	D	48.0	0.70	144	188					
I-93 NB Off-Ramp NB right	А	2.5	0.17	0	9					
I-90 EB Off-Ramp NEB left/thru thru/right	D	44.0	0.77	192	234					

Table 3-13	Existing (2016) Condition,	Capacity Analysis Summary,	a.m. Peak Hour (Continued)
------------	----------------------------	----------------------------	----------------------------

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Signal	ized Inte	rsections			
Congress Street/B Street/Highway Ramps	С	32.0	-	-	-
Congress St EB left/thru thru	D	46.6	0.87dl	121	165
Congress St EB right	D	46.6	0.37	69	122
Congress St WB left	С	22.4	0.36	41	80
Congress St WB left/thru thru/right	С	23.7	0.61	62	199
I-90 WB Off-Ramp NB left	D	49.3	0.65	158	244
I-90 WB Off-Ramp NB thru	С	28.9	0.39	127	190
I-90 WB Off-Ramp NB right	А	5.1	0.43	0	54
B St SB thru thru	E	71.4	0.28	27	44
B St SB right	А	5.2	0.08	4	m16
Congress Street/D Street	С	34.7	-	-	-
Congress St EB left/thru thru/right	С	31.5	0.41	100	149
Congress St EB right	D	38.9	0.59	141	254
Congress St WB left/thru thru/right	D	50.5	0.56	60	96
D St NB left left	С	27.5	0.57	119	158
D St NB thru/right	С	22.3	0.40	75	127
D St SB left/thru thru/right	D	41.3	0.45	61	99
D Street/Silver Line Way	A	9.1	-	-	-
SL Way EB left/thru/right	E	60.5	0.46	30	64
SL Way WB left/thru/right	E	55.7	0.38	24	55
D St NB thru thru thru/right	А	6.2	0.14	31	83
D St SB thru thru	А	3.7	0.18	43	92
D Street/Massport Haul Road (I-90 On-Ramps)	В	12.1	-	-	-
D St NB left	D	41.8	0.47	112	200
D St NB thru thru	А	1.0	0.16	0	38
D St SB thru thru/right	А	9.4	0.29	41	91
D Street/Summer Street	С	22.0	-	-	-
Summer St EB left	С	25.7	0.46	28	83
Summer St EB thru thru/right	В	19.3	0.42	64	139
Summer St WB left	D	53.2	0.50	11	m21
Summer St WB thru	D	35.3	0.72	136	206
Summer St WB right	А	9.7	0.55	75	25
D St NB left	D	44.0	0.42	80	140
D St NB thru thru/right	С	32.6	0.25	35	64
D St SB left	В	16.7	0.44	49	47
D St SB left/thru thru/right	А	7.2	0.38	0	14

Table 3-13	Existing (2016) Condition,	Capacity Analysis Summary,	a.m. Peak Hour (Continued)
------------	----------------------------	----------------------------	----------------------------

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Unsignalized Intersections								
Sleeper Street/Northern Avenue	-	-	-	-	-			
Northern Ave EB thru/right	А	0.0	0.01	-	0			
Northern Ave WB left/thru	А	8.2	0.14	-	12			
Sleeper St NB left/right	С	17.2	0.52	-	74			
Northern Avenue/Courthouse Way	-	-	-	-	-			
Northern Ave EB left/thru	А	9.9	0.31	-	33			
Northern Ave WB thru/right	А	0.0	0.11	-	0			
Courthouse Way SB left/right	С	22.4	0.18	-	16			
Northern Avenue/Fan Pier Boulevard	-	-	-	-	-			
Northern Ave EB left/thru	А	1.4	0.02	-	1			
Northern Ave WB thru/right	А	0.0	0.12	-	0			
Fan Pier Blvd SB left/right	С	15.0	0.14	-	12			
Northern Avenue/Marina Park Drive	-	-	-	-	-			
Northern Ave EB left/thru	А	2.2	0.03	-	2			
Northern Ave WB thru/right	А	0.0	0.20	-	0			
Marina Park SB left/right	С	16.0	0.13	-	11			
Northern Avenue/Harbor Shore Drive	-	-	-	-	-			
Northern Ave EB left/thru	А	0.1	0.00	-	0			
Northern Ave WB thru/right	А	0.0	0.22	-	0			
Harbor Shore Dr SB left/right	В	13.4	0.03	-	2			
Seaport Boulevard/Seaport Lane	-	-	-	-	-			
Seaport Blvd EB thru thru/right	А	0.0	0.25	-	0			
Seaport Blvd WB left/thru thru	А	2.3	0.10	-	2			
Congress Street/Sleeper Street	-	-	-	-	-			
Congress St EB left/thru/right	В	11.6	0.24	-	23			
Congress St WB left/thru/right	А	0.3	0.01	-	1			
Driveway NB left/thru/right	D	28.2	0.03	-	2			
Sleeper St SB left/thru/right	F	> 50.0	>1.00	-	-			
Congress Street/Farnsworth Street	-	-	-	-	-			
Congress St EB left/thru	А	4.2	0.12	-	10			
Congress St WB thru/right	А	0.0	0.36	-	0			
Farnsworth St SB left/right	F	> 50.0	0.71	-	82			

Table 3-13Existing (2016) Condition, Capacity Analysis Summary, a.m. Peak Hour (Continued)

Grey Shading indicates LOS E or F.

 \sim 50th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

95th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

m Volumes for 95th percentile queue is metered by upstream signal.

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Signal	ized Inte	rsections			
Northern Avenue/Pier 4 Boulevard	Α	2.9	-	-	-
Northern Ave EB left/thru	D	50.2	0.04	4	16
Northern Ave EB right	А	0.5	0.21	0	12
Driveway WB left/thru/right	D	51.4	0.17	14	21
Pier 4 Blvd NB left	А	1.2	0.15	6	12
Pier 4 Blvd NB thru/right	А	0.0	0.02	0	m0
Pier 4 Blvd SB left/thru/right	А	0.0	0.00	0	0
Seaport Boulevard/Sleeper Street	D	54.0	-	-	-
Seaport Blvd EB left/thru thru/right	F	>80.0	>1.00	~242	m#228
Seaport Blvd WB left	В	14.5	0.13	10	41
Seaport Blvd WB thru thru/right	В	14.7	0.40	91	196
Sleeper St NB left/thru/right	E	57.2	0.82	157	m#244
Sleeper St SB left/thru	С	24.2	0.14	33	62
Sleeper St SB right	В	17.2	0.58	76	142
Seaport Boulevard/Boston Wharf Road	В	13.2	-	-	-
Seaport Blvd EB thru thru/right	В	13.3	0.70	52	m140
Seaport Blvd WB left	В	14.0	0.39	7	86
Seaport Blvd WB thru thru	А	5.1	0.29	12	66
Boston Wharf Rd NB left left/right	D	40.4	0.41	36	74
Seaport Boulevard/East Service Road/Pier 4	С	32.6	-	-	-
Boulevard					
Seaport Blvd EB left	С	23.2	0.13	30	m49
Seaport Blvd EB thru thru	С	22.4	0.31	157	207
Seaport Blvd WB thru thru/right	С	34.1	0.50	177	218
East Service Rd NB left	D	53.2	0.35	31	66
East Service Rd NB thru	E	56.0	0.33	29	55
East Service Rd NB right	В	18.6	0.43	4	29
Pier 4 Blvd SB left	E	68.7	0.74	121	191
Pier 4 Blvd SB right	С	21.4	0.52	24	97
Seaport Boulevard/B Street	D	39.5	-	-	-
Seaport Blvd EB thru thru/right	D	41.5	0.67	280	360
Seaport Blvd WB left/thru thru	С	28.3	0.63	153	215
B St NB left left	E	55.3	0.64	85	127
B St NB right	D	45.8	0.35	79	134

Table 3-14Existing (2016) Condition, Capacity Analysis Summary, p.m. Peak Hour

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Signal	ized Inte	rsections			
D Street/Northern Avenue/Boston Fish Pier	В	13.5	-	-	-
Seaport Blvd EB left/thru thru/right	А	5.3	0.32	44	92
Northern Ave WB left/thru thru/right	А	8.2	0.24	58	106
D St NB left	E	55.2	0.66	92	148
D St NB right	А	0.5	0.07	0	0
Boston Fish Pier SB left/thru/right	D	38.7	0.46	28	70
Congress Street/A Street/Thomson Place	С	30.7	-	-	-
Congress St EB left/thru thru	С	34.9	0.54	100	150
Congress St EB right	D	36.8	0.45	63	117
Congress St WB left	В	17.0	0.33	39	62
Congress St WB thru/right	В	17.4	0.42	104	139
A St NB left/thru	E	73.9	0.76	98	#197
A St NB right	В	10.3	0.49	0	46
Thomson PI SB left/thru/right	D	45.9	0.30	18	42
Congress Street/Boston Wharf Road	В	18.7	-	-	-
Congress St EB left/thru	А	6.8	0.45	54	70
Congress St EB right	А	2.3	0.41	7	20
Congress St WB left	В	12.5	0.49	30	57
Congress St WB thru thru/right	А	4.7	0.24	20	36
Boston Wharf Rd NB left	D	51.2	0.27	28	63
Boston Wharf Rd NB thru/right	С	29.2	0.38	13	53
Boston Wharf Rd SB left/thru	E	59.0	0.94	230	#399
Boston Wharf Rd SB right	А	2.4	0.16	0	m2
Congress Street/East Service Road/Highway	В	19.0	-	-	-
Congress St EB left	А	5.0	0.10	7	m17
Congress St EB thru thru	А	4.7	0.22	35	m54
Congress St WB thru thru/right	В	11.8	0.20	92	140
I-93 NB Off-Ramp NB left/thru thru	D	49.7	0.47	58	87
I-93 NB Off-Ramp NB right	А	1.0	0.12	0	0
I-90 EB Off-Ramp NEB left/thru thru/right	D	50.1	0.52	64	97

Table 3-14Existing (2016) Condition, Capacity Analysis Summary, p.m. Peak Hour (Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)				
Signalized Intersections									
Congress Street/B Street/Highway Ramps	С	25.5	-	-	-				
Congress St EB left/thru thru	С	27.0	0.52	106	153				
Congress St EB right	С	29.4	0.49	87	157				
Congress St WB left	С	28.5	0.52	106	m79				
Congress St WB left/thru thru/right	С	25.9	0.59	112	m71				
I-90 WB Off-Ramp NB left	D	48.4	0.56	122	197				
I-90 WB Off-Ramp NB thru	С	27.1	0.29	94	150				
I-90 WB Off-Ramp NB right	А	4.8	0.41	0	55				
B St SB thru thru	С	26.6	0.59	74	m102				
B St SB right	А	8.5	0.13	21	m32				
Congress Street/D Street	F	>80.0	-	-	-				
Congress St EB left/thru thru/right	С	21.5	0.44	61	94				
Congress St EB right	С	22.5	0.35	46	86				
Congress St WB left/thru thru/right	F	>80.0	>1.00	~211	#296				
D St NB left left	F	>80.0	>1.00	~180	#272				
D St NB thru/right	С	35.0	0.62	93	174				
D St SB left/thru thru/right	D	43.2	0.61	134	186				
D Street/Silver Line Way	Α	7.7	-	-	-				
SL Way EB left/thru/right	E	56.4	0.36	22	52				
SL Way WB left/thru/right	E	58.3	0.41	26	50				
D St NB thru thru thru/right	А	5.7	0.13	47	27				
D St SB thru thru	А	3.7	0.23	57	m87				
D Street/ Massport Haul Road (I-90 On-Ramps)	В	17.6	-	-	-				
D St NB left	D	50.1	0.77	228	#387				
D St NB thru thru	А	2.2	0.15	0	89				
D St SB thru thru/right	А	9.9	0.38	25	149				
D Street/Summer Street	С	24.9	-	-	-				
Summer St EB left	В	18.9	0.62	37	59				
Summer St EB thru thru/right	А	8.6	0.47	60	73				
Summer St WB left	D	54.4	0.36	9	m25				
Summer St WB thru	D	42.5	0.69	143	#227				
Summer St WB right	В	15.3	0.58	111	217				
D St NB left	D	39.7	0.21	38	72				
D St NB thru thru/right	D	41.2	0.45	93	126				
D St SB left	D	44.6	0.49	94	176				
D St SB left/thru thru/right	С	30.4	0.41	67	122				

Table 3-14	Existing (2016) Condition,	Capacity Analysis Summary,	p.m. Peak Hour (Continued)
------------	----------------------------	----------------------------	----------------------------

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Unsignalized Intersections								
Sleeper Street/Northern Avenue	-	-	-	-	-			
Northern Ave EB thru/right	А	0.0	0.01	-	0			
Northern Ave WB left/thru	А	8.2	0.24	-	24			
Sleeper St NB left/right	В	11.2	0.14	_	12			
Northern Avenue/Courthouse Way	-	-	-	-	-			
Northern Ave EB left/thru	А	4.1	0.05	-	4			
Northern Ave WB thru/right	А	0.0	0.14	-	0			
Courthouse Way SB left/right	D	27.5	0.51	-	68			
Northern Avenue/Fan Pier Boulevard	-	-	-	-	-			
Northern Ave EB left/thru	А	1.9	0.02	-	2			
Northern Ave WB thru/right	А	0.0	0.10	-	0			
Fan Pier Blvd SB left/right	D	30.5	0.61	-	97			
Northern Avenue/Marina Park Drive	-	-	-	-	-			
Northern Ave EB left/thru	А	0.7	0.01	-	1			
Northern Ave WB thru/right	А	0.0	0.11	-	0			
Marina Park SB left/right	С	21.8	0.35	-	39			
Northern Avenue/Harbor Shore Drive	-	-	-	-	-			
Northern Ave EB left/thru	А	0.4	0.01	-	1			
Northern Ave WB thru/right	А	0.0	0.12	-	0			
Harbor Shore Dr SB left/right	С	15.9	0.15	-	13			
Seaport Boulevard/Seaport Lane	-	-	-	-	-			
Seaport Blvd EB thru thru/right	А	0.0	0.25	-	0			
Seaport Blvd WB left/thru thru	А	0.9	0.21	-	5			
Congress Street/Sleeper Street	-	-	-	-	-			
Congress St EB left/thru/right	А	5.2	0.16	-	14			
Congress St WB left/thru/right	А	0.2	0.01	-	0			
Driveway NB left/thru/right	С	18.0	0.04	-	3			
Sleeper St SB left/thru/right	F	> 50.0	>1.00	-	308			
Congress Street/Farnsworth Street	-	-	-	-	-			
Congress St EB left/thru	А	0.7	0.03	-	2			
Congress St WB thru/right	А	0.0	0.27	-	0			
Farnsworth St SB left/right	F	> 50.0	0.78	-	121			

Table 3-14Existing (2016) Condition, Capacity Analysis Summary, p.m. Peak Hour (Continued)

Grey Shading indicates LOS E or F.

 \sim 50th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

95th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

m Volumes for 95th percentile queue is metered by upstream signal.

As shown in Table 3-13 and Table 3-14, the majority of intersections and approaches operate well under the Existing (2016) Condition with the following exceptions:

- The signalized intersection of **Seaport Boulevard/Sleeper Street** operates at LOS D during both the a.m. and p.m. peak hours. The Seaport Boulevard eastbound approach operates at LOS F during the a.m. and p.m. peak hours. The Sleeper Street northbound approach operates at LOS E during the p.m. peak hour. The longest queues at the intersection occur at the Seaport Boulevard eastbound approach during the a.m. peak hour and at the Sleeper Street northbound approach during the p.m. peak hour.
- The signalized intersection of **Seaport Boulevard/East Service Road/Pier 4 Boulevard** operates at LOS C during the a.m. and p.m. peak hours. The East Service Road northbound through lane operates at LOS E during the a.m. and p.m. peak hours. The Pier 4 Boulevard southbound left-turn lane operates at LOS E during the a.m. and p.m. peak hours. The longest queues at the intersection occur at the East Service Road northbound through lane during the a.m. peak hour and at the Seaport Boulevard westbound approach during the p.m. peak hour.
- The signalized intersection of **Seaport Boulevard/B Street** operates at LOS C during the a.m. peak hour and LOS D during the p.m. peak hour. The B Street northbound left-turn lanes operate at LOS E during the p.m. peak hour. The longest queues at the intersection occur at the B St northbound right-turn lane during the a.m. peak hour and at the Seaport Boulevard eastbound approach during the p.m. peak hour.
- The signalized intersection of **D Street/Northern Avenue/Seaport Boulevard/Boston Fish Pier** operates at LOS B during the a.m. and p.m. peak hours. The D Street northbound left-turn lane operates at LOS E during the a.m. and p.m. peak hours. The longest queues at the intersection occur at the Seaport Boulevard eastbound approach during the a.m. peak hour and at the D Street northbound left-turn lane during the a.m. peak hour.
- The signalized intersection of **Congress Street/A Street/Thomson Place** operates at LOS D during the a.m. peak hour and LOS C during the p.m. peak hour. The A Street northbound left-turn lane operates at LOS E during the a.m. and p.m. peak hours. The longest queues at the intersection occur at the Congress Street westbound through/right-turn lane during the a.m. peak hour and at the A Street northbound left-turn lane during the p.m. peak hour.

- The signalized intersection of **Congress Street/Boston Wharf Road** operates at LOS C during the a.m. peak hour and LOS B during the p.m. peak hour. The Boston Wharf Road southbound left-turn/through lane operates at LOS E during the a.m. and p.m. peak hours. The longest queues at the intersection occur at the Congress Street eastbound left-turn/through lane during the a.m. peak hour and at the Boston Wharf Road southbound left-turn/through lane during the p.m. peak hour.
- The signalized intersection of **Congress Street/B Street/Highway Ramps** operates at LOS C during the a.m. and p.m. peak hours. The B Street southbound through lanes operate at LOS E during the a.m. peak hour. The longest queues at the intersection occur at the I-90 WB Off-Ramp northbound left-turn lane during the a.m. and p.m. peak hours.
- The signalized intersection of Congress Street/D Street operates at LOS C during the a.m. peak hour and LOS F during the p.m. peak hour. The Congress Street westbound approach and D Street northbound left-turn lanes operate at LOS F during the p.m. peak hour. The longest queues at the intersection occur at the Congress Street eastbound right-turn lane during the a.m. peak hour and at the Congress Street westbound approach during the p.m. peak hour.
- The signalized intersection of **D Street/Silver Line Way** operates at LOS A during the a.m. and p.m. peak hours. The Silver Line Way eastbound and westbound approaches operate at LOS E during the a.m. and p.m. peak hours. The longest queues at the intersection occur at the D Street southbound approach during the a.m. and p.m. peak hours.
- At the unsignalized intersection of **Congress Street/Sleeper Street** the Sleeper Street southbound stop controlled approach operates at LOS F during the a.m. and p.m. peak hours.
- At the unsignalized intersection of **Congress Street/Farnsworth Street** the Farnsworth Street southbound stop controlled approach operates at LOS F during the a.m. and p.m. peak hours.

3.9.2 No-Build (2023) Condition Traffic Operations Analysis

The No-Build (2023) Condition analysis uses the same methodology as the Existing (2016) Condition capacity analysis. Tables 3-15 and Table 3-16 present the No-Build (2023) Condition operations analysis for the a.m. and p.m. peak hours, respectively. The shaded cells in the tables indicate a decrease in LOS between the Existing (2016) Condition and the No-Build (2023) Condition to an LOS below LOS D. Due to the improvements along Seaport Boulevard discussed in Section 3.3.3, there are some lane modifications and some of the Seaport Boulevard corridor intersections may operate better than the Existing Condition. The detailed analysis sheets are provided in Appendix A.

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Signalized Intersections								
Northern Avenue/Pier 4 Boulevard	В	10.9	-	-	-			
Northern Ave EB left/thru	D	48.6	0.11	8	27			
Northern Ave EB right	А	0.6	0.10	0	9			
Driveway WB left/thru/right	E	56.9	0.35	25	59			
Pier 4 Blvd NB left	А	5.1	0.28	67	101			
Pier 4 Blvd NB thru/right	А	1.4	0.09	12	24			
Pier 4 Blvd SB left/thru/right	D	50.1	0.41	39	30			
Seaport Boulevard/Sleeper Street	В	15.4	-	-	-			
Seaport Blvd EB left/thru thru/right	А	5.9	0.33	18	m24			
Seaport Blvd EB thru thru/right	А	4.5	0.55	65	m78			
Seaport Blvd WB left/thru thru/right	В	20.0	0.77	46	#304			
Sleeper St NB left/thru/right	D	53.6	0.76	103	m135			
Sleeper St SB left/thru	D	46.9	0.31	52	89			
Sleeper St SB right	В	18.4	0.25	13	45			
Seaport Boulevard/Boston Wharf Road	А	7.6	-	-	-			
Seaport Blvd EB thru thru/right	А	4.3	0.54	24	98			
Seaport Blvd WB left	А	4.9	0.29	14	33			
Seaport Blvd WB thru thru	А	3.6	0.33	64	87			
Boston Wharf Rd NB left	D	51.2	0.64	110	176			
Boston Wharf Rd NB right	В	15.6	0.12	6	m27			
Seaport Boulevard/East Service Road/Pier 4 Boulevard	С	21.3	-	-	-			
Seaport Blvd EB left	В	15.2	0.25	20	45			
Seaport Blvd EB thru thru	В	11.4	0.45	78	127			
Seaport Blvd WB thru thru/right	В	16.1	0.60	73	121			
East Service Rd NB left/thru thru	D	45.8	0.78	187	233			
East Service Rd NB right	А	2.3	0.20	3	m4			
Pier 4 Blvd SB left left	E	55.6	0.51	31	57			
Seaport Boulevard/B Street	В	18.3	-	-	-			
Seaport Blvd EB thru thru/right	В	13.9	0.44	244	380			
Seaport Blvd WB left/thru thru	А	5.4	0.28	38	71			
B St NB left left	D	36.1	0.76	121	164			
B St NB right	D	35.3	0.60	80	m130			

Table 3-15No-Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Signalized Intersections								
D Street/Northern Avenue/Boston Fish Pier	С	21.7	-	-	-			
Seaport Blvd EB left/thru thru/right	В	16.3	0.59	172	277			
Northern Ave WB left/thru thru/right	В	13.0	0.25	40	76			
D St NB left	D	49.0	0.70	132	203			
D St NB right	А	0.5	0.10	0	0			
Boston Fish Pier SB left/thru/right	D	47.3	0.50	37	80			
Congress Street/A Street/Thomson Place	D	42.9	-	-	-			
Congress St EB left/thru thru	D	38.3	0.59	111	156			
Congress St EB right	D	37.4	0.39	77	123			
Congress St WB left	D	48.9	0.79	265	#422			
Congress St WB thru/right	D	42.9	0.62	357	484			
A St NB left	E	69.8	0.77	121	#228			
A St NB right	А	4.8	0.32	0	39			
Thomson PI SB left/thru/right	E	68.2	0.59	47	m#104			
Congress Street/Boston Wharf Road	С	23.3	-	-	-			
Congress St EB left/thru	С	22.0	0.62	261	#387			
Congress St EB right	А	3.3	0.27	1	127			
Congress St WB left	С	20.7	0.46	54	m114			
Congress St WB thru thru/right	В	17.5	0.61	156	238			
Boston Wharf Rd NB left	D	42.4	0.35	67	112			
Boston Wharf Rd NB thru/right	Е	55.9	0.75	118	186			
Boston Wharf Rd SB left/thru	D	40.5	0.59	54	101			
Boston Wharf Rd SB right	А	2.5	0.16	1	m5			
Congress Street/East Service Road/Highway Ramps	С	33.1	-	-	-			
Congress St EB left	С	28.4	0.40	17	m63			
Congress St EB thru thru	В	18.4	0.30	38	101			
Congress St WB thru thru/right	С	23.6	0.59	128	m186			
I-93 NB Off-Ramp NB left/thru thru	D	48.6	0.76	174	229			
I-93 NB Off-Ramp NB right	А	8.5	0.26	0	41			
I-90 EB Off-Ramp NEB left/thru thru/right	D	41.9	0.80	232	274			

Table 3-15No-Build (2023)Condition, Capacity Analysis Summary, a.m.Peak Hour
(Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)				
Signaliz	Signalized Intersections								
Congress Street/B Street/Highway Ramps	D	35.8	-	-	-				
Congress St EB left/thru thru	D	50.3	0.93dl	148	217				
Congress St EB right	D	47.1	0.41	73	m137				
Congress St WB left	С	23.4	0.43	47	m108				
Congress St WB left/thru thru/right	С	27.8	0.74	74	#284				
I-90 WB Off-Ramp NB left	E	64.0	0.85	216	#367				
I-90 WB Off-Ramp NB thru	С	30.6	0.49	171	242				
I-90 WB Off-Ramp NB right	А	5.2	0.50	0	60				
B St SB thru thru	E	65.8	0.31	33	61				
B St SB right	А	2.4	0.07	0	m11				
Congress Street/D Street	D	41.1	-	-	-				
Congress St EB left/thru thru/right	С	30.1	0.50	113	166				
Congress St EB right	D	53.2	0.86	237	#441				
Congress St WB left/thru thru/right	D	52.6	0.61	66	106				
D St NB left left	С	32.3	0.67	147	189				
D St NB thru/right	С	34.1	0.63	137	203				
D St SB left/thru thru/right	D	51.6	0.69	106	155				
D Street/Silver Line Way	А	8.6	-	-	-				
SL Way EB left/thru/right	E	61.0	0.47	32	69				
SL Way WB left/thru/right	E	55.2	0.37	25	57				
D St NB thru thru thru/right	А	7.4	0.18	50	130				
D St SB thru thru	А	3.7	0.27	50	m132				
D Street/ Massport Haul Road (I-90 On-Ramps)	В	14.0	-	-	-				
D St NB left	D	43.6	0.57	140	m227				
D St NB thru thru	А	1.2	0.21	0	60				
D St SB thru thru/right	В	14.0	0.42	78	135				
D Street/Summer Street	С	26.3	-	-	-				
Summer St EB left	D	50.2	0.73	67	#130				
Summer St EB thru thru/right	С	20.6	0.50	112	174				
Summer St WB left	E	62.5	0.58	13	m#50				
Summer St WB thru	D	43.3	0.84	197	#434				
Summer St WB right	В	11.5	0.64	86	28				
D St NB left	D	46.5	0.51	99	167				
D St NB thru thru/right	D	36.5	0.40	62	101				
D St SB left	С	22.3	0.61	58	97				
D St SB left/thru thru/right	А	6.4	0.51	9	11				

Table 3-15No-Build (2023)Condition, Capacity Analysis Summary, a.m. Peak Hour
(Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Signalized Intersections							
Seaport Boulevard/Fan Pier Boulevard	В	14.2	-	-	-		
Seaport Blvd EB left	А	4.2	0.21	11	21		
Seaport Blvd EB thru thru/right	А	4.2	0.41	54	68		
Seaport Blvd WB left/thru thru/right	С	23.8	0.64	156	228		
Thomson PI NB left/thru/right	D	46.6	0.04	3	m5		
Fan Pier Blvd SB left/thru/right	С	33.8	0.50	78	132		
Unsign	nalized In	ntersections					
Sleeper Street/Northern Avenue	-	-	-	-	-		
Northern Ave EB thru/right	А	0.0	0.01	-	0		
Northern Ave WB left/thru	А	8.1	0.11	-	10		
Sleeper St NB left/right	С	15.7	0.45	-	58		
Northern Avenue/Courthouse Way	-	-	-	-	-		
Northern Ave EB left/thru	А	8.2	0.23	-	22		
Northern Ave WB thru/right	А	0.0	0.09	-	0		
Courthouse Way SB left/right	С	19.7	0.15	-	13		
Northern Avenue/Fan Pier Boulevard	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.0	0.00	-	0		
Northern Ave WB left/thru/right	А	0.3	0.00	-	0		
Fan Pier Blvd NB left/thru/right	С	21.3	0.34		36		
Fan Pier Blvd SB left/thru/right	С	21.3	0.34	-	36		
Northern Avenue/Marina Park Drive	-	-	-	-	-		
Northern Ave EB left/thru	А	2.4	0.03	-	2		
Northern Ave WB thru/right	А	0.0	0.18	-	0		
Pier St NB left/thru/right	С	25.0	0.45	-	56		
Marina Park SB left/right	D	27.8	0.22	-	21		
Northern Avenue/Harbor Shore Drive	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.1	0.00	-	0		
Northern Ave WB left/thru/right	А	0.0	0.00	-	0		
Harbor Shore Dr NB left/thru/right	А	0.0	0.00	-	0		
Harbor Shore Dr SB left/thru/right	В	13.5	0.03	-	2		
Seaport Boulevard/Seaport Lane	-	-	-	-	-		
Seaport Blvd EB thru thru/right	А	0.0	0.35	-	0		
Seaport Blvd WB left/thru thru	А	2.3	0.15	-	3		

Table 3-15No-Build (2023)Condition, Capacity Analysis Summary, a.m.Peak Hour
(Continued)

Table 3-15No-Build (2023)Condition, Capacity Analysis Summary, a.m.Peak Hour
(Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Unsignalized Intersections								
Congress Street/Sleeper Street	-	-	-	-	-			
Congress St EB left/thru/right	С	21.1	0.37	-	40			
Congress St WB left/thru/right	А	0.3	0.01	-	1			
Driveway NB left/thru/right	E	43.7	0.04	-	3			
Sleeper St SB left/thru/right	F	> 50.0	>1.00	-	-			
Congress Street/Farnsworth Street	-	-	-	-	-			
Congress St EB left/thru	А	5.2	0.15	-	13			
Congress St WB thru/right	А	0.0	0.40	-	0			
Farnsworth St SB left/right	F	> 50.0	0.70	-	82			

Grey Shading indicates a decrease to LOS E or F.

 \sim 50th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

95th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

m Volumes for 95th percentile queue is metered by upstream signal.

Table 3-16No-Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)				
Signalized Intersections									
Northern Avenue/Pier 4 Boulevard	В	18.4	-	-	-				
Northern Ave EB left/thru	D	50.3	0.05	4	18				
Northern Ave EB right	А	0.9	0.20	0	18				
Driveway WB left/thru/right	D	49.6	0.09	7	26				
Pier 4 Blvd NB left	А	5.7	0.14	21	m87				
Pier 4 Blvd NB thru/right	А	1.4	0.04	0	m12				
Pier 4 Blvd SB left/thru/right	E	59.4	0.72	120	186				
Seaport Boulevard/Sleeper Street	C	22.0	-	-	-				
Seaport Blvd EB left	С	20.2	0.30	14	m16				
Seaport Blvd EB thru thru/right	В	11.1	0.60	112	m113				
Seaport Blvd WB thru thru/right	С	21.4	0.89	100	#142				
Sleeper St NB left/thru/right	E	56.6	0.84	150	m#238				
Sleeper St SB left/thru	D	43.0	0.66	113	196				
Sleeper St SB right	В	11.5	0.43	47	99				

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)				
Signalized Intersections									
Seaport Boulevard/Boston Wharf Road	В	12.3	-	-	-				
Seaport Blvd EB thru thru/right	В	10.5	0.76	139	144				
Seaport Blvd WB left	С	26.6	0.55	112	202				
Seaport Blvd WB thru thru	А	3.5	0.40	71	90				
Boston Wharf Rd NB left	E	57.9	0.59	86	m145				
Boston Wharf Rd NB right	С	26.3	0.16	34	m74				
Seaport Boulevard/East Service Road/Pier 4 Boulevard	с	26.4	-	-	-				
Seaport Blvd EB left	В	11.8	0.19	15	44				
Seaport Blvd EB thru thru	В	10.3	0.46	84	175				
Seaport Blvd WB thru thru/right	С	32.6	0.68	313	263				
East Service Rd NB left/thru thru	E	71.0	0.65	98	133				
East Service Rd NB right	В	14.0	0.49	42	97				
Pier 4 Blvd SB left left	E	58.0	0.61	72	108				
Seaport Boulevard/B Street	В	10.1	-	-	-				
Seaport Blvd EB thru thru/right	А	3.1	0.56	16	101				
Seaport Blvd WB left/thru thru	А	5.6	0.46	72	138				
B St NB left left	D	38.0	0.66	76	110				
B St NB right	D	44.7	0.66	68	m115				
D Street/Northern Avenue/Boston Fish Pier	В	15.3	-	-	-				
Seaport Blvd EB left/thru thru/right	А	8.1	0.50	96	181				
Northern Ave WB left/thru thru/right	В	12.2	0.41	109	184				
D St NB left	D	51.2	0.70	126	194				
D St NB right	А	0.4	0.08	0	0				
Boston Fish Pier SB left/thru/right	D	39.5	0.48	31	75				
Congress Street/A Street/Thomson Place	C	34.0	-	-	-				
Congress St EB left/thru thru	D	36.1	0.60	110	164				
Congress St EB right	D	37.7	0.49	67	124				
Congress St WB left	С	23.5	0.54	77	127				
Congress St WB thru/right	С	22.2	0.54	165	236				
A St NB left/thru	F	87.8	0.88	126	#254				
A St NB right	А	6.7	0.52	0	54				
Thomson PI SB left/thru/right	F	83.6	0.54	48	m#96				

Table 3-16No-Build (2023)Condition, Capacity Analysis Summary, p.m. Peak Hour
(Continued)
Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Signalized Intersections							
Congress Street/Boston Wharf Road	С	23.0	-	-	-		
Congress St EB left/thru	В	11.0	0.60	92	152		
Congress St EB right	А	3.5	0.50	14	25		
Congress St WB left	В	19.6	0.59	43	84		
Congress St WB thru thru/right	А	8.4	0.27	35	70		
Boston Wharf Rd NB left	D	51.7	0.30	32	68		
Boston Wharf Rd NB thru/right	С	29.1	0.40	14	56		
Boston Wharf Rd SB left/thru	E	74.1	1.00	~264	m#462		
Boston Wharf Rd SB right	В	12.5	0.40	22	m81		
Congress Street/East Service Road/Highway Ramps	В	19.6	-	-	-		
Congress St EB left	А	5.3	0.14	8	m16		
Congress St EB thru thru	А	4.9	0.28	40	m57		
Congress St WB thru thru/right	В	12.6	0.24	96	127		
I-93 NB Off-Ramp NB left/thru thru	D	49.8	0.51	68	103		
I-93 NB Off-Ramp NB right	А	4.5	0.23	0	13		
I-90 EB Off-Ramp NEB left/thru thru/right	D	49.7	0.60	87	124		
Congress Street/B Street/Highway Ramps	С	31.4	-	-	-		
Congress St EB left/thru thru	С	30.1	0.66	146	202		
Congress St EB right	D	35.0	0.65	125	212		
Congress St WB left	С	29.5	0.62	135	m81		
Congress St WB left/thru thru/right	С	27.6	0.70	156	m73		
I-90 WB Off-Ramp NB left	D	50.9	0.63	138	218		
I-90 WB Off-Ramp NB thru	С	27.9	0.37	123	191		
I-90 WB Off-Ramp NB right	А	4.9	0.46	0	60		
B St SB thru thru	E	69.4	0.74	106	#153		
B St SB right	А	4.2	0.13	3	m23		
Congress Street/D Street	F	>80.0	-	-	-		
Congress St EB left/thru thru/right	С	21.0	0.54	70	105		
Congress St EB right	С	23.9	0.54	69	m116		
Congress St WB left/thru thru/right	F	>80.0	>1.00	~218	#325		
D St NB left left	F	>80.0	>1.00	~224	#323		
D St NB thru/right	E	55.3	0.82	139	#282		
D St SB left/thru thru/right	F	>80.0	0.99	245	#371		

Table 3-16No-Build (2023)Condition, Capacity Analysis Summary, p.m. Peak Hour
(Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Signalized Intersections								
D Street/Silver Line Way	A	6.3	-	-	-			
SL Way EB left/thru/right	E	58.4	0.38	23	54			
SL Way WB left/thru/right	E	56.6	0.38	23	55			
D St NB thru thru thru/right	А	5.6	0.16	58	38			
D St SB thru thru	А	3.1	0.36	60	m81			
D Street/ Massport Haul Road (I-90 On-Ramps)	C	26.4	-	-	-			
D St NB left	F	>80.0	0.94	342	m#473			
D St NB thru thru	А	1.9	0.19	0	m87			
D St SB thru thru/right	В	12.8	0.59	80	193			
D Street/Summer Street	С	34.8	-	-	-			
Summer St EB left	E	77.5	1.00	73	#286			
Summer St EB thru thru/right	В	11.6	0.56	77	140			
Summer St WB left	E	75.8	0.58	15	m#67			
Summer St WB thru	D	51.4	0.83	179	#396			
Summer St WB right	С	22.8	0.67	139	227			
D St NB left	D	40.9	0.28	51	98			
D St NB thru thru/right	D	42.8	0.52	108	156			
D St SB left	D	42.9	0.62	129	219			
D St SB left/thru thru/right	С	31.6	0.68	129	196			
Seaport Boulevard/Fan Pier Boulevard	С	20.0	-	-	-			
Seaport Blvd EB left	А	9.3	0.11	10	m19			
Seaport Blvd EB thru thru/right	А	9.6	0.49	134	134			
Seaport Blvd WB thru thru/right	С	26.4	0.70	221	302			
Thomson PI NB left/thru/right	С	29.7	0.24	11	m23			
Fan Pier Blvd SB left/thru/right	С	33.9	0.72	160	231			
Unsigna	alized In	tersections						
Sleeper Street/Northern Avenue	-	-	-	-	-			
Northern Ave EB thru/right	А	0.0	0.01	-	0			
Northern Ave WB left/thru	А	8.4	0.29	-	30			
Sleeper St NB left/right	В	12.2	0.15	-	13			
Northern Avenue/Courthouse Way	-	-	-	-	-			
Northern Ave EB left/thru	А	4.8	0.06	-	5			
Northern Ave WB thru/right	А	0.0	0.17	-	0			
Courthouse Way SB left/right	D	30.3	0.54	-	75			

Table 3-16No-Build (2023)Condition, Capacity Analysis Summary, p.m. Peak Hour
(Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Unsignalized Intersections							
Northern Avenue/Fan Pier Boulevard	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.0	0.00	-	0		
Northern Ave WB left/thru/right	А	0.0	0.01	-	1		
Fan Pier Blvd NB left/thru/right	С	19.2	0.10	-	8		
Fan Pier Blvd SB left/thru/right	F	> 50.0	>1.00	-	412		
Northern Avenue/Marina Park Drive	-	-	-	-	-		
Northern Ave EB left/thru	А	1.1	0.02	-	1		
Northern Ave WB thru/right	А	0.0	0.10	-	0		
Pier St NB left/thru/right	С	20.8	0.28	-	29		
Marina Park SB left/right	E	42.5	0.55	-	73		
Northern Avenue/Harbor Shore Drive	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.5	0.01	-	1		
Northern Ave WB left/thru/right	А	0.0	0.00	-	0		
Harbor Shore Dr NB left/thru/right	А	0.0	0.00	-	0		
Harbor Shore Dr SB left/thru/right	С	17.3	0.18	-	16		
Seaport Boulevard/Seaport Lane	-	-	-	-	-		
Seaport Blvd EB thru thru/right	А	0.0	0.40	-	0		
Seaport Blvd WB left/thru thru	А	3.4	0.29	-	8		
Congress Street/Sleeper Street	-	-	-	-	-		
Congress St EB left/thru/right	А	9.1	0.25	-	25		
Congress St WB left/thru/right	А	0.2	0.01	-	0		
Driveway NB left/thru/right	С	17.6	0.03	-	2		
Sleeper St SB left/thru/right	F	> 50.0	>1.00	-	264		
Congress Street/Farnsworth Street	-	-	-	-	-		
Congress St EB left/thru	А	0.9	0.03	-	2		
Congress St WB thru/right	А	0.0	0.33	-	0		
Farnsworth St SB left/right	F	>80.0	0.88	-	146		

Table 3-16No-Build (2023)Condition, Capacity Analysis Summary, p.m. Peak Hour
(Continued)

Grey Shading indicates LOS E or F.

 \sim 50th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

95th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

m Volumes for 95th percentile queue is metered by upstream signal.

As shown in Table 3-15 and Table 3-16, the following operational deficiencies are expected under the No-Build (2023) Condition:

- The signalized intersection of Northern Avenue/Pier 4 Boulevard will operate at LOS B during the a.m. and p.m. peak hour. The Pier 4 Boulevard southbound approach will decrease to LOS E during the p.m. peak hour. The longest queues at the intersection will occur at the Pier 4 Boulevard southbound approach during the p.m. peak hour.
- The signalized intersection of **Seaport Boulevard/Boston Wharf Road** will continue to operate at LOS B during the p.m. peak hour. The Boston Wharf Road northbound left-turn lane decreases to LOS E during the p.m. peak hour. The longest queues in the intersection will occur in the Seaport Boulevard westbound left-turn lane during both the a.m. and p.m. peak hours.
- The signalized intersection of Congress Street/A Street/Thomson Place will continue to operate at LOS D during the a.m. peak hour and LOS C during the p.m. peak hour. The A Street northbound left-turn lane will continue to operate at LOS E during the a.m. peak hour and decrease to LOS F during the p.m. peak hour. The Thomson Place southbound approach will decrease to LOS E during the a.m. peak hour and decrease to LOS F during the a.m. peak hour and decrease to LOS F during the a.m. peak hour at the Congress Street westbound through/right-turn lane during the a.m. peak hour and at the A Street northbound left-turn lane during the p.m. peak hour.
- The signalized intersection of **Congress Street/Boston Wharf Road** will continue to operate at LOS C during the a.m. peak hour. The Boston Wharf Road northbound through/right-turn lane will decrease to LOS E during the a.m. peak hour. The longest queues at the intersection will occur at the Congress Street eastbound left-turn/through lane during the a.m. peak hour.
- The signalized intersection of **Congress Street/B Street/Highway Ramps** will decrease to LOS D during the a.m. peak hour and continue to operate at LOS C during the p.m. peak hour. The I-90 WB Off-Ramp northbound left-turn lane will decrease to LOS E during the a.m. peak hour. The B Street southbound through lanes will continue to operate at LOS E during the a.m. peak hour and decrease to LOS E during the p.m. peak hour. The longest queues at the intersection will occur at the I-90 WB Off-Ramp northbound left-turn lane during the a.m. peak hour and at the Congress Street eastbound right-turn lane during the p.m. peak hour.
- The signalized intersection of **Congress Street/D Street** will continue to operate at LOS F during the p.m. peak hour. The D Street northbound through/right-turn lane will decrease to LOS E during the p.m. peak hour and the D Street southbound approach will decrease to LOS F during the p.m. peak hour. The longest queues at the intersection will occur at the D Street southbound approach during the p.m. peak hour.

- The signalized intersection of **D Street/Massport Haul Road (I-90 On-Ramps)** will continue to operate at LOS C during the p.m. peak hour. The D Street northbound left-turn lane will decrease to LOS F during the p.m. peak hour. The longest queues at the intersection will occur in the D Street northbound left-turn lane.
- The signalized intersection of **D Street/Summer Street** will continue to operate at LOS C during the a.m. and p.m. peak hours. The Summer Street eastbound left-turn lane will decrease to LOS E during the p.m. peak hour. The Summer Street westbound left-turn lane will decrease to LOS E during both the a.m. and p.m. peak hours. The longest queues at the intersection will occur at the Summer Street westbound through lane during both the a.m. and p.m. peak hours.
- At the unsignalized intersection of **Northern Avenue/Fan Pier Boulevard** the stopcontrolled Fan Pier Boulevard southbound approach will decrease to LOS F during the p.m. peak hour.
- At the unsignalized intersection of Northern Avenue/Marina Park Drive the stopcontrolled Marina Park Drive southbound approach will decrease to LOS E during the p.m. peak hour.
- At the unsignalized intersection of Congress Street/Sleeper Street the northbound driveway will decrease to LOS E in the a.m. peak hour while the Sleeper Street southbound approach will continue to operate at LOS F during both the a.m. and p.m. peak hours.

3.9.3 Build (2023) Condition Traffic Operations Analysis

The Build (2023) Condition analysis uses the same methodology as the Existing (2016) Condition and No-Build (2023) Condition analysis. The Build Condition analysis includes the traffic operations improvements due to the transportation mitigation discussed in section 3.6.4. Table 3-13 and Table 3-14 present the Build (2023) Condition capacity analysis for the a.m. and p.m. peak hours, respectively. The shaded cells in the tables indicate a worsening in LOS between the No-Build (2023) Condition and the Build (2023) Condition. Due the proposed mitigation measures discussed in Section 3.6.4, some of the Congress Street corridor intersections operate better than the No-Build Condition. The detailed analysis sheets are provided in Appendix A.

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Signalized Intersections								
Northern Avenue/Pier 4 Boulevard	В	10.3	-	-	-			
Northern Ave EB left/thru	D	48.6	0.11	8	27			
Northern Ave EB right	А	0.6	0.12	0	10			
Driveway WB left/thru/right	E	56.9	0.35	25	59			
Pier 4 Blvd NB left	А	4.7	0.29	69	96			
Pier 4 Blvd NB thru/right	А	1.3	0.09	13	m20			
Pier 4 Blvd SB left/thru/right	D	50.1	0.41	39	30			
Seaport Boulevard/Sleeper Street	В	15.6	-	-	-			
Seaport Blvd EB left/thru thru/right	А	6.0	0.33	18	m15			
Seaport Blvd WB left	А	5.3	0.63	68	m55			
Seaport Blvd WB thru thru/right	С	21.7	0.82	61	#321			
Sleeper St NB left/thru/right	D	51.9	0.77	113	142			
Sleeper St SB left/thru	D	44.7	0.31	51	87			
Sleeper St SB right	В	16.9	0.25	13	43			
Seaport Boulevard/Boston Wharf Road	А	8.6	-	-	-			
Seaport Blvd EB thru thru/right	А	5.6	0.61	31	43			
Seaport Blvd WB left	А	7.7	0.32	15	54			
Seaport Blvd WB thru thru	А	4.2	0.40	82	108			
Boston Wharf Rd NB left	E	55.7	0.67	108	m162			
Boston Wharf Rd NB right	А	8.4	0.12	4	m12			
Seaport Boulevard/East Service Road/Pier 4	С	24.7	-	-	-			
Boulevard								
Seaport Blvd EB left	В	18.4	0.30	22	49			
Seaport Blvd EB thru thru	В	14.5	0.49	95	142			
Seaport Blvd WB thru thru/right	С	24.8	0.74	230	312			
East Service Rd NB left/thru thru	D	41.9	0.79	197	241			
East Service Rd NB right	А	7.8	0.32	14	m29			
Pier 4 Blvd SB left left	E	57.0	0.51	39	68			
Seaport Boulevard/B Street	С	21.8	-	-	_			
Seaport Blvd EB thru thru/right	В	14.9	0.49	304	392			
Seaport Blvd WB left/thru thru	А	6.4	0.33	50	93			
B St NB left left	D	47.4	0.77	108	m137			
B St NB right	D	44.6	0.56	72	m102			

Table 3-17Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Signalized Intersections							
D Street/Northern Avenue/Boston Fish Pier	С	24.2	-	-	-		
Seaport Blvd EB left/thru thru/right	С	21.1	0.71	209	325		
Northern Ave WB left/thru thru/right	В	16.3	0.32	49	89		
D St NB left	D	41.3	0.64	153	235		
D St NB right	А	0.3	0.08	0	0		
Boston Fish Pier SB left/thru/right	D	46.8	0.50	37	79		
Congress Street/A Street/Thomson Place	С	22.7	-	-	-		
Congress St EB left/thru thru	В	17.6	0.30	56	108		
Congress St EB right	В	18.5	0.24	39	92		
Congress St WB left	С	24.7	0.72	103	#257		
Congress St WB thru/right	В	16.8	0.52	143	278		
A St NB left	E	55.7	0.70	139	205		
A St NB right	А	5.5	0.39	0	51		
Thomson PI SB left/thru/right	D	45.4	0.48	54	m101		
Congress Street/Boston Wharf Road	С	25.0	-	-	-		
Congress St EB left/thru	D	37.8	0.89	222	#563		
Congress St EB right	А	1.2	0.27	0	3		
Congress St WB left	С	24.9	0.75	94	m#317		
Congress St WB thru thru/right	В	11.7	0.55	126	186		
Boston Wharf Rd NB left	D	51.3	0.58	71	120		
Boston Wharf Rd NB thru/right	D	53.5	0.77	140	209		
Boston Wharf Rd SB left/thru	D	35.8	0.35	82	89		
Boston Wharf Rd SB right	В	13.3	0.14	13	m16		
Congress Street/East Service Road/Highway	С	33.7	-	-	-		
Ramps							
Congress St EB left	D	47.8	0.62	30	m52		
Congress St EB thru thru	С	22.3	0.30	67	m96		
Congress St WB thru thru/right	В	19.8	0.76	183	#365		
I-93 NB Off-Ramp NB left/thru thru	D	49.2	0.80	196	257		
I-93 NB Off-Ramp NB right	А	8.4	0.25	0	42		
I-90 EB Off-Ramp NEB left/thru thru/right	D	45.3	0.85	262	328		

Table 3-17Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour (Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)			
Signalized Intersections								
Congress Street/B Street/Highway Ramps	С	31.1	-	-	-			
Congress St EB left/thru thru	D	41.1	0.89dl	190	237			
Congress St EB right	С	21.9	0.20	79	m126			
Congress St WB left	С	27.2	0.38	104	m135			
Congress St WB left/thru thru/right	D	37.8	0.84	229	m#345			
I-90 WB Off-Ramp NB left	D	36.0	0.71	224	325			
I-90 WB Off-Ramp NB thru	С	30.2	0.53	186	274			
I-90 WB Off-Ramp NB right	А	5.0	0.49	0	60			
B St SB thru thru	D	40.3	0.38	30	55			
B St SB right	А	3.1	0.07	2	m6			
Congress Street/D Street	D	52.6	-	-	-			
Congress St EB left/thru thru/right	D	39.6	0.51	149	210			
Congress St EB right	E	68.8	0.90	275	#471			
Congress St WB left/thru thru/right	E	59.2	0.73	85	#137			
D St NB left left	D	45.8	0.85	187	#264			
D St NB thru/right	D	47.5	0.77	173	#284			
D St SB left/thru thru/right	E	60.9	0.83	132	#210			
D Street/Silver Line Way	A	8.4	-	-	-			
SL Way EB left/thru/right	E	61.0	0.47	32	69			
SL Way WB left/thru/right	E	55.2	0.37	25	57			
D St NB thru thru thru/right	А	7.5	0.23	55	176			
D St SB thru thru	А	3.8	0.29	49	m142			
D Street/ Massport Haul Road (I-90 On-Ramps)	В	14.5	-	-	-			
D St NB left	D	44.2	0.57	152	m233			
D St NB thru thru	А	1.7	0.26	0	98			
D St SB thru thru/right	В	17.0	0.47	101	143			
D Street/Summer Street	С	27.9	-	-	-			
Summer St EB left	D	50.2	0.73	67	#130			
Summer St EB thru thru/right	С	20.6	0.50	112	174			
Summer St WB left	E	62.9	0.58	13	m#51			
Summer St WB thru	D	43.7	0.84	204	#435			
Summer St WB right	В	14.0	0.70	99	178			
D St NB left	D	46.5	0.51	99	167			
D St NB thru thru/right	D	43.4	0.58	101	148			
D St SB left	С	25.5	0.66	58	137			
D St SB left/thru thru/right	А	8.0	0.54	8	10			

Table 3-17	Build (2023) Condition,	Capacity Anal	ysis Summary, a.m	. Peak Hour (Continued)
------------	-------------------------	---------------	-------------------	-------------------------

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Signalized Intersections							
Seaport Boulevard/Fan Pier Boulevard	В	19.2	-	-	-		
Seaport Blvd EB left	В	19.9	0.35	35	107		
Seaport Blvd EB thru thru/right	А	5.2	0.46	65	97		
Seaport Blvd WB left/thru thru/right	С	30.7	0.80	197	#337		
Thomson PI NB left/thru/right	D	49.0	0.27	29	m64		
Fan Pier Blvd SB left/thru/right	D	35.9	0.55	96	149		
Unsigna	alized Int	tersections					
Sleeper Street/Northern Avenue	-	-	-	-	-		
Northern Ave EB thru/right	А	0.0	0.01	-	0		
Northern Ave WB left/thru	А	8.1	0.11	-	10		
Sleeper St NB left/right	С	15.7	0.45	-	58		
Northern Avenue/Courthouse Way	-	-	-	-	-		
Northern Ave EB left/thru	А	8.2	0.23	-	22		
Northern Ave WB thru/right	А	0.0	0.09	-	0		
Courthouse Way SB left/right	С	19.7	0.15	-	13		
Northern Avenue/Fan Pier Boulevard	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.0	0.00	-	0		
Northern Ave WB left/thru/right	А	0.7	0.01	-	1		
Fan Pier Blvd NB left/thru/right	С	21.5	0.36		39		
Fan Pier Blvd SB left/thru/right	С	22.1	0.35	-	38		
Northern Avenue/Marina Park Drive	-	-	-	-	-		
Northern Ave EB left/thru	А	2.2	0.03	-	2		
Northern Ave WB thru/right	А	0.0	0.19	-	0		
Pier St NB left/thru/right	D	25.7	0.46	-	58		
Marina Park SB left/right	D	28.8	0.23	-	21		
Northern Avenue/Harbor Shore Drive	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.1	0.00	-	0		
Northern Ave WB left/thru/right	А	0.3	0.01	-	1		
Harbor Shore Dr NB left/thru/right	В	11.0	0.05	-	4		
Harbor Shore Dr SB left/thru/right	В	13.8	0.03	-	2		
Seaport Boulevard/Seaport Lane	-	-	-	-	-		
Seaport Blvd EB thru thru/right	А	0.0	0.37	-	0		
Seaport Blvd WB left/thru thru	А	2.2	0.18	-	4		

Table 3-17Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour (Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Unsignal	ized Inte	ersections			
Congress Street/Sleeper Street	-	-	-	-	-
Congress St EB left/thru/right	С	24.2	0.41	-	46
Congress St WB left/thru/right	А	0.3	0.01	-	1
Driveway NB left/thru/right	F	50.7	0.05	-	4
Sleeper St SB left/thru/right	F	> 50.0	>1.00	-	-
Congress Street/Farnsworth Street	-	-	-	-	-
Congress St EB left/thru	А	5.2	0.14	-	12
Congress St WB thru/right	А	0.0	0.40	-	0
Farnsworth St SB left/right	F	> 50.0	0.66	-	77

Table 3-17 Build (2023) Condition, Capacity Analysis Summary, a.m. Peak Hour (Continued)

Grey Shading indicates a decrease to LOS E or F.

~ 50th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

95th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

m Volumes for 95th percentile queue is metered by upstream signal.

Table 3-18Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Signal	lized Inte	rsections			
Northern Avenue/Pier 4 Boulevard	В	15.8	-	-	-
Northern Ave EB left/thru	D	50.2	0.05	4	18
Northern Ave EB right	А	0.8	0.22	1	18
Driveway WB left/thru/right	D	49.6	0.09	7	26
Pier 4 Blvd NB left	А	5.5	0.17	21	m93
Pier 4 Blvd NB thru/right	А	1.3	0.04	0	m11
Pier 4 Blvd SB left/thru/right	E	58.8	0.69	106	168
Seaport Boulevard/Sleeper Street	C	29.7	-	-	-
Seaport Blvd EB left/thru thru/right	С	25.3	0.41	17	m23
Seaport Blvd WB left	В	12.6	0.66	127	m130
Seaport Blvd WB thru thru/right	D	35.9	0.99	100	#480
Sleeper St NB left/thru/right	E	58.3	0.88	154	#292
Sleeper St SB left/thru	D	52.6	0.80	162	#289
Sleeper St SB right	В	13.3	0.47	63	117

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Signalized Intersections							
Seaport Boulevard/Boston Wharf Road	C	24.0	-	-	-		
Seaport Blvd EB thru thru/right	С	31.0	0.94	82	#591		
Seaport Blvd WB left	D	40.7	0.67	149	#289		
Seaport Blvd WB thru thru	А	4.7	0.44	80	103		
Boston Wharf Rd NB left	E	55.3	0.71	137	m201		
Boston Wharf Rd NB right	С	26.3	0.34	88	m148		
Seaport Boulevard/East Service Road/Pier 4	С	29.4	-	-	-		
Boulevard							
Seaport Blvd EB left	В	16.1	0.22	23	49		
Seaport Blvd EB thru thru	В	17.0	0.61	190	250		
Seaport Blvd WB thru thru/right	D	39.5	0.76	336	271		
East Service Rd NB left/thru thru	D	49.3	0.51	81	114		
East Service Rd NB right	С	20.1	0.69	89	145		
Pier 4 Blvd SB left left	E	66.3	0.74	82	#147		
Seaport Boulevard/B Street	В	12.6	-	-	-		
Seaport Blvd EB thru thru/right	А	5.1	0.71	55	90		
Seaport Blvd WB left/thru thru	А	6.9	0.53	86	161		
B St NB left left	D	50.1	0.69	112	m148		
B St NB right	D	54.6	0.64	95	m139		
D Street/Northern Avenue/Boston Fish Pier	В	16.9	-	-	-		
Seaport Blvd EB left/thru thru/right	В	11.4	0.69	174	310		
Northern Ave WB left/thru thru/right	В	14.7	0.50	125	209		
D St NB left	D	48.0	0.68	138	211		
D St NB right	А	0.4	0.07	0	0		
Boston Fish Pier SB left/thru/right	D	39.5	0.48	31	75		
Congress Street/A Street/Thomson Place	С	24.0	-	-	-		
Congress St EB left/thru thru	С	25.1	0.47	124	127		
Congress St EB right	С	31.1	0.52	79	119		
Congress St WB left	С	34.2	0.81	71	#155		
Congress St WB thru/right	В	14.8	0.57	135	185		
A St NB left/thru	D	43.6	0.50	123	195		
A St NB right	А	4.7	0.49	0	39		
Thomson PI SB left/thru/right	D	41.2	0.32	49	m71		

Table 3-18 Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour (Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)
Signal	ized Inte	prsections			
Congress Street/Boston Wharf Road	С	30.2	-	-	-
Congress St EB left/thru	С	20.4	0.75	308	#467
Congress St EB right	А	5.1	0.57	25	35
Congress St WB left	E	59.4	0.83	160	#266
Congress St WB thru thru/right	В	18.9	0.29	123	174
Boston Wharf Rd NB left	E	56.8	0.53	42	90
Boston Wharf Rd NB thru/right	С	24.5	0.58	42	114
Boston Wharf Rd SB left/thru	E	59.3	0.95	365	m#480
Boston Wharf Rd SB right	В	18.5	0.59	78	m128
Congress Street/East Service Road/Highway	С	22.1	-	-	-
Ramps					
Congress St EB left	В	12.3	0.16	15	m32
Congress St EB thru thru	В	11.1	0.36	104	m172
Congress St WB thru thru/right	В	14.3	0.31	111	m154
I-93 NB Off-Ramp NB left/thru thru	D	49.7	0.55	80	115
I-93 NB Off-Ramp NB right	В	10.6	0.24	0	32
I-90 EB Off-Ramp NEB left/thru thru/right	D	49.1	0.63	102	140
Congress Street/B Street/Highway Ramps	С	31.4	-	-	-
Congress St EB left/thru thru	D	40.4	0.68	193	252
Congress St EB right	В	15.1	0.43	149	233
Congress St WB left	D	43.5	0.67	157	m101
Congress St WB left/thru thru/right	D	43.8	0.86	192	m112
I-90 WB Off-Ramp NB left	С	24.6	0.46	117	180
I-90 WB Off-Ramp NB thru	С	23.1	0.34	121	185
I-90 WB Off-Ramp NB right	А	3.9	0.43	0	53
B St SB thru thru	D	48.7	0.73	109	161
B St SB right	А	3.3	0.12	4	m14
Congress Street/D Street	F	>80.0	-	-	-
Congress St EB left/thru thru/right	С	26.4	0.57	174	214
Congress St EB right	С	30.6	0.61	181	265
Congress St WB left/thru thru/right	F	>80.0	>1.00	~237	#345
D St NB left left	F	>80.0	>1.00	~268	#372
D St NB thru/right	E	70.1	0.90	166	#325
D St SB left/thru thru/right	F	>80.0	>1.00	~464	#595

Table 3-18 Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour (Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Signal	Signalized Intersections						
D Street/Silver Line Way	A	9.1	-	-	-		
SL Way EB left/thru/right	E	58.4	0.38	23	54		
SL Way WB left/thru/right	E	56.6	0.38	23	55		
D St NB thru thru thru/right	А	5.3	0.19	63	44		
D St SB thru thru	А	8.5	0.47	91	m60		
D Street/ Massport Haul Road (I-90 On-Ramps)	C	29.7	-	-	-		
D St NB left	F	>80.0	0.94	320	m#463		
D St NB thru thru	А	1.8	0.22	0	m93		
D St SB thru thru/right	С	22.3	0.76	134	#648		
D Street/Summer Street	D	40.8	-	-	-		
Summer St EB left	F	84.8	1.03	~ 78	#293		
Summer St EB thru thru/right	В	12.3	0.57	78	140		
Summer St WB left	E	75.7	0.57	15	m#66		
Summer St WB thru	D	54.4	0.85	183	#398		
Summer St WB right	С	28.2	0.71	146	246		
D St NB left	D	40.9	0.28	51	98		
D St NB thru thru/right	D	44.8	0.60	128	180		
D St SB left	D	49.2	0.78	164	m#247		
D St SB left/thru thru/right	D	51.2	0.91	189	#306		
Seaport Boulevard/Fan Pier Boulevard	С	27.1	-	-	-		
Seaport Blvd EB left	В	19.7	0.26	12	m35		
Seaport Blvd EB thru thru/right	В	12.1	0.62	136	141		
Seaport Blvd WB thru thru/right	С	33.3	0.80	271	377		
Thomson PI NB left/thru/right	С	26.9	0.26	32	m64		
Fan Pier Blvd SB left/thru/right	D	47.0	0.90	289	#465		
Unsigna	alized In	tersections					
Sleeper Street/Northern Avenue	-	-	-	-	_		
Northern Ave EB thru/right	А	0.0	0.01	-	0		
Northern Ave WB left/thru	А	8.5	0.30	-	32		
Sleeper St NB left/right	В	12.5	0.16	-	14		
Northern Avenue/Courthouse Way	-	-	-	-	-		
Northern Ave EB left/thru	А	4.9	0.06	-	5		
Northern Ave WB thru/right	А	0.0	0.18	-	0		
Courthouse Way SB left/right	D	33.7	0.59	-	87		

Table 3-18 Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour (Continued)

Intersection/Approach	LOS	Delay (s)	V/C Ratio	50th Percentile Queue (ft)	95th Percentile Queue (ft)		
Unsignalized Intersections							
Northern Avenue/Fan Pier Boulevard	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.0	0.00	-	0		
Northern Ave WB left/thru/right	А	1.4	0.02	-	2		
Fan Pier Blvd NB left/thru/right	С	16.0	0.14	-	12		
Fan Pier Blvd SB left/thru/right	F	> 50.0	>1.00	-	516		
Northern Avenue/Marina Park Drive	-	-	-	-	-		
Northern Ave EB left/thru	А	1.0	0.02	-	1		
Northern Ave WB thru/right	А	0.0	0.13	-	0		
Pier St NB left/thru/right	С	22.9	0.31	-	32		
Marina Park SB left/right	F	53.6	0.62	-	88		
Northern Avenue/Harbor Shore Drive	-	-	-	-	-		
Northern Ave EB left/thru/right	А	0.5	0.01	-	1		
Northern Ave WB left/thru/right	А	1.4	0.03	-	2		
Harbor Shore Dr NB left/thru/right	В	12.9	0.11	-	9		
Harbor Shore Dr SB left/thru/right	С	22.0	0.24	-	22		
Seaport Boulevard/Seaport Lane	-	-	-	-	-		
Seaport Blvd EB thru thru/right	А	0.0	0.50	-	0		
Seaport Blvd WB left/thru thru	А	4.8	0.30	-	12		
Congress Street/Sleeper Street	-	-	-	-	-		
Congress St EB left/thru/right	В	10.4	0.28	-	28		
Congress St WB left/thru/right	А	0.2	0.01	-	0		
Driveway NB left/thru/right	С	18.4	0.03	-	2		
Sleeper St SB left/thru/right	F	> 50.0	>1.00	-	285		
Congress Street/Farnsworth Street	-	-	-	-	-		
Congress St EB left/thru	А	1.0	0.03	-	3		
Congress St WB thru/right	А	0.0	0.35	-	0		
Farnsworth St SB left/right	F	>80.0	0.92	-	154		

Table 3-18Build (2023) Condition, Capacity Analysis Summary, p.m. Peak Hour (Continued)

Grey Shading indicates LOS E or F.

 \sim 50th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

95th percentile volume exceeds capacity. Queue shown is the maximum after two cycles.

m Volumes for 95th percentile queue is metered by upstream signal.

As shown in Table 3-13 and Table 3-14, the following operational deficiencies are expected to begin to occur under the Build (2023) Condition:

• The signalized intersection of **Seaport Boulevard/Boston Wharf Road** continues to operate at LOS A during the a.m. peak hour and LOS C during the p.m. peak hour. The Boston Wharf Road northbound left-turn lane decreases to LOS E during the

a.m. peak hour and continues to operate at LOS E during the p.m. peak hour. The longest queues at the intersection will occur in the Boston Wharf Road northbound left-turn lane during the a.m. peak hour and the Seaport Boulevard eastbound approach during the p.m. peak hour.

- The signalized intersection of **Congress Street/Boston Wharf Road** continues to operate at LOS C during the a.m. and p.m. peak hours. The Congress Street westbound left-turn lane and the Boston Wharf Road northbound left-turn lane both decrease to LOS E during the p.m. peak hour. The longest queues at the intersection will occur at the Boston Wharf Road southbound left-turn/through lane.
- The signalized intersection of Congress Street/D Street continues to operate at LOS D during the a.m. peak hour and LOS F during the p.m. peak hour. The Congress Street eastbound right-turn lane, westbound approach, and the D Street southbound approach all decrease to LOS E during the a.m. peak hour and continue to operate at LOS F during the p.m. peak hour. The longest queues at the intersection will occur in the Congress Street eastbound right-turn lane during the a.m. peak hour and in the D Street southbound approach during the p.m. peak hour.
- The unsignalized intersection of Northern Avenue/Marina Park Drive will have the stop-controlled Marina Park Drive southbound approach decrease to LOS F during the p.m. peak hour.
- The unsignalized intersection of **Congress Street/Sleeper Street** will have the stopcontrolled northbound driveway approach decrease to LOS F during the a.m. peak hour.

3.9.4 Traffic Operations Analysis Comparison

Table 3-19 below highlights operational improvements and deficiencies in overall LOS for the signalize study area intersections.

	a.m. Peak Hour			p.m. Peak Hour		
Intersection	Existing	No Build	Build	Existing	No Build	Build
Signalized Intersections						
Northern Ave/Pier 4 Blvd	А	В	В	А	В	В
Seaport Blvd/Sleeper St	D	В	В	D	С	С
Seaport Blvd/Boston Wharf Rd	А	А	А	В	В	С
Seaport Blvd/East Service Rd	С	С	С	С	С	С
Seaport Blvd/B St	С	В	С	D	В	В
D St/Northern Ave/Boston Fish Pier	В	С	С	В	В	В
Congress St/A St/Thomson Pl	D	D	С	С	С	С

Table 3-19 Level of Service Comparison NPC Project Conditions

	a.m. Peak Hour			p.m. Peak Hour		
Intersection	Existing	No Build	Build	Existing	No Build	Build
Signalized Intersections						
Congress St/Boston Wharf Rd	С	С	С	В	С	С
Congress St/East Service Rd/Ramps	С	С	С	В	В	С
Congress St/B St/Ramps	С	D	С	С	С	С
Congress St/D St	С	D	D	F	F	F
D St/Silver Line Way	А	А	А	А	А	А
D St/Massport Haul Rd	В	В	В	В	С	С
D St/Summer St	С	С	С	С	С	D
Seaport Blvd/Fan Pier Blvd	-	В	В	-	С	С

Table 3-19 Level of Service Comparison NPC Project Conditions (Continued)

Grey Shading indicates a decrease in LOS from the previous condition; black shading indicates an improvement in LOS.

As shown in Table 3-19, changes in overall intersection level of service from Existing condition to No Build condition to Build condition are fairly minimal and several intersections improve as a result of the proposed mitigation. As discussed in Section 3.3.3, there will be roadway improvements along Seaport Boulevard which is the reason for improvements at Seaport Boulevard/Sleeper Street and Seaport Boulevard/B Street during the a.m. and p.m. peak hours under the No Build Condition.

The Build (2023) Condition traffic operations were compared to the Build Mitigated traffic operations contained in the 2010 DPIR. Overall, the traffic operations are very similar to previous projections with some intersections experiencing improved level of service and others experiencing a decrease in level of service. Table 3-20 shows the comparison of signalized intersection overall level of service of the NPC Project to the 2010 DPIR.

	a.m. Peak Hour		p.m. Peak Hour		
Intersection	2010 DPIR	NPC	2010 DPIR	NPC	
Sig	nalized Intersect	tions			
Seaport Boulevard/Sleeper Street	С	В	С	С	
Seaport Boulevard/Boston Wharf Road	А	А	А	С	
Seaport Boulevard/East Service Road	С	С	С	С	
Seaport Boulevard/B Street	С	С	D	В	
D Street/Northern Avenue/Boston Fish Pier	С	С	С	В	
Congress Street/A Street/Thomson Place	D	С	E	С	
Congress Street/Boston Wharf Road	С	С	D	С	
Congress Street/East Service Road	D	С	С	С	
Congress Street/B Street/Highway Ramps	F	С	F	С	

Table 3-20Level of Service Comparison, 2010 DPIR to NPC

	a.m. Pe	ak Hour	p.m. Peak Hour		
Intersection	2010 DPIR	NPC	2010 DPIR	NPC	
S.	gnalized Intersect	tions			
Congress Street/D Street	С	D	E	F	
D Street/Silver Line Way	А	А	А	А	
D Street/Summer Street	E	С	E	D	
Seaport Boulevard/Fan Pier Boulevard	В	В	С	С	

Table 3-20 Level of Service Comparison, 2010 DPIR to NPC (Continued)

Grey Shading indicates a decrease in LOS in the NPC; black shading indicates an improvement in LOS.

As shown in Table 3-20, the following operational improvements and deficiencies are expected comparing the 2010 DPIR to the NPC Project:

- The intersection of **Seaport Boulevard/Sleeper Street** improves from LOS C to LOS B during the a.m. peak hour.
- The intersection of **Seaport Boulevard/Boston Wharf Road** decreases from LOS A to LOS C during the p.m. peak hour.
- The intersection of **Seaport Boulevard/B Street** improves from LOS D to LOS B during the p.m. peak hour.
- The intersection of D Street/Northern Avenue/Boston Fish Pier improves from LOS C to LOS B during the p.m. peak hour.
- The intersection of **Congress Street/A Street/ Thomson Place** improves from LOS D to LOS C during the a.m. peak hour and improves from LOS E to LOS C during the p.m. peak hour.
- The intersection of **Congress Street/East Service Road** improves from LOS D to LOS C during the a.m. peak hour.
- The intersection of **Congress Street/B Street/Highway Ramps** improves from LOS F to LOS C during both the a.m. and p.m. peak hour.
- The intersection of **Congress Street/D Street** decreases from LOS C to LOS D during the a.m. peak hour and decreases from LOS E to LOS F during the p.m. peak hour.
- The intersection of **D Street/Summer Street** improves from LOS E to LOS C during the a.m. peak hour and improves from LOS E to LOS D during the p.m. peak hour.

Chapter 4.0

Environmental Protection

4.0 ENVIRONMENTAL PROTECTION

4.1 Wind

4.1.1 Introduction

A pedestrian wind study was conducted for the NPC Project. The purpose of the study was to assess the effect of the NPC Project on local conditions in pedestrian areas around the study site and provide recommendations for minimizing adverse effects.

The study involved wind simulations on a 1:500 scale model of the proposed buildings and surroundings. These simulations were then conducted in RWDI's boundary-layer wind tunnel at Guelph, Ontario, for the purpose of quantifying local wind speed conditions and comparing to appropriate criteria for gauging wind comfort in pedestrian areas. A list of the drawings used for the construction of the model can be found in Appendix B. The criteria recommended by the BPDA were used in the study. The report describes the study methods and presents the results of the wind tunnel simulations.

Generally, the wind conditions improved or stayed the same with the NPC Project in place. The Full Build Configuration results in improved overall wind conditions. In general, the wind speeds are appropriate for the intended uses. Almost 90% (vs 83% in the No Build) of the locations studied have wind speeds suitable for walking or better in the Full Build Configuration. This represents an improvement over the Project studied in the 2009 DPIR/DEIR as well which indicated that 88% of the locations studied had wind speeds suitable for walking or better.

4.1.2 Overview

Major buildings, especially those that protrude above their surroundings, often cause increased local wind speeds at the pedestrian level. Typically, wind speeds increase with elevation above the ground surface, and taller buildings intercept these faster winds and deflect them down to the pedestrian level. The funneling of wind through gaps between buildings and the acceleration of wind around corners of buildings may also cause increases in wind speed. Conversely, if a building is surrounded by others of equivalent height, it may be protected from the prevailing upper level winds, resulting in no significant changes to the local pedestrian level wind environment. The most effective way to assess potential pedestrian level wind impacts around a proposed new building is to conduct scale model tests in a wind tunnel.

The consideration of wind in planning outdoor activity areas is important since high winds in an area tend to deter pedestrian use. For example, winds should be light or relatively light in areas where people would be sitting, such as outdoor cafes or playgrounds. For bus stops and other locations where people would be standing, somewhat higher winds can be tolerated. For frequently used sidewalks, where people are primarily walking, stronger winds are acceptable. For infrequently used areas, the wind comfort criteria can be relaxed even further. The actual effects of wind can range from pedestrian inconvenience, due to the blowing of dust and other loose material in a moderate breeze, to severe difficulty with walking due to the wind forces on the pedestrian.

4.1.3 Methodology

Information concerning the site and surroundings was derived from: site photographs; information on surrounding buildings and terrain; and design drawings provided by the design team. The following configurations were simulated:

- No Build Configuration: includes the existing site and all existing surrounding buildings including portions of the Seaport Square Project already built; and,
- Full Build Configuration: includes the proposed Seaport Square development, the associated landscaping plan, future buildings and all existing surroundings. (The influence of the future buildings as indicated on Figures 4.1-7, 4.1-9 and 4.1-10) on the overall wind conditions at Seaport Square is anticipated to be negligible.)

As shown in Figures 4.1-1 and 4.1-2, the wind tunnel model included the proposed Project and all relevant surrounding buildings and topography within a 1,600 foot radius of the study site. The mean speed profile and turbulence of the natural wind approaching the modelled area were also simulated in RWDI's boundary layer wind tunnel. The scale model was equipped with 196 specially designed wind speed sensors that were connected to the wind tunnel's data acquisition system to record the mean and fluctuating components of wind speed at a full scale height of five feet above grade in pedestrian areas throughout the study site. Wind speeds were measured for 36 wind directions, in 10 degree increments, starting from true north. The measurements at each sensor location were recorded in the form of ratios of local mean and gust speeds to the reference wind speed in the free stream above the model. The results were then combined with long term meteorological data, recorded during the years 1991 to 2015 at Boston's Logan International Airport, in order to predict full scale wind conditions. The analysis was performed separately for each of the four seasons and for the entire year.

Figures 4.1-3 through 4.1-5 presents "wind roses", summarizing the seasonal and annual wind climates in the Boston area, based on the data from Logan Airport. The first wind rose in Figure 4.1-3, for example, summarizes the spring (March, April, and May) wind data. In general, the prevailing winds at this time of year are from the west northwest, northwest, west, southwest and south-southwest. In the case of strong winds (speeds greater than 20 mph, red bands), however, the most common wind directions are northeast and west-northwest.

Boston

Boston

Summer (June - August)

Boston

Figure 4.1-4

Seaport Square

Boston

Wind Speed (mph)	Probability (%)
Calm	2.5
1-5	7.4
6-10	32.1
11-15	33.0
16-20	16.9
>20	8.1

Annual Winds

Seaport Square **Boston** SEAPORT

On an annual basis (the last wind rose in Figure 4.1-5) the most common wind directions are those between south-southwest and northwest. Winds from the east and east-southeast are also relatively common. In the case of strong winds, northeast and west-northwest are the dominant wind directions.

This study involved state of the art measurement and analysis techniques to predict wind conditions at the study site. Nevertheless, some uncertainty remains in predicting wind comfort. For example, the sensation of comfort among individuals can be quite variable. Variations in age, individual health, clothing, and other human factors can change a particular response of an individual. The comfort limits used in this report represent an average for the total population. Also, unforeseen changes in the Project area, such as the construction or removal of buildings, can affect the conditions experienced at the site. Finally, the prediction of wind speeds is necessarily a statistical procedure. The wind speeds reported are for the frequency of occurrence stated (one percent of the time). Higher wind speeds will occur but on a less frequent basis.

4.1.4 Pedestrian Wind Comfort Criteria

The BPDA has adopted two standards for assessing the relative wind comfort of pedestrians. First, the BPDA wind design guidance criterion states that an effective gust velocity (hourly mean wind speed +1.5 times the root-mean-square wind speed) of 31 mph should not be exceeded more than one percent of the time. The second set of criteria used by the BPDA to determine the acceptability of specific locations is based on the work of Melbourne¹. This set of criteria is used to determine the relative level of pedestrian wind comfort for activities such as sitting, standing, or walking. The criteria are expressed in terms of benchmarks for the 1-hour mean wind speed exceeded 1% of the time (i.e., the 99percentile mean wind speed). They are as follows:

Level of Comfort	Wind Speed
Dangerous	> 27 mph
Uncomfortable for Walking	> 19 and \leq 27 mph
Comfortable for Walking	> 15 and ≤ 19 mph
Comfortable for Standing	> 12 and \leq 15 mph
Comfortable for Sitting	< 12 mph

Table 4 1-1	Roston Planning & Development Agency Mean Wind Criteria*
1 abie 4.1-1	boston Flamming & Development Agency Mean Wind Chtena

* Applicable to the hourly mean wind speed exceeded one percent of the time.

4-8

¹ Melbourne, W.H., 1978, "Criteria for Environmental Wind Conditions", Journal of Industrial Aerodynamics, 3 (1978) 241 - 249.

The wind climate found in a typical downtown location in Boston is generally comfortable for the pedestrian use of sidewalks and thoroughfares and meets the BPDA effective gust velocity criterion of 31 mph. However, without any mitigation measures, this wind climate is likely to be frequently uncomfortable for more passive activities such as sitting.

4.1.5 Test Results

Figures 4.1-6 through 4.1-9 graphically depict the wind comfort conditions at each wind measurement location based on the annual winds. Figure 4.1-10 shows the difference in the mean wind speeds between the No Build and Full Build configurations at each measurement location. Table 1 in Appendix B presents the mean and effective gust wind speeds for each season as well as annually. Typically, the summer and fall winds tend to be more comfortable than the annual winds, while the winter and spring winds are less comfortable than the annual winds. The following summary of pedestrian wind comfort is based on the annual winds for each configuration tested, except where noted below in the text.

4.1.5.1 Seaport Square Development (Locations 1 through 54)

The discussion in this section pertains to the perimeter and walkways between the proposed buildings represented by 54 wind measurement locations numbered 1 through 54. A wind comfort categorization of walking is considered appropriate for sidewalks. Lower wind speeds conducive to standing are preferred at building entrances.

4.1.5.1.1 Comfort Criteria

No Build Configuration

Aside from the intersection of East Service Road and Autumn Lane (Location 30 in Figure 4.1-6), wind conditions comfortable for walking or better characterize the existing area where the Seaport Square Project is proposed (Locations 1 through 29 and 31 through 54 in Figure 4.1-6).

Full Build Configuration

The addition of the proposed NPC Blocks (D, F G, L3, L4, L5, L6, N and P), other future buildings and associated landscaping plan would result in wind speeds that either stayed the same or improved at 33 of the 54 locations studied. Wind speeds would increase at 21 of the 54 locations studied.

Pedestrian Wind Conditions – Mean Speed – No Build (Annual)

Pedestrian Wind Conditions – Mean Speed -- Full Build (Annual)

Figure 4.1-8 Pedestrian Wind Conditions – Effective Gust – No Build (Annual)

Pedestrian Wind Conditions – Effective Gust – Full Build (Annual)

Figure 4.1-10 Pedestrian Wind Conditions – Comfort Category Change – No Build to Full Build (Annual)

Locally, wind speeds would be improved by two or three comfort categories at the eastern portion of the site due to the protection offered by the buildings from westerly winds (Locations 30 and 31 in Figure 4.1-7). Wind conditions comfortable for walking or better are expected at all locations around the proposed Project except for the corridors between Buildings L3 and L5 and between Buildings N and P (Locations 15 through 17 and 51 in Figure 4.1-7).

The effective gust criterion is met seasonally and annually at all locations except for the corridor between Buildings L3 and L5 (Locations 15 and 17) in Figure 4.1-9.

Mitigation such as the addition of coniferous/marcescent trees and/or a series of porous wind screens in the corridor between Buildings L3 and L5and between Buildings N and P is being considered. Potential mitigation will be determined through the design review process as individual buildings within the NPC Project Site are designed.

4.1.5.2 Area Surrounding the Proposed Seaport Square Project (Locations 55 through 196)

The discussion in this section pertains to the area surrounding the proposed Project, represented by 142 wind measurement locations numbered 55 through 196.

No Build Configuration

The pedestrian wind conditions in the area surrounding the proposed Seaport Square Project are generally comfortable for walking or better west and south of the Project. Uncomfortable wind conditions are relatively frequent to the east and north of the Project.

The effective gust criterion is exceeded annually at three locations along Congress Street (Locations 68, 86 and 88 in Figure 4.1-8) and at one location just south of Congress Street (Location 63 in Figure 4.1-8).

Full Build Configuration

In the areas surrounding the Project Site, wind comfort conditions are expected to improve overall with the addition of the proposed Seaport Square Project, associated landscaping plan and additional future buildings. The additional buildings and landscaping would result in wind speeds that either stayed the same or improved at 125 of the 142 locations studied (88 %). Wind speeds would increase at only 17 of the 142 locations studied (less than 12%).

The Seaport Square buildings would improve wind comfort conditions from being uncomfortable in the No Build Configuration to being comfortable for walking or better in the Full Build Configuration at 21 locations (Locations 61, 63, 66, 67, 69, 76, 84, 86, 89, 91, 92, 94 through 96, 106, 114, 139, 142, 156, 157 and 184 in Figure 4.1-7) and worsen wind comfort conditions to being uncomfortable at six locations (Locations 99, 100, 140,

143, 152 and 154 in Figure 4.1-7). The net effect is an improvement in the overall wind conditions. Of the 142 locations, less than 80% are suitable for walking or better in the No Build Configuration. Conditions improve in the Full Build Configuration and of the 142 locations, almost 89% are suitable for walking or better.

The effective gust criterion would be met annually at all locations but one along Congress Street (Location 88 in Figure 4.1-9). This location currently exceeds the gust criterion in the No Build scenario (Location 88 in Figure 4.1-8). The addition of the proposed and future buildings is expected to reduce the effective gust speed at this location, however, the resulting speed would still be higher than the effective gust criterion. As noted above, the No Build configuration resulted in three exceedances. Again, the number of exceedances has been reduced in the Full Build and the net effect is an improvement in the overall wind conditions.

4.1.6 Conclusion

Generally, the wind conditions improved or stayed the same with the NPC Project in place. The Full Build Configuration results in improved overall wind conditions. In general, the wind speeds are appropriate for the intended uses. Approximately 80 % of the locations studied had wind speed categories that improved or did not change from the No Build to Full Build Configuration. Almost 90% (vs 83% in the No Build) of the locations studied have wind speeds suitable for walking or better in the Full Build Configuration (vs 88% in the 2009 DPIR/DEIR). The number of locations with unacceptable gust winds speeds was reduced with the Full Build Configuration. No locations have dangerous wind speeds in the Full Build Configuration.

4.2 Shadow

4.2.1 Introduction and Methodology

A shadow impact analysis was conducted to investigate shadow impacts from the Project during three time periods (9:00 a.m., 12:00 noon, and 3:00 p.m.) during the vernal equinox (March 21), summer solstice (June 21), autumnal equinox (September 21), and winter solstice (December 21). In addition, shadow studies were conducted for the 6:00 p.m. time period during the summer solstice and autumnal equinox.

The shadow analysis presents the existing shadow and new shadow that would be created by the NPC Project, illustrating the incremental impact of the NPC Project. The analysis focuses on nearby open spaces, sidewalks and bus stops adjacent to and in the vicinity of the Project Site. Shadows have been determined using the applicable Altitude and Azimuth data for Boston. Figures showing the net new shadow from the NPC Project are provided in Figures 4.2-1 to 4.2-14, at the end of this section.

4.2.2 Vernal Equinox (March 21)

At 9:00 a.m. during the vernal equinox, shadows will be cast to the northwest, with new shadow from the NPC Project mostly limited to rooftops across Boston Wharf Road, Stillings Street, and Thomson Place. Small patches of new shadow will fall next to existing shadow on Congress Street and Summer Street and on Seaport Boulevard at Block B.

Because of the proposed changes to the Project, some areas that were in shadow due to the 2010 Project will no longer be in shadow. Portions of the shadows previously proposed have been eliminated along Seaport Boulevard at Blocks B, C, D, and F, on Congress Street near Stillings Street, and on Summer Street near A Street and on some of the proposed and existing open spaces.

At 12:00 p.m., shadows will be cast to the north, with new shadow from the NPC Project limited to the Project Site. The NPC Project will cast additional shadow onto both Harbor Square (the open space proposed to be built internal to Blocks L3 through L6), and Seaport Common (the open space at Block F), and Sea Green (the new open space at Block Q).

The new shadow on Sea Green and Seaport Common are offset by shadows that have been eliminated with the NPC Project. Other areas no longer proposed to be in shadow include portions of Blocks G, L1, and L5. Shadows cast by buildings on Block N and P have been made substantially narrower.

At 3:00 p.m., shadows will be cast to the northeast, with slivers of new shadow from the NPC Project cast roughly parallel to existing shadow along Harbor Way and Pier 4 Boulevard. New shadow from Block F will cross Northern Avenue.

The area of new shadow on Harbor Way is more than offset by the shadow that has been eliminated with the NPC Project. In addition, buildings on Block D, F, and G will cast narrower shadows than were previously studied, and a portion of the previously proposed shadow on Seaport Common will be eliminated.

4.2.3 Summer Solstice (June 21)

At 9:00 a.m. during the summer solstice, shadows will be cast to the west, with new shadow from the NPC Project cast across Boston Wharf Road. A small area of new shadow reaches Congress Street near Stillings Street, and slivers of new shadow fall on Summer Street and Seaport Boulevard. There are new shadows on Harbor Square, Seaport Common, and Sea Green.

Under the NPC Project, previously-studied shadows on Seaport Common and Harbor Square have been lessened, as have shadows on Congress Street, Summer Street, and Seaport Boulevard. At 12:00 p.m., shadows will be cast to the north, with new shadow from the NPC Project cast across portions of Boston Wharf Road, Northern Avenue and Thomson Place. Slivers of shadow are cast onto and across Summer Street, and patches of new shadow fall on Harbor Square, Seaport Common, and Sea Green.

Because of changes to the Project, shadows cast on Seaport Common and Harbor Way have been lessened, as have shadows on Congress Street and Boston Wharf Road.

At 3:00 p.m., shadows will be cast to the northeast, with new shadow from the NPC Project cast onto Northern Avenue, Pier 4 Boulevard, and Congress Street. New shadow is cast on Harbor Square.

Shadows on Seaport Common, Harbor Square, and Harbor Way and shadows cast by buildings on Blocks N and P have been reduced from the 2010 Project.

At 6:00 p.m., shadows will be cast to the southeast, with minor new shadow from the NPC Project cast between Blocks L4 and L6, onto Block L2, across Pier 4 Boulevard onto Blocks M1 and M2, and onto Congress Street near the highway ramps.

Changes to the Project result in reduced new shadow on Seaport Common, on Congress Street near Blocks L5, L6, N, and P, and on the highway ramps.

4.2.4 Autumnal Equinox (September 21)

At 9:00 a.m. during the autumnal equinox, shadows will be cast to the northwest, with minimal new shadow from the NPC Project cast across Boston Wharf Road and Stillings Street, onto Sea Green, and onto the edge of Summer Street.

Because of changes to the Project, shadows have been reduced on certain areas of Congress Street and Harbor Square which were previously proposed to be in shadow.

At 12:00 p.m., shadows will be cast to the north, with new shadow from the NPC Project cast across Boston Wharf Road, onto Sea Green, onto Blocks K, L1 and L2, and onto Harbor Square.

Shadow has been eliminated from portions of Seaport Common, Harbor Square, and Sea Green, as well as from portions of Northern Avenue, Boston Wharf Road, and Congress Street.

At 3:00 p.m., shadows will be cast to the northeast, with new shadow from the NPC Project cast onto Harbor Square, onto Blocks L1 through L4, onto Congress Street and the highway ramps near Block P, and across Northern Avenue near Block F.
Portions of Seaport Common and Harbor Square that were previously proposed to be in shadow will, under the NPC Project, be in daylight. The NPC also results in less shadow on Congress Street at Blocks N and P than the 2010 Project.

At 6:00 p.m., most of the area is under existing shadow. A small portion of new shadow from the NPC Project will be cast to the east onto Northern Avenue near Block F, onto Blocks M1 and M2, and onto the highway ramps near Block P.

The shadow at highway ramps has been reduced with the NPC Project.

4.2.5 Winter Solstice (December 21)

The winter solstice creates the least favorable conditions for sunlight in New England. The sun angle during the winter is lower than in any other season, causing the shadows in urban areas to elongate and be cast onto large portions of the surrounding area.

At 9:00 a.m., shadows will be cast to the northwest, with new shadow from the NPC Project cast across Boston Wharf Road, Stillings Street, and Thomson Place to Fransworth Street, primarily on rooftops with very limited new shadow on streets or sidewalks.

Because of the changes proposed in the NPC Project, areas on both sides of Thomson Place will not be in shadow, nor will slivers along Congress Street and Northern Avenue.

At 12:00 p.m., shadows will be cast to the north, with new shadow from the NPC Project cast across Boston Wharf Road, and onto Seaport Common and Fan Pier Park.

Portions of the shadows on Congress Street and Boston Wharf Road previously proposed will be eliminated, as will a patch on Northern Avenue near Block D.

At 3:00 p.m., shadows will be cast to the northeast, with new shadow from the NPC Project cast onto Congress Street and the highway ramps near Block P and onto Block M2.

An area of shadow has been eliminated from the site opposite Block G.

4.2.6 Conclusions

New shadow from the NPC Project will generally be limited to the Project Site. In only one case of the 14 studied, will new shadow be created on a bus stop and in only one of the 14 cases studied will new shadow be created on an off-site public open space (Fan Pier Park). In several cases, shadows have been reduced on Fan Pier Park from the 2010 Project. New shadows are partially offset by the Proponent's success at reducing the area of previously proposed shadow.

4.3 Daylight

4.3.1 Introduction

The purpose of the daylight analysis is to estimate the extent to which a proposed project will affect the amount of daylight reaching the streets and the sidewalks in the immediate vicinity of a project site.

Most of the NPC Project Site is currently used for surface parking. Therefore, there is currently little daylight obstruction on the Project site, and the development of the Project inherently leads to an increase in daylight obstruction. The resulting conditions for the proposed buildings will be within the range of existing daylight obstruction values in the Project vicinity. Overall, daylight conditions from the NPC Project are typical of urban areas, and similar to the previously approved project.

4.3.2 Methodology

The daylight analysis was performed using the Boston Redevelopment Authority Daylight Analysis (BRADA) computer program². This program measures the percentage of sky dome that is obstructed by a project and calculates the net change in daylight obstruction from existing to build conditions at a specific site.

Using BRADA, a silhouette view of the building is taken at ground level from the middle of the adjacent city streets or pedestrian ways centered on the proposed building. The façade of the building facing the viewpoint, including heights, setbacks, corners and other features, is plotted onto a base map using lateral and elevation angles. The two-dimensional base map generated by BRADA represents a figure of the building in the "sky dome" from the viewpoint chosen. The BRADA program calculates the percentage of daylight that will be obstructed on a scale of 0 to 100 percent based on the width of the view, the distance between the viewpoint and the building, and the massing and setbacks incorporated into the design of the building; the lower the number, the lower the percentage of obstruction of daylight from any given viewpoint.

The analysis compares three conditions: Existing Conditions, Proposed Conditions, and the context of the area.

Five viewpoints were chosen to evaluate the daylight obstruction for the Existing and Proposed Conditions. Viewpoints were selected based on the height and massing of the proposed buildings, as well as the width of the roadways, to provide a comprehensive study

² Method developed by Harvey Bryan and Susan Stuebing, computer program developed by Ronald Fergle, Massachusetts Institute of Technology, Cambridge, MA, September 1984.

of the Project. Four area context points were evaluated to provide a basis of comparison to existing conditions in the surrounding area. The viewpoint and area context viewpoints were taken in the locations identified in Table 4.3-1 and are shown on Figure 4.3-1.

4.3.3 Daylight Analysis Results

The results for each viewpoint under each alternative condition are described in Table 4.3-1. Figures 4.3-2 through 4.3-4 illustrate the BRADA results for each analysis and are located at the end of this section.

Viewpoint Loca	tions	Existing Conditions	Proposed Conditions			
Viewpoint 1	Seaport Boulevard facing northeast toward Blocks F and G	0%	43.0%			
Viewpoint 2	Boston Wharf Road facing southeast toward Blocks L3 and L5	0%	83.0%			
Viewpoint 3	Pier Four Boulevard facing northwest toward Blocks L4 and L6	0%	83.3%			
Viewpoint 4	Congress Street facing southwest toward Blocks N and P	0%	53.6%			
Viewpoint 5	The center of Blocks L3, L4, L5 and L6	0%	59.0%			
Area Context Viewpoints						
AC1	Marina Park Drive facing northwest toward 1 Marina Park Drive	87.9%	N/A			
AC2	Pier Four Boulevard facing northeast toward 100 Pier Four Boulevard	82.2%	N/A			
AC3	B Street facing east toward 155 Seaport Square Boulevard	88.4%	N/A			
AC4	Sleeper Street facing northwest toward 70 Sleeper Street	83.7%	N/A			

Table 4.3-1 Daylight Obstruction Values

Seaport Boulevard (Blocks F and G) – Viewpoint 1

Seaport Boulevard runs along the southern edge of Blocks G and F. Viewpoint 1 was taken from the center of Seaport Boulevard facing northeast toward the NPC Project Site. The location has an existing daylight obstruction value of 0% due to the surface parking lot that covers the majority of it. The development of Blocks F and G will increase the daylight obstruction value to 43.0%. The daylight obstruction value is less than the daylight obstruction values of other buildings in the area, including the Area Context buildings.

Boston Wharf Road (Blocks L3 and L5) – Viewpoint 2

Boston Wharf Road runs along the western edge of Blocks L3 and L5. Viewpoint 2 was taken from the center of Boston Wharf Road facing east toward the NPC Project Site. The location has an existing daylight obstruction value of 0% due to the surface parking lot that occupies it. The development of Blocks L3 and L5 will increase the daylight obstruction value to 83.0%. The daylight obstruction value is consistent with or less than the daylight obstruction values of other buildings in the area, including the Area Context buildings.

Pier Four Boulevard (Blocks L4 and L6) – Viewpoint 3

Pier Four Boulevard runs along the eastern edge of Blocks L4 and L6. Viewpoint 3 was taken from the center of Pier Four Boulevard facing west toward the NPC Project Site. The location has an existing daylight obstruction value of 0% due to the surface parking lot that occupies it. The development of Blocks L4 and L6 will increase the daylight obstruction value to 83.3%. The daylight obstruction value is consistent with the daylight obstruction values of other buildings in the area, including the Area Context buildings.

Congress Street (Blocks N and P) – Viewpoint 4

Congress Street runs along the northern edge of Blocks N and P. Viewpoint 4 was taken from the center of Congress Street facing southwest toward Blocks N and P. The location is occupied by a surface parking lot. The development of Blocks N and P will result in a daylight obstruction value of 53.6%. The daylight obstruction value is substantially less than the daylight obstruction values of other buildings in the area, including the Area Context buildings.

Center of Block L – Viewpoint 5

Viewpoint 5 was taken from the center of Block L facing Blocks L3 and L5. The site has an existing daylight obstruction value of 0% due to the surface parking lot that occupies the site. The development Block L will result in a daylight obstruction value of 59.0%. The daylight obstruction value is less than the daylight obstruction values of other buildings in the area, including the Area Context buildings.

Area Context Viewpoints

The area around the NPC Project Site is characterized by a mix of commercial, cultural, institutional, and residential uses in buildings heights ranging between one and 22 stories, as well as surface parking lots and recreational open space. Overall, the Project's daylight obstruction values fit within the context of these areas.

To provide a larger context for comparison of daylight conditions, obstruction values were calculated for four Area Context Viewpoints described above and shown on Figure 4.3-1. The daylight obstruction values ranged from a low of 82.2% for AC2 to a high of 88.4% for AC3.

4.3.4 Conclusions

The daylight analysis conducted for the NPC Project describes existing and proposed daylight obstruction conditions at the Project Site and in the surrounding area. The NPC Project Site generally consists of surface parking lots, and the results of the BRADA analysis indicate that the development of the NPC Project will result in increased daylight obstruction at the NPC Project Site over existing conditions. The proposed daylight obstruction values of the NPC Project are similar to the daylight value results described in the 2009 DPIR/DEIR, and the resulting conditions of the proposed changes will be within the range of daylight obstruction values within the surrounding area and typical of densely built urban areas.

Obstruction of daylight by the building is $43.0\ \%$

Viewpoint 1 (Proposed): View from Seaport Boulevard facing northeast toward Blocks F and G

<code>Obstruction of daylight by the building is 83.3 %</code>

Viewpoint 3 (Proposed) View from Pier Four Boulevard facing northwest toward Blocks L4 and L6

<code>Obstruction of daylight by the building is 83.0 %</code>

Viewpoint 2 (Proposed): View from Boston Wharf Road facing southeast toward Blocks L3 and L5

Destruction of daylight by the building is 53.6 % Viewpoint 4 (Proposed) View from Congress Street facing southwest toward Blocks N and P

Obstruction of daylight by the building is 59.0 %

Viewpoint 5 (Proposed): View from the center of Blocks L3, L4, L5 and L6 facing west

Obstruction of daylight by the building is 87.9 %

AC1: View from Marina Park Drive facing northwest toward 1 Marina Park Drive

Obstruction of daylight by the building is $88.4\ \mbox{\sc s}$

AC3: View from B Street facing east toward 155 Seaport Boulevard

Obstruction of daylight by the building is 82.2 %

AC2: View from Pier Four Boulevard facing northeast toward 100 Pier Four Boulevard

Obstruction of daylight by the building is 83.7 % AC4: View from Sleeper Street facing northwest toward 70 Sleeper Street

4.4 Solar Glare

The buildings are still being designed, and the glazing of the windows will be determined as the design of each building progresses. Neither the buildings that have been built nor the ones under construction have had negative solar glare impacts. For the NPC Project buildings, solar glare impacts are not anticipated.

4.5 Air Quality

An air quality analysis has been conducted for the Project. Mobile sources do not meet the thresholds requiring a quantitative analysis. Any new stationary sources will be reviewed by the Massachusetts Department of Environmental Protection (MassDEP) during permitting under the Environmental Results Program (ERP).

4.5.1 Background Air Quality and Health Standards

Background air quality concentrations and federal air quality standards were utilized to conduct the air quality impact analyses. Federal National Ambient Air Quality Standards (NAAQS) were developed by US Environmental Protection Agency (EPA) to protect the human health against adverse health effects with a margin of safety. The following sections outline the NAAQS standards and detail the sources of background air quality data.

4.5.2 National Ambient Air Quality Standards

The 1970 Clean Air Act was enacted by the U.S. Congress to protect the health and welfare of the public from the adverse effects of air pollution. As required by the Clean Air Act, EPA promulgated National Ambient Air Quality Standards (NAAQS) for the following criteria pollutants: nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter (PM) (PM₀ and PM_{2.5}), carbon monoxide (CO), ozone (O₃), and lead (Pb). The NAAQS are listed in Table 4.5-1. Massachusetts Ambient Air Quality Standards (MAAQS) are typically identical to NAAQS.

NAAQS specify concentration levels for various averaging times and include both "primary" and "secondary" standards. Primary standards are intended to protect human health, whereas secondary standards are intended to protect public welfare from any known or anticipated adverse effects associated with the presence of air pollutants, such as damage to vegetation. The more stringent of the primary or secondary standards were applied when comparing to the modeling results for this Project.

A one-hour NO₂ standard was promulgated on January 22, 2010 to protect public health, including the health of sensitive populations (e.g., people with asthma, children, and the elderly). The final rule for the hourly NO₂ NAAQS was published in the Federal Register on February 9, 2010 and became effective on April 12, 2010. The form of this standard is the three-year average of the 98th percentile of the daily maximum one-hour concentrations.

Similarly, a one-hour SO₂ standard was promulgated on June 2, 2010 to protect public health, including the health of sensitive populations (e.g., people with asthma, children, and the elderly). The final rule for the hourly SO₂ NAAQS was published in the Federal Register on June 22, 2010 and became effective on August 23, 2010. The form of this standard is the three-year average of the 99th percentile of the daily maximum one-hour concentrations.

The inhalable particulate (PM10) NAAQS were promulgated on July 1, 1987 at the federal level with the intent of replacing the existing standards limiting ambient levels of Total Suspended Particulate (TSP). In 2006, the annual PM₁₀ standard was revoked. However it remains codified in 310 CMR 6.00. EPA also promulgated a Fine Particulate (PM_{2.5}) NAAQS, effective December 2006, with an annual standard of 15 micrograms per cubic meter (μ g/m³) and the 24-hour standard of 35 μ g/m³. The annual standard has since been strengthened to 12 μ g/m³ (in 2012).

The NAAQS also reflect various durations of exposure. The non-probabilistic short-term periods (24 hours or less) refer to exposure levels not to be exceeded more than once a year. Long-term periods refer to limits that cannot be exceeded for exposure averaged over three months or longer.

	Averaging	NA (µg	AQS /m³)	MAAQS (µg/m³)		
Pollutant	Period	Primary	Secondary	Primary	Secondary	
NO ₂	Annual (1)	100	Same	100	Same	
	1-hour (2)	188	None	None	None	
SO2	Annual (1)(9)	80	None	80	None	
	24-hour (3)(9)	365	None	365	None	
	3-hour (3)	None	1300	None	1300	
	1-hour (4)	196	None	None	None	
PM2.5	Annual (1)	12	15	None	None	
	24-hour (5)	35	Same	None	None	
PM10	Annual (1)(6)	None	None	50	Same	
	24-hour (3)(7)	150	Same	150	Same	
СО	8-hour (3)	10,000	Same	10,000	Same	
	1-hour (3)	40,000	Same	40,000	Same	
Ozone	8-hour (8)	147	Same	235	Same	
Pb	3-month (1)	1.5	Same	1.5	Same	

Table 4.5-1 National (NAAQS) and Massachusetts (MAAQS) Ambient Air Quality Standards

(1) Not to be exceeded

(2) 98th percentile of 1-hour daily maximum concentrations, averaged over 3 years.

(3) Not to be exceeded more than once per year.

(4) 99th percentile of 1-hour daily maximum concentrations, averaged over 3 years.

(5) 98th percentile, averaged over 3 years.

(6) EPA revoked the annual PM10 NAAQS in 2006.

(7) Not to be exceeded more than once per year on average over 3 years.

(8) Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years.

(9) EPA revoked the annual and 24-hour SO₂ NAAQS in 2010. However they remain in effect until one year after the area's initial attainment designation, unless designated as "nonattainment."

Source: http://www.epa.gov/ttn/naaqs/criteria.html and 310 CMR 6.04

The NAAQS consist of primary and secondary standards. Primary standards are intended to protect human health. Secondary standards are intended to protect public welfare from known or anticipated adverse effects associated with the presence of air pollutants, such as damage to property or vegetation. NAAQS have been developed for various durations of exposure. Massachusetts Ambient Air Quality Standards (MAAQS) are codified in 310 CMR 6.04, and generally follow the NAAQS but are not identical (highlighted in bold in Table 4.5-1.

4.5.3 Background Concentrations

To estimate background pollutant levels representative of the area, the most recent air quality monitor data reported by the MassDEP to EPA in their Annual Air Quality Reports was obtained for 2013 to 2015. Data for all pollutant and averaging time combinations were obtained from the U.S. EPA's AirData website.

The Clean Air Act allows for one exceedance per year of the CO and SO₂ short-term NAAQS per year. The highest second-high accounts for the one exceedance. Annual NAAQS are never to be exceeded. The 24-hour PM₁₀ standard is not to be exceeded more than once per year on average over three years. To attain the 24-hour PM_{2.5} standard, the three-year average of the 98th percentile of 24-hour concentrations must not exceed 35 μ g/m3. For annual PM-2.5 averages, the average of the highest yearly observations was used as the background concentration. A new 1-hr NO₂ standard was recently promulgated. To attain this standard, the 3-year average of the 98th percentile of the maximum daily 1-hour concentrations must not exceed 188 μ g/m3.

Background concentrations were determined from the closest available monitoring stations to the proposed development. All pollutants are not monitored at every station, so data from multiple locations are necessary. The closest monitor is at East 1st Street in South Boston, roughly 0.8 miles southeast of the Project Site. However this monitor only samples for NO₂, and SO₂. The next closest monitor is at 174 North Street in Boston, roughly 1.1 miles north-northwest of the Project Site. This monitor samples for PM2.5 only. Finally, the remaining pollutants are measured at Harrison Avenue in Boston, roughly 2.4 miles southwest. A summary of the background air quality concentrations is presented in Table 4.5-2.

Pollutant	Averaging Time	2013	2014	2015	Background Concentration (µg/m³)	NAAQS	Percent of NAAQS
SO2 (1)(6)	1-Hour (5)	36.7	73.4	24.6	44.9	196.0	23%
	3-Hour	42.7	63.7	22.8	63.7	1300.0	5%
	24-Hour	17.0	21.2	11.3	21.2	365.0	6%
	Annual	4.0	4.6	2.1	4.6	80.0	6%
PM-10	24-Hour	34	61.0	28.0	61.0	150.0	41%
	Annual	15.1	13.9	12.4	15.1	50.0	30%
PM-2.5	24-Hour (5)	19.9	14.5	16.8	17.1	35.0	49%
	Annual (5)	8.8	7.1	7.4	7.8	12.0	65%
NO ₂ (3)	1-Hour (5)	88.4	116.6	99.6	101.5	188.0	54%
	Annual	22.9	26.3	28.1	28.1	100.0	28%
CO (2)	1-Hour	2145.3	1963.1	1560.9	2145.3	40000.0	5%
	8-Hour	1375.2	1489.8	1031.4	1489.8	10000.0	15%
Ozone (4)	8-Hour	115.8	106.0	109.9	115.8	147.0	79%
Lead	Rolling 3- Month	0.006	0.014	0.016	0.016	0.15	10%

 Table 4.5-2
 Observed Ambient Air Quality Concentrations and Selected Background Levels

Notes:

From 2013-2015 EPA's AirData Website

(1) SO2 reported ppb. Converted to μ g/m3 using factor of 1 ppm = 2.62 μ g/m3.

(2) CO reported in ppm. Converted to μ g/m3 using factor of 1 ppm = 1146 μ g/m3.

(3) NO2 reported in ppb. Converted to μ g/m3 using factor of 1 ppm = 1.88 μ g/m3.

(4) O3 reported in ppm. Converted to μ g/m3 using factor of 1 ppm = 1963 μ g/m3.

(5) Background level is the average concentration of the three years.

(6) The 24-hour and Annual standards were revoked by EPA on June 22, 2010, Federal Register 75-119, p. 35520.

(7) The E. 1st St. monitor was closed in 2014. Harrison Avenue data used for 2015 SO2 and NO2.

Air quality in the vicinity of the Project Site is generally good, with all local background concentrations found to be well below the NAAQS.

4.5.4 Stationary Sources

Stationary sources of air pollution are typically units that combust fuel. In this case, these sources consist of heating and hot water units and emergency electrical generators. Cooling towers, although not a combustion source, are a source of particulate emissions.

4.5.4.1 Boilers

Building plans may include a number of small condensing boilers for heat and domestic hot water. Typical units are natural gas-fired and located in a penthouse mechanical area on the roof of the building. The units are typically exhausted through individual stacks.

4.5.4.2 Emergency Generators

Plans likely will include emergency generators to be installed on building to be constructed. The units will provide life safety and standby emergency power to the building. Typically, generators operate for approximately one hour each month for testing and general maintenance and as needed for emergency power. The units will likely be diesel-fired and located in a mechanical area on the roof of the building. The generators are to be designed such that exhaust stacks extend at least 10 feet above the individual building roof height above ground level.

4.5.4.3 Cooling Towers

Plans may also call for cooling towers to be installed on the building to be constructed. These units will remove the excess heat generated by the building's mechanical equipment. Typically units are located on the roof of the building.

4.5.4.4 Parking Garage Exhausts

Any below-grade parking will require mechanical ventilation with carbon monoxide sensors and activation. Mechanical ventilation is not required for parking areas that are above ground.

4.5.4.5 Combined Heat and Power

A cogeneration (combined heat and power, CHP) plant may be considered for inclusion in the Project. The unit would provide additional hot water to be distributed to the heating loop, as well as additional standby power in the event of a power outage.

4.5.4.6 Permitting

It is expected that the majority of stationary sources (boilers, engines, etc) would be subject to the MassDEP's Environmental Results Program (ERP).

Boilers are expected to be within the requirements of the ERP since individual estimated heat inputs are within or below the 10 to 40 MMBtu/hour ERP range.

The ERP regulation applies to new emergency generators greater than 37 kW. The regulation is similar to the boiler ERP in that new engines are subject to emission standards, recordkeeping, certification, and compliance with the MassDEP noise policy. Since the generators' likely maximum rating capacity will be greater than the ERP limit of 37 kW, it will be subject to the ERP program. Per the ERP, the generator owner will limit operation of the generator to less than 300 hours per year and submit a certification form to MassDEP within 60 days of installation.

It is expected that any cogeneration units would also be subject to the MassDEP's ERP program for non-emergency engines and turbines if included in the final design.

4.5.5 Mobile Sources

Mobile sources of air pollution include emissions from vehicle traffic associated with the project.

4.5.5.1 BPDA Air Quality Analysis Requirements

BPDA guidelines³ state:

A mesoscale analysis predicting the change in regional emissions of volatile organic compounds ("VOCs") and nitrogen oxides ("NOx") should be performed for projects that generate more than 10,000 vehicle trips per day. The above analyses shall be conducted in accordance with the modeling protocols established by the Massachusetts Department of Environmental Protection ("DEP") and the U.S. Environmental Protection Agency ("EPA").

For the NPC Project, the vehicle trip threshold is not exceeded. Therefore a mesoscale analysis was not required.

BPDA guidelines also state:

A microscale analysis predicting localized carbon monoxide concentrations should be performed, including identification of any locations projected to exceed the National or Massachusetts Ambient Air Quality Standards, for projects in which: 1) project traffic would impact intersections or roadway links currently operating at Level of Service ("LOS") D, E, or F or would cause LOS to decline to D, E, or F; 2) project traffic would increase traffic volumes on nearby roadways by 10% or more (unless the increase in traffic volume is less than 100 vehicles per hour); or, 3) the project will generate 3,000 or more new average daily trips on roadways providing access to a single location.

For this Project, the transportation analysis shows that Project traffic affects intersections currently operating at LOS D or worse, or projected to operate at LOS D or worse for future cases. Therefore a microscale analysis was required.

4.5.5.2 Methodology

Microscale Analysis

The BPDA typically requests an analysis of the effect on air quality of the increase in traffic generated by projects subject to Large Project Review. This "microscale" analysis is typically required for any intersection (including garage entrances/exits) where 1) Project traffic would impact intersections or roadway links currently operating at LOS D, E, or F or would cause LOS to decline to D, E, or F; 2) Project traffic would increase traffic volumes on nearby roadways by 10% or more (unless the increase in traffic volume is less than 100

³ Boston Redevelopment Authority, BRA Development Review Guidelines, 2006

vehicles per hour); or, 3) the Project will generate 3,000 or more new average daily trips on roadways providing access to a single location. The microscale analysis involves modeling of carbon monoxide (CO) emissions from vehicles idling at and traveling through signaled intersections. Predicted ambient concentrations of CO for the Build and No Build cases are compared with federal (and state) ambient air quality standards for CO.

The microscale analysis typically examines ground-level CO impacts due to traffic queues in the immediate vicinity of a project. CO is used in microscale studies to indicate roadway pollutant levels since it is the most abundant pollutant emitted by motor vehicles and can result in so-called "hot spot" (high concentration) locations around congested intersections. The NAAQS standards do not allow ambient CO concentrations to exceed 35 parts per million (ppm) for a one-hour averaging period and 9 ppm for an eight-hour averaging period, more than once per year at any location. The widespread use of CO catalysts on current vehicles has reduced the occurrences of CO hotspots. Air quality modeling techniques (computer simulation programs) are typically used to predict CO levels for both existing and future conditions to evaluate compliance of the roadways with the standards. The analysis for the Project followed the procedure outlined in U.S. EPA's intersection modeling guidance.⁴

The microscale analysis has been conducted using the latest versions of EPA's MOVES and CAL3QHC programs to estimate CO concentrations at sidewalk receptor locations.

Baseline (2016) and future year (2023) emission factor data calculated from the MOVES model, along with traffic data, were input into the CAL3QHC program to determine CO concentrations due to traffic flowing through the selected intersections.

Existing background values of CO at the nearest monitor location at Kenmore Square were obtained from MassDEP. CAL3QHC results were then added to background CO values of 1.3 ppm (one-hour) and 1.1 ppm (eight-hour), as provided by MassDEP, to determine total air quality impacts due to the Project. These values were compared to the NAAQS for CO of 35 ppm (one-hour) and 9 ppm (eight-hour).

The modeling methodology was developed in accordance with the latest MassDEP modeling policies and Federal modeling guidelines.⁵

Modeling assumptions and backup data for results presented in this section are provided in the Appendix C.

⁴ U.S. EPA, Guideline for Modeling Carbon Monoxide from Roadway Intersections; EPA-454/R-92-005, November 1992.

⁵ 40 CFR 51 Appendix W, Guideline on Air Quality Models, 70 FR 68228, Nov. 9, 2005.

Intersection Selection

As stated previously, a "microscale" analysis is typically required for the Project at intersections where 1) Project traffic would impact intersections or roadway links currently operating at LOS D, E, or F or would cause LOS to decline to D, E, or F; 2) Project traffic would increase traffic volumes on nearby roadways by 10% or more (unless the increase in traffic volume is less than 100 vehicles per hour); or, 3) the Project will generate 3,000 or more new average daily trips on roadways providing access to a single location.

Four signalized intersections included in the traffic study meet the above conditions (see Section 3.0). The traffic volumes and LOS calculations provided in Section 3.0 form the basis of evaluating the traffic data versus the microscale thresholds. The intersections found to meet the criteria are:

- the intersection of Sleeper Street and Seaport Boulevard;
- the intersection of Seaport Boulevard, East Service Road, and Pier 4 Boulevard;
- the intersection of Congress Street, B Street, and the Interstate ramps; and
- the intersection of Summer Street and D Street.

Microscale modeling was performed for the intersections based on the aforementioned methodology. The 2016 Existing conditions, and the 2023 No Build and Build conditions were each evaluated for both morning (a.m.) and afternoon (p.m.) peak.

Emissions Calculations (MOVES)

The EPA MOVES computer program was used to estimate motor vehicle emission factors on the roadway network. Emission factors calculated by the MOVES model are based on motor vehicle operations typical of daily periods. The Commonwealth's statewide annual Inspection and Maintenance (I&M) program was included, as well as the county specific vehicle age registration distribution, fleet mix, meteorology, and other inputs. The inputs for MOVES for the existing (2016) and build year (2023) are provided by MassDEP.

All link types for the modeled intersection were input into MOVES. Idle emission factors are obtained from factors for a link average speed of 0 miles per hour (mph). Moving emissions are calculated based on speeds at which free-flowing vehicles travel through the intersection as stated in traffic modeling (SYNCHRO) reports. A speed of 30 mph is used

for all free-flow traffic. Speeds of 10 and 15 mph were used for right (and U-turns, if necessary) and left turns, respectively. Roadway emissions factors were obtained from MOVES using EPA guidance.⁶

Winter CO emission factors are typically higher than summer. Therefore, January weekday emission factors were conservatively used in the microscale analyses.

Receptors & Meteorology Inputs

Sets of up to roughly 185 receptors were placed in the vicinity of the modeled intersections. Receptors extended approximately 300 feet on the sidewalks along the roadways approaching the intersections. The roadway links and receptor locations of the modeled intersections are presented in Figure 4.5-1 through Figure 4.5-4.

For the CAL3QHC model, limited meteorological inputs are required. Following EPA guidance⁷, a wind speed of one meter per second, stability class D (4), and a mixing height of 1,000 meters were used. To account for the intersection geometry, wind directions from 0° to 350° , every 10° were selected. A surface roughness length of 321 centimeters was selected.⁸

Impact Calculations (CAL3QHC)

The CAL3QHC model predicts one-hour concentrations using queue-links at intersections, worst-case meteorological conditions, and traffic input data. The one-hour concentrations were scaled by a factor of 0.9 to estimate eight-hour concentrations.⁹ The CAL3QHC methodology was based on EPA CO modeling guidance. Signal timings were provided directly from the traffic modeling outputs.

For use in the microscale analysis, background concentrations of CO in ppm were required. The corresponding maximum background concentrations in ppm were 1.9 ppm (2,145 μ g/m³) for one-hour and 1.3 ppm (1,490 μ g/m³) for eight-hour CO.

⁶ U.S. EPA, 2010. Using MOVES in Project-Level Carbon Monoxide Analyses. EPA-420-B-10-041

⁷ U.S. EPA, *Guideline for Modeling Carbon Monoxide from Roadway Intersections.* EPA-454/R-92-005, November 1992.

⁸ U.S. EPA, *User's Guide for CAL3QHC Version 2: A Modeling Methodology for Predicting Pollutant Concentrations Near Roadway Intersections.* EPA –454/R-92-006 (Revised), September 1995.

⁹ U.S. EPA, AERSCREEN User's Guide; EPA-454/B-11-001, March 2011.

Seaport Square Boston, Massachusetts

Seaport Square Boston, Massachusetts

4.5.5.3 Air Quality Results

The results of the maximum one-hour predicted CO concentrations from CAL3QHC are provided in Tables 4.5-3 through 4.5-5 for the 2016 and 2023 scenarios. Eight-hour average concentrations are calculated by multiplying the maximum one-hour concentrations by a factor of 0.9.¹⁰

The results of the one-hour and eight-hour maximum modeled CO ground-level concentrations from CAL3QHC were added to EPA supplied background levels for comparison to the NAAQS. These values represent the highest potential concentrations at the intersection as they are predicted during the simultaneous occurrence of "defined" worst case meteorology. The highest one-hour traffic-related concentration predicted in the area of the Project for the modeled conditions (0.3 ppm) plus background (1.9 ppm) is 2.2 ppm. The highest eight-hour traffic-related concentration predicted in the area of the Project for the modeled conditions (0.3 ppm) plus background (1.3 ppm) is 1.6 ppm. All concentrations are well below the one-hour NAAQS of 35 ppm and the eight-hour NAAQS of 9 ppm.

4.5.5.4 Conclusions

Results of the microscale analysis show that all predicted CO concentrations are well below one-hour and eight-hour NAAQS. Therefore, it can be concluded that there are no anticipated adverse air quality impacts resulting from increased traffic in the area.

Intersection	Peak	CAL3QHC Modeled CO Impacts (ppm)	Monitored Background Concentration (ppm)	Total CO Impacts (ppm)	NAAQS (ppm)
1-Hour	_				
Sleeper Street and Seaport	AM	0.2	1.9	2.1	35
Boulevard	PM	0.3	1.9	2.2	35
Seaport Boulevard, East Service Road and Pier 4 Boulevard	AM	0.2	1.9	2.1	35
	PM	0.2	1.9	2.1	35
Congress Street, B Street, and	AM	0.2	1.9	2.1	35
Interstate Ramps	PM	0.2	1.9	2.1	35
	AM	0.3	1.9	2.2	35
	PM	0.2	1.9	2.1	35

Table 4.5-3Summary of Microscale Modeling Analysis (Existing 2016)

¹⁰ U.S. EPA, AERSCREEN User's Guide; EPA-454/B-11-001, March 2011.

Intersection	Peak	CAL3QHC Modeled CO Impacts (ppm)	Monitored Background Concentration (ppm)	Total CO Impacts (ppm)	NAAQS (ppm)
8-Hour					
Sleeper Street and Seaport	AM	0.2	1.3	1.5	9
Boulevard	PM	0.3	1.3	1.6	9
Seaport Boulevard, East Service Road and Pier 4 Boulevard	AM	0.2	1.3	1.5	9
	PM	0.2	1.3	1.5	9
Congress Street, B Street, and Interstate Ramps	AM	0.2	1.3	1.5	9
	PM	0.2	1.3	1.5	9
	AM	0.3	1.3	1.6	9
Summer Street and D Street	PM	0.2	1.3	1.5	9
Notes: CAL3QHC eight-hour impacts were conservatively obtained by multiplying one-hour impacts by a screening factor of 0.9.					

Table 4.5-3 Summary of Microscale Modeling Analysis (Existing 2016) (Continued)

Table 4.5-4Summary of Microscale Modeling Analysis (No-Build 2023)

Intersection	Peak	CAL3QHC Modeled CO Impacts (ppm)	Monitored Background Concentration (ppm)	Total CO Impacts (ppm)	NAAQS (ppm)
1-Hour	1	T		ſ	[
Sleeper Street and Seaport	AM	0.1	1.9	2.0	35
Boulevard	PM	0.2	1.9	2.1	35
Seaport Boulevard, East Service Road and Pier 4 Boulevard	AM	0.2	1.9	2.1	35
	PM	0.2	1.9	2.1	35
Congress Street, B Street, and	AM	0.1	1.9	2.0	35
Interstate Ramps	PM	0.1	1.9	2.0	35
	AM	0.2	1.9	2.1	35
Summer Street and D Street	PM	0.2	1.9	2.1	35

Intersection	Peak	CAL3QHC Modeled CO Impacts (ppm)	Monitored Background Concentration (ppm)	Total CO Impacts (ppm)	NAAQS (ppm)
8-Hour					
Sleeper Street and Seaport	AM	0.1	1.3	1.4	9
Boulevard	PM	0.2	1.3	1.5	9
Seaport Boulevard, East Service Road and Pier 4 Boulevard	AM	0.2	1.3	1.5	9
	PM	0.2	1.3	1.5	9
Congress Street, B Street, and Interstate Ramps	AM	0.1	1.3	1.4	9
	PM	0.1	1.3	1.4	9
Summer Street and D Street	AM	0.2	1.3	1.5	9
	PM	0.2	1.3	1.5	9
Notes: CAL3QHC eight-hour impacts	were con	servatively obtaine	ed by multiplying or	e-hour impacts b	y a screening

Table 4.5-4 Summary of Microscale Modeling Analysis (No-Build 2023) (Continued)

Notes: CAL3QHC eight-hour impacts were conservatively obtained by multiplying one-hour impacts by a screening factor of 0.9.

Table 4.5-5	Summary of Microscale	Modeling Analysis (Build 2023)

Intersection	Peak	CAL3QHC Modeled CO Impacts (ppm)	Monitored Background Concentration (ppm)	Total CO Impacts (ppm)	NAAQS (ppm)
1-Hour					
Sleeper Street and Seaport	AM	0.2	1.9	2.1	35
Boulevard	PM	0.2	1.9	2.1	35
Seaport Boulevard, East Service Road and Pier 4 Boulevard	AM	0.2	1.9	2.1	35
	PM	0.3	1.9	2.2	35
Congress Street, B Street, and	AM	0.1	1.9	2.0	35
Interstate Ramps	PM	0.1	1.9	2.0	35
	AM	0.2	1.9	2.1	35
Summer Street and D Street	PM	0.2	1.9	2.1	35

Intersection	Peak	CAL3QHC Modeled CO Impacts (ppm)	Monitored Background Concentration (ppm)	Total CO Impacts (ppm)	NAAQS (ppm)
8-Hour					
Sleeper Street and Seaport	AM	0.2	1.3	1.5	9
Boulevard	PM	0.2	1.3	1.5	9
Seaport Boulevard, East Service Road and Pier 4 Boulevard	AM	0.2	1.3	1.5	9
	PM	0.3	1.3	1.6	9
Congress Street, B Street, and Interstate Ramps	AM	0.1	1.3	1.4	9
	PM	0.1	1.3	1.4	9
Summer Street and D Street	AM	0.2	1.3	1.5	9
	PM	0.2	1.3	1.5	9

Table 4.5-5 Summary of Microscale Modeling Analysis (Build 2023) (Continued)

Notes: CAL3QHC eight-hour impacts were conservatively obtained by multiplying one-hour impacts by a screening factor of 0.9.

4.6 Noise

The noise analysis presented in the 2009 DPIR/DEIR concluded that the proposed buildings would not have a significant impact on the existing acoustical environment. The only substantive change to the Project, where the noise analysis is concerned, is that some of the buildings will be taller than they were previously proposed to be. These buildings can be presumed to have a lesser acoustical impact, because their rooftop mechanical equipment, which is essentially the same as the equipment previously studied, is located farther from ground-level receptors.

4.7 Tidelands: Chapter 91 and the South Boston Municipal Harbor Plan

As described in detail in the DPIR and the Final Environmental Impact Report filed with the MEPA Office for the 2010 Project, portions of the Project Site are located on Commonwealth Tidelands and subject to the licensing requirements of Chapter 91 of the Massachusetts General Laws, as modified by the South Boston Waterfront District Municipal Harbor Plan. The South Boston Waterfront District Municipal Harbor Plan. The South Boston Waterfront District Municipal Harbor Plan, which was originally submitted by the BRA in July 2000 and approved by the Secretary of the Executive Office of Energy and Environmental Affairs ("EOEEA Secretary") in December 2000 (as subsequently amended and renewed, the "SBWMHP"), allows for certain

deviations (substitute provisions) from the requirements of Chapter 91, so long as additional public benefits (offsets) are provided. This section describes the Project's compliance with Chapter 91 and the SBWMHP to date, and provides an update on Block G, the last remaining undeveloped Block within Chapter 91 licensing jurisdiction.

The entirety of the Project Site is within landlocked tidelands, as defined in Chapter 91, and is therefore subject to review by the EOEEA Secretary and the issuance of a Public Benefits Determination pursuant to *An Act Relative to Licensing Requirements for Certain Tidelands*, Chapter 168, Section 8 of the Acts of 2007 (the "Landlocked Tidelands Legislation").

On August 13, 2010, the EOEEA Secretary issued a Public Benefits Determination for the 2010 Project (the "Public Benefits Determination"), which found that the 2010 Project provided public benefits that were appropriate for its impacts on landlocked tidelands. Since the issuance of the Public Benefits Determination, Block A, Block B, Block H, and Block M have each received Chapter 91 licenses allowing the development of the portions of those Blocks within licensing jurisdiction. Within the NPC Project Site, only a portion of Block G is subject to Chapter 91 jurisdiction, and the lot coverage, height, and dimensions of the portions of the building within Chapter 91 jurisdiction are generally unchanged from the building proposed in the 2010 Project. The MEPA Notice of Project Change ("MEPA NPC") will provide an update on the delivery of the public benefits described in the Public Benefits Determination to date, and a description of the public benefits to be provided in connection with the Remaining Blocks.

Although this NPC proposes no material changes to the portion of the NPC Project within Chapter 91 jurisdiction, the NPC Project includes significant enhancements to the public realm that will increase the public's access to and enjoyment of Boston Harbor and Fort Point Channel.

4.7.1 Block G

Approximately 5,500 square feet of Block G at grade and approximately 8,000 square feet of subsurface rights is located seaward of or within the former layout of Northern Avenue, and within 250 feet of the high water mark, as shown on Figure 4.7-1 and is thus subject to the licensing requirements of Chapter 91.

4.7.1.1 Section 18 Standards

Block G is within the Fort Point Waterfront Subdistrict of the Harborpark District (the "Fort Point Waterfront"), and therefore subject to the requirements detailed in Section 42E-5 of the City of Boston Zoning Code (the "Code") for the BPDA's issuance of a Section 18 finding for the Chapter 91 licensing of Block G. Section 42E-5.1 sets forth several considerations to guide the BPDA's conclusion that a project within the Fort Point Waterfront will not be detrimental to the public's rights in tidelands.

Seaport Square Boston, Massachusetts

The Project meets the standards set forth in Section 42E-5.1(a) and (b), and Section 42E-5.2, by significantly enhancing and preserving visual and physical access to the South Boston Waterfront and Fort Point Channel. As set forth in detail in this NPC, the NPC Project provides significant new open spaces, promenades, and a network of other pedestrian improvements linking Summer Street, Congress Street, the Fort Point neighborhood and the rest of the Seaport to the water. Although Block G does not contain frontage on the waterfront, the introduction of Harbor Way will guide pedestrians through an attractive system of open spaces and pedestrian improvements, toward the Harborwalk and the water's edge.

4.7.1.2 Compliance with Chapter 91 Regulations and South Boston Municipal Harbor Plan

Consistent with the 2010 Project filings, the project planned for Block G has been designed to comply with the requirements of Chapter 91 and the Municipal Harbor Plan, as described below. More detail will be provided during the Chapter 91 licensing process.

Lot Coverage/Open Space. The Chapter 91 regulations, 310 CMR 9.00 et seq., contain numerical standards, the combined effect of which is to limit the site-coverage for non-water-dependent buildings on Commonwealth Tidelands so that at least 50% of the project site consists of exterior open spaces for active or passive public use and enjoyment. Open space is required to be provided concurrent with development impacts.

The substitute provision adopted in the SBWMHP permits 100% lot coverage on the portion of Block G within jurisdiction, so long as additional open space is provided either on-site (at a ratio of 1:1) or off-site (at a ratio of 1:1.25). In a clarification of the SBWMHP dated May 18, 2012 (the "SBWMHP Clarification"), the EOEEA Secretary confirmed that the Project could provide off-site open space as an offset for lot coverage over 50%; the "location and sequencing of off-site open space offsets for parcels within Chapter 91 jurisdiction should be determined by proximity and concurrency." The SBWMHP Clarification noted that the "Seaport Square project provides for all of the public open spaces environed in the Secretary's Decision [approving the SBWMHP] and expands upon them to provide additional public open spaces within the project site."

The projects constructed or to be constructed on Blocks A, B, H, and M satisfied their open space requirements on site. The Chapter 91 licenses for Blocks A, B, H, and M contemplated that the BPDA would track the open space provided by the Project prior to or concurrent with the development of the Blocks being licensed, to insure that sufficient offsets were provided to offset the substitute provision allowing 100% lot coverage. Each Chapter 91 License contains plans that include a tally of open space aggregated within the Project at the time of licensing. The license for Block M, the most recent license to issue, calculates that the Project has provided 124,161 sf of open space in excess of the quantity required for Blocks A, B, H, and M.

Block G, which is expected to require approximately 2,750 square feet of open space to offset lot coverage above 50%, will comply with the open space offset requirements of the SBWMHP by providing open space through its public realm improvements along adjacent streets, and, if necessary, may draw upon the significant excess open space already delivered by the Project.

Facilities of Private Tenancy. As described in the DPIR, the SBWMHP Decision requires that any ground floor uses that are accessory to Facilities of Private Tenancy will be limited to 20% of the building footprint. On Block G, the primary ground floor uses – as well as the second floor – will be Facilities of Public Accommodation, with less than 20% of the ground floor devoted to private uses. The SBWMHP also prohibits residential lobbies and entrances from fronting along the water side of buildings. The Block G building will comply with that regulation.

Height. The Chapter 91 regulations at §9.51(3)(e) limit the height of new or expanded buildings to 55 feet if located within 100 feet of the project shoreline. At greater landward distances, the height of such buildings is limited to 55 feet plus one-half foot for every additional foot of separation from the project shoreline.

The substitute provision adopted in the SBWMHP Decision provides Block G with a maximum height of 250 feet within Chapter 91 jurisdiction, which was the height proposed for Block G in the 2010 Project approvals. No change to the maximum height of the portion of the Block G building within jurisdiction is proposed in this NPC.

To compensate for wind, shadow and other potential adverse impacts to water-related public interests caused by substitute height provisions, the SBWMHP provides a formula that quantifies both the degree of impacts and the level of offsets required. Under this formula, height-related impacts beyond those under a Chapter 91 compliant height are quantified as the net area within a designated Shadow Protection Zone (SPZ) that would receive net new shadow for over an hour on October 23. The Proponent will provide a preliminary shadow study in the MEPA NPC and a final study calculating the amount of net new shadow and corresponding offsets during the Chapter 91 licensing process for Block G.

4.7.2 The Landlocked Legislation: Public Benefits Determination

As noted above, the EOEEA Secretary issued a Public Benefits Determination for the 2010 Project on August 13, 2010, which found that the extensive public benefits of the project were appropriate in light of the project's impacts on landlocked tidelands. Since that time, the previous proponent, together with the developer of each of the Developed Blocks, has submitted Notices of Intent to Commence Construction on Landlocked Tidelands to MassDEP in conjunction with the development of individual blocks. Those notices have provided updates on the status of construction of buildings and the public realm

improvements assigned to each Block pursuant to the approvals for the 2010 Project. Through the filing of the MEPA NPC, the Proponent will seek a Public Benefits Determination from the EOEEA Secretary for the changes to the Project described herein.

4.8 Flood Hazard Zones/Wetlands

The NPC does not propose a change to the location of the Project. However, since the filing of the 2009 DPIR/DEIR, the Federal Emergency Management Agency has updated the Flood Insurance Rate Map for Suffolk County (Map Number 25025C0081J). Portions of the Project Site are now shown to be located in Land Subject to Coastal Storm Flowage (100-Year Floodplain), as defined in the Massachusetts Wetlands Protection Action (M.G.L. c. 131 Sec. 40) and the Wetlands Protection Act Regulations (310 CMR 10.00). Development of the affected blocks will be reviewed by the Boston Conservation Commission.

4.9 Geotechnical/Groundwater

A variety of foundation systems have been installed based on the specific structural and below-grade space requirements for each building, including footing and mat foundations supported in marine clay, wood piles, deep piles to bedrock (Precast or steel H-piles), slurry wall, drilled shafts (caissons), and pressure injected footings. Similar systems will be used for the future development Blocks. Protection of existing utilities has been considered in development of the design and construction methodology for the Project.

Design criteria and construction methodologies that protect groundwater will be selected depending on planned basement depths. These include perimeter groundwater cut-off walls around below-grade garages and no permanent dewatering or perimeter drainage systems which could result in groundwater lowering. Removal of any hazardous waste will be conducted in accordance with applicable regulations.

4.9.1 Subsurface Geotechnical Conditions

As was described in the 2009 DPIR/DEIR, the Project is located in an area of South Boston that was filled during the 1800s. Historically the area was developed for railroad and other associated uses. Numerous subsurface investigations have been under taken on the various parcels providing a comprehensive understanding and revealing relatively consistent geologic conditions.

Subsurface conditions are generally characterized as shown in Table 4.9-1.

Table 4.9-1Subsurface Soils

Generalized Description	Depth to Top of Layer (ft)	Thickness of Layer (ft)
Fill	-	3 to 5
Hydraulic Fill/Organic Silt	3 to 5	15 to 25
Silty Sand/Sandy Silt	20 to 25	5 to 15
Marine Clay	30 to 35	65 to 100
Glacial Till	110 to 150	0 to 25
Bedrock	125 to 170	

4.9.2 Foundation Methodology and Below-Grade Construction

A range of building geometries and basement configurations has been constructed for the Project to date. A variety of foundation systems have been installed based on the specific structural and below-grade space requirements for each building, including footing and mat foundations supported in marine clay, wood piles, deep piles to bedrock (Precast or steel H-piles), slurry wall, drilled shafts (caissons), and pressure injected footings. Similar systems will be used for the future development Blocks.

Several significant infrastructure facilities are present near the Project. These include utilities and the MBTA Silver Line tunnel below Seaport Boulevard extending south to Congress Street. Protection of these structures and facilities has been considered in development of the design and construction methodology for the Project. The measures include stiff, waterproof excavation support systems and permanent foundation walls to mitigate potential off-site impacts, use of non-vibration generating systems such as slurry wall construction, and groundwater cut-off criteria to not impact area groundwater levels.

Prior to construction an instrumentation and monitoring program will be implemented, similar to what has been used for the other Seaport Blocks during construction. The program will include preconstruction condition surveys of adjacent buildings and the MBTA tunnel, movement monitoring of critical adjacent structures, vibration monitoring as needed, and groundwater level monitoring.

4.9.3 Groundwater Conditions

Groundwater monitoring wells exist within the Seaport Square area and are installed as needed for each development parcel. Groundwater levels are uniform across the area and generally encountered within depths of approximately 10 feet below the ground surface. Design criteria and construction methodologies that protect groundwater will be selected depending on planned basement depths. These include perimeter groundwater cut-off walls around below-grade garages and no permanent dewatering or perimeter drainage systems which could result in groundwater lowering. Temporary construction dewatering will be conducted under appropriate discharge permits.

4.9.4 Groundwater Conservation Overlay District

Most of the Project (except for Blocks H, J, K, and Q) is located outside of the Fort Point Waterfront Subdistrict of the Groundwater Conservation Overlay District (GCOD). The parcels within GCOD have been developed. Remaining parcels are outside of the GCOD.

4.10 Hazardous and Solid Waste

4.10.1 Hazardous Waste

Phase I Environmental Site Assessments (ESAs) have been completed for each development Block. Historically the area was developed for railroad and associated uses. Environmental studies, including chemical testing of soil and groundwater for the presence of Oil and Hazardous Materials (O&HM), have been conducted for each development Block prior to construction to understand specific environmental conditions related to the urban fill soils. Chemical test results on soil samples indicate the presence of contaminants, typical of urban fill materials. Groundwater testing has not indicated elevated concentrations of contaminants in groundwater. Testing of soil and groundwater will be conducted prior to construction on each new development Block to characterize materials to be excavated. Removal of any hazardous waste will be conducted in accordance with applicable laws.

Environmental reporting to the Massachusetts Department of Environmental Protection (MassDEP) of releases, response actions, and soil management activities is conducted in accordance with applicable regulations under the Massachusetts Contingency Plan (MCP) 310 CMR 40.000.

4.10.2 Solid Waste

The 2009 DPIR/DEIR characterized and quantified the solid waste that would generated by the Project. With the changes to the building program, the amounts of waste have increased, as shown in Table 4.10-1.

As described in the 2009 DPIR/DEIR, a loading area will be provided on the ground floor of the residential and hotel buildings. For the residential buildings, recycling and trash chutes will be provided on each floor. Trash will be collected in a dedicated area in a ground floor loading area until pick up by licensed contractor. Solid waste and recycling from the retail and restaurant components will be stored in dedicated areas of the ground floor loading area. A private trash collector will pick up trash as needed.

Use Type	Generation Rate	2010 Program/Number of Rooms	2010 Solid Waste (tons per year)	2016 Program/Number of Rooms)	2016 Solid Waste (tons per year)
Studio / One Bedroom Units	4 lbs/bedroom/day	1,125 units 1,125 bedrooms	821	1,451 1,451 bedrooms	1,059
Two Bedroom Units	4 lbs/bedroom/day	875 units 1,750 bedrooms	1,278	1,129 2,258 bedrooms	1,648
Three Bedroom Units	4 lbs/bedroom/day	500 units 1,500 bedrooms	1,095	645 1,935 bedrooms	1,413
Hotel	4 lbs/bedroom/day	550 rooms	402	1,230 rooms	898
Office / Cultural	1.3 tons/1,000 sf/year	1,900,000 sf	2,470	2,416,200 sf	3,141
Commercial / Retail / Restaurant	5.5 tons/1,000 sf/year	1,300,000 sf	7,150	1,077,400 sf	5,926
TOTAL			13,216		14,085

Table 4.10-1 Solid Waste Generation – 2010 vs. 2016*

* The development program is approximate and may continue to vary as the Project evolves.

4.11 Construction Impacts

The 2009 DPIR/DEIR included a plan to manage construction activities so that they would not adversely affect either quality of life or the environment. The plan include such matters as air quality, noise, construction staging, construction worker parking, truck traffic and deliveries, excavation, solid waste management and recycling, erosion control, coordination with City departments, rodent control, and public safety and access. The Proponent does not propose changes to these elements of the plan.

The plan also included a schedule for the development of the Project, which assumed that Project construction would be done in phases, would begin in 2011, and would be substantially complete in 2019. Table 4.11-1, present the schedule as it has been updated to reflect construction activity that has occurred or is underway and the phasing plan for the remaining blocks. Project phasing is described more fully in Section 1.9.

Phase	Location	Status
Phase 1	Blocks A, K, and L1	Completed 2015
Phase 2	Block H	Completed 2016
Phase 3	Block B, C, and J	Completion in 2017
Phase 4	L2	Completion in 2018
Phase 5	Block M	Completion in 2019
Phase 6	Block D, F, and P	Completion projected in 2020
Phase 7	Blocks L3-L6	Completion projected in 2021
Phase 8	Blocks G and N	Completion in 2022

 Table 4.11-1
 Construction Schedule

Chapter 5.0

Sustainable Design and Climate Change Preparedness

5.0 SUSTAINABLE DESIGN AND CLIMATE CHANGE PREPAREDNESS

5.1 Sustainable Design

The 2009 DPIR/DEIR included Leadership in Energy and Environmental Design (LEED) checklists for the LEED ND [Neighborhood Development], LEED NC [New Construction], and Core and Shell Development.

Since the review of the 2009 DPIR/DEIR, the Project has been certified at the Gold level under LEED ND.

In addition, individual buildings have achieved, or will achieve, the following LEED statuses:

- The Envoy Hotel on Block A is LEED Certifiable;
- The buildings on Blocks B and C are targeting LEED Silver;
- District Hall on Block F is certified LEED Silver;
- The buildings on Block H are LEED Certifiable;
- The Yotel building on Block J is targeting LEED Silver;
- The Watermark building on Block K is targeting LEED Gold;
- 101 Seaport on Block L1 is certified LEED Platinum;
- 121 Seaport on Block L2 is targeting LEED Platinum; and
- The buildings on Block M are targeting LEED Silver.

5.2 Climate Change Preparedness

At Seaport Square, compact development, a balanced mix of uses, the opportunity to locate homes and employment near one another, pedestrian- and bicycle-friendly accommodations, and host of measures incorporated into building design and construction will all serve to minimize the Project's greenhouse gas emissions. Nevertheless, the effects of climate change will impact the Project Area, and the Proponent places a high priority on preparing the Project to face them. Climate change conditions considered by the Project team include sea level rise, higher maximum and mean temperatures, more frequent and longer extreme heat events, more frequent and longer droughts and more severe rainfall events. The expected life of the Project is approximately 50 years. Therefore, the Proponent planned for climate-related conditions projected 50 years into the future. A copy of the Climate Change Checklist is included in Appendix D. Because the NPC Project is conceived at the master planning level, the responses to the Checklist are necessarily preliminary.

5.2.1 Extreme Heat Events

According to "Climate Ready Boston," the City of Boston can expect that the number of days with temperatures greater than 90°F will increase from the current 11 days annually experienced between 1971 and 2000, to between 25 and 90 days annually by 2070, depending on the extent of greenhouse gas emissions over the next several decades.¹ Extreme heat can have serious negative impacts on human health and infrastructure, both of which will affect quality of life. The Project design will incorporate a number of measures to minimize the impact of high temperature events, including:

- Addressing solar gain through building orientation;
- Choosing windows and glazing that minimize solar gain;
- Including façade commissioning to identify source of heat loss;
- Installing operable windows where possible;
- Planting shade trees in open spaces on the Project Site;
- Specifying plant materials that tolerate higher temperatures;
- Installing high performance building envelopes to minimize energy requirements to cool buildings; and
- Specifying high albedo roofs and green roofs, where practicable, to minimize the heat island effect.

5.2.2 Sea Level Rise and Future Storms

According to Climate Ready Boston, by 2030 sea level may be as much as eight inches higher than it was in 2000 and could be as high as seven feet higher by 2100. As described in "Climate Change and Extreme Weather Vulnerability Assessments and Adaptation Options for the Central Artery" recently released by MassDOT (the "MassDOT Report"),

¹ Climate Ready Boston, December 7, 2016.

"one of the challenges presented by the wide range of SLR projections is the inability to assign likelihood to any particular [SLR] scenario."² To be conservative, in the year 2070, SLR could be as high as approximately four feet.

Combined with storm surge at an inopportune tide, flooding would be anticipated to occur at the Project Site.³ The storms in the Boston area that could create these flood conditions would be Nor'easters and tropical storms. In 2017, hurricanes occur less frequently than Nor'easters; however, in the future according to the MassDOT Report, it is anticipated that there will be roughly the same number of tropical storms impacting the Boston area as Nor'easters. In addition, the intensity of storms is anticipated to increase. The risks of each type of storm differ: hurricanes are typically shorter in duration, but are more intense and create a larger storm surge; Nor'easters are longer in duration, but created a smaller storm surge. For this reason, a hurricane would need to impact Boston within a short window to create flooding as shown in the MassDOT Report, while Nor'easters are more likely to create flooding given that they have a higher probability of impacting the area during the rising tide and high tide.

The new FEMA FIRM map that includes the Project Site shows that portions of the NPC Project Site – Blocks D, F, G, M, N, and L – may be affected by flooding in a 100-year storm event. In addition, the MassDOT Report shows that in 2070, the Project site has up to a 50% chance of flooding annually, with the lowest annual change anticipated at the corner of East Service Road and Congress Street, and the highest annual chance anticipated along Boston Wharf Road, Northern Avenue, and the corner of Seaport Boulevard and B Street. The 100-year flood in 2070 is projected to cause flood levels of approximately 0.5 to 4 feet above ground level, with the lowest anticipated depth at the corner of East Service Road and Congress Street, and the highest anticipated depth along Boston Wharf Road, Northern Avenue, and the corner of Seaport Boulevard and B Street. Taking that into account, along with sea level rise and the projected greater intensity of future storms, the Project includes measures to minimize the impact of potential flooding at the site, including the following:

• Managing water on site through measures such as graywater systems, water detention, and permeable materials;

² Massachusetts Department of Transportation, et al. "MassDOT-FHWA Pilot Project Report: Climate Change and Extreme Weather Vulnerability Assessments and Adaptation Options for the Central Artery." November 2015.

³ The MassDOT Report, funded by the Federal Highway Administration, studied the impact of sea level rise and future storm impacts related to climate change on the Central Artery in Boston. As part of this project, a hydrodynamic model was developed for Boston Harbor, including inland areas that cover portions of Boston, including the Project site. The report states that the model is able to provide sitespecific information about the risk of potential future flooding in the years 2030, 2070 and 2100 related to storm events, in particular Nor'easters and tropical cyclones (i.e., hurricanes).

- Locating critical mechanical equipment and residential uses above the potential flood level;
- Using flood barriers movable or permanent, as appropriate to prevent water from entering parking garages, ground floors, and other low lying portions of the site;
- Where practicable, both the lobbies and public spaces of the Project will be raised above the potential flood elevation for applicable blocks;
- Designing higher ceiling heights on ground floors to allow flexibility to adapt to sea level rise;
- Installing water-tight conduits;
- Enhancing building resilience through back-up outlet circuits, high performance buildings, and cool rooms; and
- Incorporating salt tolerant plant materials in flood prone open spaces.

5.2.3 Rain Events

As a result of climate change, the Northeast is expected to experience more frequent and intense storms, as discussed above, and greater annual precipitation. To mitigate this, the Proponent will take measures to minimize stormwater runoff and protect the Project's mechanical equipment. The Project will be designed to reduce the existing peak rates and volumes of stormwater runoff from the site, and promote runoff recharge to the greatest extent practicable. The Project will increase the pervious area on the site from the existing condition, by replacing paved parking lots with landscaped open space; this change will allow significant volumes of e infiltration on the Project Site. Additional measures include:

- Planting green roofs where practicable;
- Incorporating pervious materials;
- Increasing stormwater detention;
- Locating critical mechanical and electrical equipment at the highest elevation possible to prevent exposure to flood waters; and
- Locating the backup generators above the potential flood elevation.

5-4

5.2.4 Drought Conditions

Although more intense rain storms are predicted, extended periods of drought are also predicted due to climate change. Plans for Seaport Square anticipate extended periods of below normal rainfall. Measures to be incorporated in the Project may include the following:

- specifying drought tolerant native and adaptive plant materials
- Installing high efficiency irrigation systems;
- Using non-potable water for irrigation, where feasible;
- Choosing appliances and plumbing fixtures for their water conservation characteristics, and

5-5

• Using graywater to conserve potable water supplies.

Chapter 6.0

Urban Design

6.0 URBAN DESIGN

6.1 Urban Design Context

The development plan outlined in the NPC sets forth a vision for the future development of the Seaport District, an area that has witnessed tremendous growth in the past 15 years. Located in central proximity to the Financial District, South Station, the vibrant and historic Fort Point neighborhood, the BCEC, and Boston Harbor, the Seaport District is emerging as a great 21st century neighborhood of Boston.

The Seaport District is well connected to downtown by major vehicular arterials, including Summer Street, Congress Street, Seaport Boulevard, and Northern Avenue. Despite this, legible pedestrian connectivity within the Seaport District and from the southern portions of the Seaport District to the water's edge remains challenging, especially from the elevated roadway grade of Summer Street and areas south of Summer Street. The Proponent envisions a major opportunity to remedy this longstanding challenge by creating a central organizing pedestrian spine connecting Summer Street and the area beyond directly to the water's edge and facilitating connections between the Seaport's many civic and cultural assets—the Institute of Contemporary Art (ICA), the BCEC, the Fort Point Channel Landmark District, the Lawn on D, and in particular the Harborwalk and the many transportation and recreation opportunities afforded by the Seaport's proximity to Boston Harbor, as shown in Figure 6-1.

The NPC Project plan represents an opportunity to address the Seaport's pedestrian connectivity and public realm challenges by proposing a cohesive plan for a vibrant mixeduse district anchored by a strong and pedestrian-oriented public realm framework. The NPC Project will create a memorable civic experience in the heart of the Seaport District, as well as dramatically improve the pedestrian experience within the Seaport District and connectivity to the water's edge.

6.2 **Project Evolution**

In 2010, The Boston Redevelopment Authority approved a Planned Development Area (PDA) for the 33-acre Seaport Square Project. The PDA envisioned a mixed-use development framework as a series of towers set back from full block podia alongside a set of green lawns and tree-lined streets. While much of the urban design intent and specific parcelization embodied in the 2010 PDA remains intact as part of the NPC Project, specific elements of the 2010 PDA are modified in the updated NPC Project to further enhance the public realm in the Seaport.

6.2.1 Circulation

The 2010 PDA conceived Harbor Street as a partial street to provide vehicular access to Blocks L3 through L6, serving in part as a private cul-de-sac that created a ring road around a green space within the L-Blocks. Most impactfully from an urban design perspective, Harbor Street connected to the Summer Street viaduct by way of an elevated vehicular bridge over Congress Street. While at the time this idea was conceived in 2006-2007, Congress Street in Fort Point was not well-amenitized with pedestrian amenities, today Congress Street in Fort Point is among the most vibrant and bustling streets in the entire Seaport and is a regional culinary destination. This transformation of Congress Street from a largely lifeless and utilitarian vehicular thoroughfare to an attractive and vibrant pedestrian environment calls for a revised approach to the transition between Congress Street in the Fort Point Channel Landmark District and the new Seaport development area. The previously approved construction of a vehicular bridge over this important pedestrian corridor would have created a major visual and psychological barrier between the new Seaport development area and the Fort Point Channel Landmark District, and from today's perspective would be an entirely inappropriate way to mark the transition between the rich character of the historic Fort Point urban fabric and the energy and retail density of the newly developed mixed-use Seaport project. As a result of these urban design considerations and the very low vehicular volume projected to make use of the elevated roadway into the L-Blocks, the NPC Project proposes to re-conceive Harbor Street as Harbor Way, a pedestrian- and bicycle-oriented "walk to the sea" that strengthens the Seaport District's connection to the water's edge, extending from Summer Street near the BCEC to the Boston Harborwalk. The proposed pedestrian link will occur at grade, rather than on elevated on a viaduct, and will make the 24-foot vertical transition from Summer Street to Congress Street at the Grand Stair between Blocks N and P. This transition over a 10-year period from a vehicular connection to a pedestrian axis is emblematic of the evolution in thinking about the most effective approach to managing traffic congestion in the Seaport District – rather than constructing more elevated roadways, the NPC Project proposes to create a major pedestrian thoroughfare that will be well-used by commuters, residents, and visitors alike.

6.2.2 Public Realm

The 2010 Project's public realm amenities, while meaningful individually, are often discontinuous when viewed through a district-wide lens, and composed in part of internalized and passive green spaces such as Seaport Hill, which would have served mostly as a front lawn for the buildings encircling it due to its second story elevation and encirclement by a vehicular roadway. The NPC Project seeks to establish a more legible, cohesive, and diverse network of public open spaces. In addition to the district-wide pedestrian connection offered by Harbor Way, each of the District's major thoroughfares (Seaport Boulevard, Northern Avenue, Pier 4 Boulevard, and Boston Wharf Road) has been designed to create bold and enticing streetscapes that both unify the District and create moments of surprise for pedestrians who walk along their length. While a hierarchy of

pedestrian connectivity is implied by the creation of Harbor Way, the Proponent recognizes that all of the major vehicular thoroughfares crisscrossing the district require improvement in terms of pedestrian amenities and streetscape quality. The NPC Project proposes a series of improvements to these major thoroughfares as further enhancements to the overall public realm in the district.

6.2.3 Building Massing

The NPC Project seeks to leverage opportunities to create strong and legible public realm experiences not only in plan view but also as three-dimensional "urban rooms" defined by sculpted building massing and thoughtful adjacencies of building types and massing designed to articulate a new urban experience and skyline while maximizing sunlight and skylight in major public spaces, as shown on Figures 6-2 and 6-3.

Expanding upon themes of the original PDA, the NPC Project also incorporates guidelines and strategies for resilience planning, sustainability, and program diversity. The NPC Project presents a re-envisioned framework for the remaining development in the Seaport District, with a similar series of smaller scaled development blocks, a powerful pedestrian promenade that benefits from thoughtful and coordinated massing strategies and that serves as an organizing feature for the entire district.

The Proponent intends that the zoning envelopes included in the Amended & Restated PDA Development Plan will inform and guide the massing of the remaining development parcels to create groupings of buildings that, despite having different architectural styles, materials vocabulary, and design ethos, nonetheless respect the Proponent's desire to create high quality and enjoyable public spaces at the groundplane surrounding these buildings.

6.3 Urban Design Framework

Key elements of the NPC Project's urban design framework include a number of important objectives: the creation of a series of porous, smaller-scaled blocks and retail storefronts similar to those in the Fort Point neighborhood; introduction of a powerful pedestrian promenade through the Project Area from Summer Street and areas beyond all the way to the water's edge; the transformation of key vehicular thoroughfares to more pedestrian- and bicycle-friendly ways without reducing vehicular throughout capacity; the creation of a network of civic and cultural destinations; and the implementation a dynamic, coordinated massing strategy for remaining development sites. The Urban Design Framework is shown on Figure 6-4.

6.3.1 Pedestrian Promenade to the Sea

The 2010 Project conceived Harbor Street as a vehicular street to provide vehicle access to the interior of Blocks L3 through L6, as well as a small volume of traffic destined for Boston Wharf Road and East Service Road. The NPC Project, which includes the proposed Harbor

THE DISTRICT

It is at the scale of the District that one understands the monumental Urban Room, a defining form that connects the elevated Summer Street to the waterfront along Harbor Way. The upper stories of the four L blocks, N and P step back and/or are shaped to mitigate prevailing winds and hold daylight on stair and square.

THE BUILDING BASE

Above the two-story base, the building steps back for a scale more appropriate for residential or commercial use. This middle scale is an essential response to sun angles, and offers an elevated ground plane for mid-level green space.

THE PLAZA

The ground plane is malleable at its edges, able to support retail at a variety of scales, with seasonal public activities. Buildings are angled to from the approach points, with the narrower allies opening up to a central plaza.

Way pedestrian connection, creates a strong physical and visual axis punctuated by a series of unique moments and experiences—from a Grand Stair at Summer Street, to the Harbor Square urban piazza surrounded by Blocks L3 through-L6, to the intimate retail corridors extending to the Harbor. This vision eliminates a bridge over Congress Street that was proposed in the 2010 Project, maintaining Congress Street's 19th century streetscape scale and texture and dramatically improving the quality of the public realm. Pedestrian connectivity is enhanced by lateral retail ways that extend from Harbor Square to surrounding streets to further enhance and knit together the surrounding parcels and public realm amenities such as Sea Green and the Block M retail amenities.

6.3.2 Signature Public Spaces

The 2010 Project's public realm amenities, while meaningful individually, are often discontinuous when viewed through a district-wide lens, and composed in part of internalized and passive green spaces such as Seaport Hill, which would have served mostly as a front lawn for the buildings encircling it due to its second story elevation and encirclement by a vehicular roadway. The NPC Project seeks to establish a more legible, cohesive, and diverse network of public open spaces. The pedestrian Harbor Way will become a major public destination and complete an important connection between Summer Street and the water's edge, forming the "Harbor Loop," a 1.5 mile walk that combines the beauty of Boston Harbor with the architectural character of historic Fort Point with the energy and retail vibrancy of Harbor Way through the heart of the Seaport District. Harbor Way will also be interspersed with and provide connections to a number of signature public spaces throughout the Seaport District such as Seaport Common, Sea Green, the Block M Courtyard, and various cultural and civic uses that today feel disconnected due to lack of direct pedestrian- and bicycle-oriented linkages. The central open space on the Blocks L3 through L6 and the Grand Stair between Blocks N and P will serve as both captivating visual features and nodes of intense urban activity, and will provide nodes of interest that complement the major pedestrian axis of Harbor Way. The combination of Harbor Way and Harbor Square is envisioned to host a myriad of public events and programs that will add community life and interest to these public open spaces throughout the year and at different times of day. Fundamentally, the NPC Project's vision is to create a major new piece of public realm that all Bostonians can enjoy and that will become a signature of the Seaport district that is used and enjoyed by residents and visitors alike.

6.3.3 Improvements to Key Thoroughfares

Each of the major thoroughfares (Seaport Boulevard, Northern Avenue, East Service Road, and Boston Wharf Road) has been designed to create bold and enticing streetscapes as part of the NPC Project's implementation. Improvements to these thoroughfares have already begun as part of the 2010 Project, but the NPC Project enhances these improvements and responds directly to the Proponent's belief that great neighborhoods have to start with great streetscapes and pedestrian-oriented roadway sections. New development, active uses and

a new signature streetscape design led by the landscape architect of New York's High Line park will reshape Seaport Boulevard, in particular, transforming it from an auto-dominated thoroughfare into a pedestrian-oriented and bicycle-friendly urban destination in its own right. East Service Road and Boston Wharf Road will be lined with bustling retail, café seating, street trees and furniture and will continue to provide access to pedestrians, bicycles and vehicles. Boston Wharf Road will lose on-street parking in favor of new buffered bike lanes on both sides of the street.

6.3.4 Coordinated, Dynamic Massing Strategy

Blocks L3 through L6 in combination with Blocks N and P have been carefully massed to create a series of upper-level "urban rooms" — an ever-changing frame of the sky as one moves along Harbor Way. The revised massing strategy also sculpts the proposed buildings to maximize sunlight in the major public spaces while preserving realistic floorplates and appropriate distances between buildings. Special attention has been given to the view down Congress Street toward Blocks N and P so as to establish an anchor at its eastern visual terminus at the Grand Stair and provide a visual inflection point toward the Harbor so that pedestrians traveling east from within the Fort Point District have a wayfinding point at which there is a direct connection both visually and in terms of landscape cues to the water's edge. Furthermore, the removal of the previously approved vehicular bridge over Congress Street opens up views from the east into the Fort Point Channel Landmark District, ensuring good pedestrian legibility between the newly developed Seaport parcels and the historic character of buildings and many local businesses located in historic Fort Point.

6.4 Connectivity as a Public Benefit

The NPC project improves the quality and connectivity of the public realm and the distribution of civic and cultural uses within the Seaport District. Harbor Way and Harbor Square replace the 2010 PDA-proposed vehicular bridge connection to Seaport Hill Green to create a new retail-lined, pedestrian-oriented "walk to the sea." This major organizing element will provide continuous pedestrian connectivity from Summer Street all the way to the water's edge, eventually combining with the Harborwalk to complete a recreational loop that will appeal to residents, commuters, and visitors alike. As a result of this major public realm intervention, pedestrian access to and through the district's multiple public open spaces is enhanced and prioritized over vehicular access and will be of benefit to multiple populations within the district and beyond. In general, the NPC Project's focus on improving pedestrian connectivity and the pedestrian realm will promote more sustainable commuting patterns by public transit, by water transportation, by bicycle, and by foot. The NPC Project's public realm improvements will also benefit local and area residents by creating pleasant, pedestrian-oriented retail-lined streets and pathways that will provide both everyday neighborhood conveniences and also destination retail and restaurant amenities that together will significantly enhance the quality of life in the South Boston Waterfront neighborhood.

Chapter 7.0

Historic Resources

7.0 HISTORIC RESOURCES

7.1 Introduction

This section describes the progress that the Proponent had made in relocating the Chapel of Our Lady of Good Voyage since the filing of the 2009 DPIR/DEIR. No changes are proposed to other matters relating to historic resources that were described in the DPIR and no meaningful additional impacts on Historic Resources in the vicinity of the Project Site are anticipated in connection with the NPC project.

7.2 The Chapel of Our Lady of Good Voyage

Prior to commencement of construction, the Project Site consisted generally of large, surface parking lots, devoid of buildings or other structures. The only building then located on the Project Site was the Chapel of Our Lady of Good Voyage (the "Chapel"). While included in the Massachusetts Historical Commission's (MHC) Inventory of Historic and Archaeological Assets of the Commonwealth, the Chapel was not listed in either the State or National Registers of Historic Places.

The Chapel of Our Lady of Good Voyage was located at 65 Northern Avenue, on Block D. The DPIR described the proposed demolition of the existing Chapel structure. It also mentioned discussions between the Proponent, the City, and the Roman Catholic Archdiocese of Boston (RCAB) about the relocation and construction of a new Our Lady of Good Voyage Chapel on Block H. Since the time the DPIR was filed, a new chapel facility has been constructed on Block H of the Project Site, located at the gateway to the Seaport District at the foot of the Moakley Bridge, and has been turned over to the RCAB for interior construction of the RCAB's improvements. Figure 7-1 is a photograph of the new Chapel. The RCAB is currently underway with interior construction and it is anticipated that the relocated chapel will open to the public in the spring of 2017. The new site provides better access and visibility for the Chapel, allowing it to expand to better serve the needs of the growing neighborhood. In connection with the removal of the existing Chapel structure on Block D of the Project Site, the Proponent has executed a Memorandum of Agreement with the Massachusetts Historical Commission, to which the Boston Landmarks Commission is a party, and the Proponent has successfully fulfilled the stipulations required by the MOA, including the preparation of Archival Photographic Documentation and an Architectural Salvage Plan.

An Article 85 Demolition Delay application regarding the existing Chapel structure will be submitted in the spring of 2017.

Chapter 8.0

Accessibility

8.0 ACCESSIBILITY

The Proponent is committed to construct the public realm improvements and the NPC Project Blocks in accordance with the 2010 Americans with Disabilities Act ("ADA") Standards for Accessible Design and 521 CMR Massachusetts Architectural Access Board ("MAAB") Regulations.

8.1 Assessment of Existing Infrastructure for Accessibility

The site is located within the Seaport District, adjacent to Downtown Boston and the Boston Harbor. It consists of a mix of historic warehouses and other buildings, as well as a number of new mixed-use office and residential buildings that have been constructed over the last five to ten years. It is well-served by accessible MBTA connections within a ten minute walk, including:

- South Station: 0.5 miles
- Silver Line Courthouse Station: 0.1 miles
- Silver Line World Trade Center Station: 0.1 miles

The most significant public institution is the Moakley U.S. Courthouse, which is adjacent to the Project Site on Northern Avenue.

8.2 Existing Surrounding Site Conditions

There are currently sidewalks and pedestrian ramps on most blocks of the Project Site, and these are generally intended to remain as is or be replaced with wider or otherwise upgraded materials and dimensions. Accessible sidewalks and pedestrian ramps have been installed in conjunction with the following Blocks: A, B, C, F, H, J, K, and L1, and are underway for L2, M1, and M2. The site is adjacent to the historic Fort Point Channel neighborhood, but is not itself within the historic district boundaries.

8.3 Proposed Surrounding Site Conditions

The proposed design is envisioned as a highly accessible pedestrian-oriented area with all building uses and exterior spaces meeting ADA and MAAB guidelines as required by the Commonwealth of Massachusetts. Sidewalk cafes will be programmed and designed for specific buildings in conjunction with City of Boston regulations on accessible paths of travel. Proposed sidewalks are consistent with the Boston Complete Street Guidelines, with the most prominent Street Types including Downtown Core and Downtown Mixed-Use. As part of this Project, pedestrian easements will be sought with the City of Boston Public Improvement Commission for pedestrian right of ways within the Project Site as Block-specific designs progress.

8.4 Proposed Accessible Parking

The Proponent will construct up to 3,400 parking spaces in the NPC Project through a mix of garages and on-street parking spaces. The required number of accessible parking spaces will be provided in the NPC Blocks within garages and on streets. Accessible spaces will be designated as specific Blocks and buildings are designed.

8.5 Circulation and Accessible Routes

Accessible paths of travel will be provided on the public and private ways throughout the Project Area. Accessible entrances will be provided to new building lobbies and retail areas within the NPC Project.

A prominent feature of the Project is the inclusion of the Summer Street Steps that connect the elevated portion of Summer Street down to Congress Street, through Harbor Way to Seaport Boulevard, and Northern Avenue to the water's edge. A publically accessible elevator will be provided, integral to the building design on Block N or P (whichever is constructed earlier) that creates an equal experience to that of the Summer Street Steps. The elevator will be clearly marked with signage, easily accessible from Summer Street and Congress Street, and integrated into the overall design of the pedestrian circulation network through the Project Site.

8.6 Accessible Units in Residential Developments

The Proponent will provide at least the number of required accessible residential units in the residential and hotel developments as part of the NPC Projects. The specific design and location of the units will be determined as specific Blocks are designed. The proposed designs will be presented to the City of Boston Mayor's Commission for Persons with Disabilities Advisory Board as they are developed.

8-2

Chapter 9.0

Infrastructure
9.0 INFRASTRUCTURE

9.1 Introduction

The following section outlines the existing utilities surrounding the Project Site, the Projectrelated utilities installed to date, the remaining planned utilities, the connections required to provide service to the Project, and any impacts on the existing utility systems that may result from the construction of the Project. The following utility systems are discussed herein:

- Sewer
- Domestic water
- Fire protection
- Drainage

The Proponent is committed to providing the Boston Water and Sewer Commission ("BWSC") the necessary infrastructure upgrades and information it needs to approve the requested connections to ensure capacity of the <u>sewage systems</u>.

The Proponent has worked with BWSC to determine that there are no known capacity issues with the existing <u>water mains</u>. The distribution system is expected to have sufficient capacity to supply all phases of the Project, along with other planned projects in the area.

Each Block is being designed to minimize impervious area as much as possible in combination with on-site <u>stormwater</u> management systems to significantly reduce the peak runoff rates from the Project Site. The Project's intent is to direct stormwater flows to BWSC outfalls, rather than to private outfalls. In addition, each new Block will be designed to meet BWSC requirements for stormwater storage on site to the greatest extent practicable by providing either underground recharge systems or a combination of interior tanks with groundwater recharge wells.

The Project will comply with DEP's Stormwater management Policies.

9.2 Wastewater

9.2.1 Existing Sewer Infrastructure – 2017

The local wastewater collection system is owned and operated by BWSC. The system conveys wastewater to the Massachusetts Water Resources Authority ("MWRA") system, which flows to the MWRA Deer Island Wastewater Treatment Plant.

There were several existing sewer lines serving the Project area prior to start of construction. Since the commencement of construction, several sewer improvements have been completed as part of the Project. Below is a summary of the infrastructure currently in place.

The following sewers mains flow to the Trilling Way Pump Station:

- Northern Avenue: Adjacent to Blocks A and B, a 6-inch private sanitary sewer main in the southern side of Northern Avenue and a 10-inch BWSC sanitary sewer main in the northern side of Northern Avenue flow easterly and are combined with a BWSC 12-inch sanitary sewer main flowing south from Courthouse Way. Once combined, these lines flow easterly in a 15-inch BWSC sanitary sewer main in Northern Avenue to Pier 4 Boulevard, where the line turns and flows south and then southeast, where it connects into the existing 18-inch BWSC sanitary sewer main in Seaport Boulevard. The final 375 feet of the 15-inch line within Northern Avenue and the 160 foot portion within Pier 4 Boulevard are newly completed lines approved by BWSC and installed by the Proponent, in cooperation with several adjacent landowners, as part of the realignment of Northern Avenue and the extension of East Service Road (new Pier 4 Boulevard).
- B Street: A 12-inch BWSC sanitary sewer main flows northerly and connects to the existing BWSC 18-inch sanitary sewer main in Seaport Boulevard. As part of the Block M project, this 12-inch main will be removed and replaced to service a portion of the Block M project.
- Seaport Boulevard: The 18-inch BWSC sanitary sewer main flows easterly, past the World Trade Center and eventually to the BWSC Trilling Way pump station. Wastewater flows are pumped in a southerly direction to a gravity sewer in E Street just south of Summer Street. The E Street sewer flows southerly to a connection with the North Branch of the South Boston Interceptor at West First Street.

The following sewer mains flow to the 24-inch BWSC sanitary sewer main in A Street, and ultimately flow to Deer Island:

• Seaport Boulevard: An 8-inch BWSC sanitary sewer main in the south side of Seaport Boulevard flows westerly to the 12-inch BWSC sanitary sewer main in Sleeper Street. The 12-inch BWSC sanitary sewer main continues flowing southerly and connects to a 15-inch BWSC sanitary sewer main in Congress Street. The 15inch BWSC sanitary sewer main in Congress Street flows easterly, and then southerly to the 24-inch BWSC sanitary sewer main in A Street.

- Farnsworth Street: A 12-inch BWSC sanitary sewer main beginning in Seaport Boulevard flows southerly in Farnsworth Street before connecting to the 15-inch BWSC sanitary sewer main in Congress Street. The 15-inch BWSC sanitary sewer main in Congress Street then flows easterly, and then southerly to the 24-inch BWSC sanitary sewer main in A Street
- Thomson Place: A 12-inch BWSC sanitary sewer main in Thomson Place flows southerly to the 15-inch BWSC sanitary main in Congress Street. The 15-inch BWSC sewer main in Congress Street then flows easterly and then southerly to the 24-inch BWSC sanitary sewer main in A Street.
- Congress Street: A 10-inch BWSC sanitary sewer main in the southern side of Congress Street begins at the intersection Boston Wharf Road and flows westerly to the 24-inch BWSC sanitary sewer in A Street.
- Boston Wharf Road. A 12-inch sanitary sewer line was constructed in Boston Wharf Road from Congress Street to 200 feet north of Autumn Lane to serve 101 Seaport ([Block K) and the future development Block L3. The sewer main was completed in 2014.
- Autumn Lane: A 12-inch sewer line was constructed in Autumn Lane from Boston Wharf Road to East Service Road in 2016. This sewer main is located within a BWSC sewer easement. This sewer serves 121 Seaport (Block L2) and the future development of Blocks L3, L4, and M.
- The 24-inch BWSC sewer main in A Street eventually connects to the North Boston Branch of the South Boston Interceptor at West First Street.

The 2017 existing sewer system is illustrated in Figure 9-1.

9.2.2 Wastewater Generation

The Project's sewage generation rates were estimated using 310 CMR 15.203 and the proposed building program. 310 CMR 15.203 lists typical sewage generation values for the proposed building use. Typical generation values are conservative values for estimating the sewage flows from new construction. Peak daily flows from the Project Site were estimated by applying a peaking factor of three to the estimated average daily flows using the sewage generation values to consider normal daily demand fluctuations and mechanical discharges.

Prior Project approvals estimated the proposed sewer generation for the Project to be approximately 770,000 gallons per day (gpd). Based on the updates in the Project building programs proposed within this NPC, there is a decrease in the amount of retail, hotel, and cultural space and an increase in office and residential space. As a result, the sewer flow

Seaport Square Boston, Massachusetts

for the Project is estimated to be approximately 1,099,006 gpd, which represents an increase of 329,006 gpd. Table 9-1 presents a summary of the Project's currently-proposed wastewater generation.

Plack	Puilding Lise	Total Flow	Approximate Water
A	Hotel	(gpu) 21.375	23.513
B+C	Residential/Retail	200.935	221 029
D	Retail/Office	35,645	39,210
F	Retail/Office	7,625	8,388
G	Retail/Residential	132,410	145,651
Н	Church/Office/Retail	1,617	1,779
J	Hotel	38,060	41,866
К	Retail/Residential	57,566	63,323
L1	Office/Retail	46,282	50,910
L2	Office/Retail	29,980	32,978
L3	Residential/Retail	83,320	91,652
L4	Retail/Office	37,241	40,965
L5	Retail/Office	51,350	56,485
L6	Retail/Hotel	45,450	49,995
M1+M2	Retail/Residential	156,960	172,656
Ν	Retail/Residential	80,600	88,660
Р	Retail/Office	72,390	79,629
Q	Retail	200	220
Propos	ed Sewer Flows (gpd):	1,099,006	
Proposed V	Vater Demand (gpd):		1,208,907

Table 9-1Project Wastewater Generation

9.2.3 Existing Sewage Capacity

The Project has previously evaluated the capacity of the existing BWSC sewer mains in Sleeper Street, Farnsworth Street, Congress Street (north side), Congress Street (south side), and A Street. Efforts have been made to direct sewer flows to the A Street gravity sewer, rather than using the Trilling way pump station and the E Street sewer which currently handle the flows from other areas of the South Boston Seaport, including Fan Pier.

Flow to Trilling Way Pump Station

The 2009 DPIR/DEIR anticipated that the only sewer flows that the Project would send to the Trilling Way Pump Station would be from Blocks F and G, which were projected to contribute approximately 59,000 gpd, or approximately eight percent (8%) of the total 2010 Project flows. This was expected to contribute less than 0.1% of the capacity of the Trilling Way Pump Station. However, as construction has progressed and existing conditions have been better understood, the volume of sewage directed to the Trilling Way Pump Station is expected to increase to approximately 243,000 gpd, or 20 percent of the total Project flows, and will come from Blocks D, F, G, and M1. Nitsch has kept BWSC apprised of these changes and has received BWSC's verbal approval. As a result, the projected flows would contribute approximately 0.4% of the capacity of the Trilling Way Pump Station. The estimated flows directed to the Trilling Way Pump Station due to the Project have increased because of the following proposed building designs and unexpected existing conditions discovered during construction:

- The proposed program for Building G has been updated from hotel and residential with retail space to residential with retail space, resulting in an increase in anticipated flow of approximately 44,191 gpd. The program may, in fact, be hotel and residential with retail space, and, in this case, the anticipated flows will be similar to the flows estimated in the 2009 DPIR/DEIR;
- The proposed program for Blocks P and P1 may be either hotel or lab and office space. For this study, the program was assumed to be hotel, because it would generate greater flows than would lab and office space;
- During the installation of a planned 12-inch sanitary sewer main in the north side of Seaport Boulevard, originally intended to service Blocks B, C, and D, existing utilities and Courthouse Station prevented the sewer main from being extended far enough east to Block D, which prevents it from connecting to the 12-inch sewer main; and
- The Block M1 sewer services have been designed to connect into the 15-inch sewer main in Seaport Boulevard or the 12-inch sewer main in B Street and are approved by BWSC.

The remaining sewer flows from the Project will be directed to the 24-inch BWSC sewer main in A Street via existing, newly constructed BWSC sewer mains in Sleeper Street, Farnsworth Street, Thomson Place, Boston Wharf Road, Autumn Lane, and Congress Street, in addition to new sewer main infrastructure proposed to be built as part of the Project.

New BWSC sewer mains have and will be constructed throughout the Project Area to convey wastewater to collection points in the BWSC system. Table 9-2 summarizes findings related to existing wastewater infrastructure in place when Project construction began in 2011, the anticipated Project flows at each connection point based on the NPC Project, and the flows corresponding percentage of the system capacity.

			Sewer Canacity	Peak Flow	Percent (%)
Location	Size	Slope	(cfs)*	Site (cfs)	of Capacity
Sleeper Street*	12-inch	0.013	2.49	0.11	4.4%
Farnsworth Street*	12-inch	0.007	2.98	0.18	6.0%
Thomson Place	12-inch	0.005	2.66	0.16	6.0%
Congress Street (north side)*	15-inch	0.003	3.54	1.19	33.6%
Congress Street (north side)	15-inch	0.005	2.51	2.45	97.6%
Congress Street (south side)*	10-inch	0.006	1.69	1.15	68.0%
A Street*	24-inch	0.001	7.15	5.23	73.2%

Table 9-2Existing Sewer Capacity

*Sewer Capacity Values provided in the 2009 DPIR/DEIR.

The Proponent has worked with the BWSC to address sewer capacity throughout the development of each individual block thus far. Based on the increase in projected sewer generation due to the NPC Project, Table 9-2 demonstrates adequate capacity in the BWSC sewer mains. The new 12-inch sewer mains in Seaport Boulevard, Boston Wharf Road, and Autumn Lane, the proposed 12-inch sewer mains in East Service Road, and the new 12-inch sewer main to be installed as part of the 399 Congress Street project have been coordinated with the BWSC.

As the designs of the new BWSC sewer infrastructure have progressed, more available information relating to the capacity of the new infrastructure and its impacts on existing flow points is being evaluated. Project flows have been introduced to the existing BWSC system over several years, and will continue as new Blocks are developed. The Proponent will continue to work with BWSC to understand potential impacts of the other planned

projects and better define the existing flow condition at the time of development. The Proponent is committed to working with BWSC to provide the infrastructure upgrades and information that BWSC needs to approve the requested connections.

The following list identifies the improvements and connections that have been made to the sewer system to provide service to the Project:

- At Block A, an 8-inch building service was connected to the 10-inch sewer main in Sleeper Street;
- Blocks B and C were connected to the new 12-inch sewer main in the northern side of Seaport Boulevard, which connects to the existing 12-inch BWSC main in Farnsworth Street; the new 12-inch sewer main in Seaport Boulevard was constructed to service only Blocks B and C.
- Block H building services were connected to the 8-inch main in Seaport Boulevard;
- Block J building service was connected to the existing 12-inch sewer main in Farnsworth Street;
- Block K building services were connected to the existing 12-inch sewer main in Thomson Place and the new 12-inch sewer main in Boston Wharf Road;
- Block L1 building services were connected to the new 12-inch sewer main in Boston Wharf Road;
- Block L2 building service was connected to the new 12-inch sewer main in Autumn Lane; and
- District Hall building is served by an 8-inch sewer service that connects to the 15inch sanitary sewer in Northern Avenue.

The list below identifies the improvements and connections proposed to be made as Project development continues. The proposed sewer systems are shown on Figure 9-2.

- Blocks D, F (retail), and G will connect into the 15-inch sewer main in Northern Avenue;
- Block M1 building services are designed to connect into the 15-inch sewer main in Seaport Boulevard and the 12-inch sewer main in B Street, which is proposed to be reconstructed as part of the Project;
- Block M2 building services have been designed to connect to the proposed 12-inch sewer main in East Service Road;

- Block L3 building services will likely connect into the new 12-inch sewer main in Autumn Lane and/or the new 12-inch sewer main in Boston Wharf Road;
- Block L4 building services will connect into the new 12-inch sewer main in Autumn Lane and/or the proposed 12-inch sewer main in East Service Road;
- Block L5 building services will connect into the new 12-inch sewer main in Boston Wharf Road and/or a new 12-inch sewer main in the northern side of Congress Street (by others);
- Block L6 building services will connect into the proposed 12-inch sewer main in East Service Road and/or a 12-inch sewer service in the north side of Congress Street (by others); and
- Blocks N, and P building services will connect into the new 12-inch sewer main which will be constructed as part of the 399 Congress Street Project.

Improvements and connections to BWSC infrastructure for the remaining blocks will be reviewed as part of the BWSC's Site Plan Review process for the Project. This process will include a comprehensive design review of the existing and proposed service connections, an assessment of Project demands and system capacity, and the establishment of service accounts.

9.2.4 Infiltration/Inflow

The Project will be served entirely by separate sanitary and storm drain systems, and not by combined sewers. As a result, the infiltration and inflow (I/I) impact from the post-development Project Site is minimal. The Proponent has worked, and will continue to work, with the BWSC on a block-by-block basis to develop I/I mitigation commitments.

9.3 Water Supply

9.3.1 Existing Water Infrastructure

Water is supplied to the Project area by low- and high-pressure distribution and transmission mains owned and operated by BWSC. Water is supplied to the BWSC systems by the MWRA. There are five water systems within the City, and these provide service to portions of the City based on ground surface elevation. The five systems are southern low (commonly known as low service), southern high (commonly known as high service), southern extra high, northern low, and northern high.

There are existing BWSC water mains within the Project area. Low-pressure service mains, typically used for domestic water supply, and high-pressure distribution mains, typically used for fire protection systems, are available in the roads surrounding the Project Site, including Northern Avenue, Seaport Boulevard, Sleeper Street, Farnsworth Street, Thomson

Seaport Square Boston, Massachusetts

Place, Boston Wharf Road, East Service road, B Street, and Congress Street. The local distribution mains are fed from a 30-inch cast iron transmission main in Sleeper Street and Northern Avenue. Hydrants are located along the streets throughout the Project. Figure 9-3 shows the existing BWSC water systems.

The following list describes the new water infrastructure installed as part of the Project thus far:

- The 30-inch BWSC water main in Northern Avenue was replaced;
- The 16-inch water main and the 30-inch transmission main in Northern Avenue and Pier 4 boulevard were relocated during the realignment of Northern Avenue;
- The previously proposed 12-inch main in Autumn Lane, between Boston Wharf Road and East Service Road, was removed from the Project; and
- A new 12-inch low service water main connecting to the 12-inch water main in Stillings Street and the 12-inch water main in Boston Wharf Road was constructed.

9.3.2 Water Consumption

The Project's water demand estimate for domestic services is based on the Project's estimated sewage generation, described in Section 9.2.2. A conservative factor of 1.1 (10%) is applied to the estimated average daily wastewater flows calculated with 310 CMR 15.203 values to account for consumption, system losses and other usages to estimate an average daily water demand. The Project's estimated domestic water demand is approximately 1,208,907 gpd. The previous filing indicated an approximate Project water demand of 847,000 gpd.

Efforts to reduce water consumption have been and will be made. Aeration fixtures and appliances will be chosen for water conservation qualities. In public areas, sensor operated faucets and toilets will be installed.

New water services will be installed in accordance with the latest local, state, and federal codes and standards. Backflow preventers will be installed at both domestic and fire protection service connections. New meters will be installed with Meter Transmitter Units (MTU's) as part of the BWSC's Automatic Meter Reading (AMR) system.

9.3.3 Proposed Project

The domestic and fire protection water services for the remaining Project blocks will connect to the existing BWSC water mains within the Project Area. Figure 9-4 shows the proposed water supply infrastructure

Seaport Square Boston, Massachusetts

Seaport Square Boston, Massachusetts

The domestic and fire protection water service connections required for the Project will meet the applicable City and State codes and standards, including cross-connection backflow prevention. Compliance with the standards for the domestic water system service connection will be reviewed as part of BWSC's Site Plan Review process. This review will include sizing of domestic water and fire protection services, calculation of meter sizing, backflow prevention design, and location of hydrants and siamese connections that conform to BWSC and Boston Fire Department requirements.

9.3.4 Proposed Impacts

The Proponent has worked with BWSC to determine that there are no known capacity issues with the existing water mains. The distribution system is expected to have sufficient capacity to supply all phases of the Project, along with other planned projects in the area. The proposed Project's impacts on the existing water system will be reviewed as part of the BWSC's Site Plan Review process.

9.4 Stormwater

9.4.1 Existing Stormwater Infrastructure

The storm drainage system serving the Project Area is substantially owned and operated by BWSC. Private outfalls currently serve large portions of Project blocks between Seaport Boulevard and Northern Avenue. The system includes drainage infrastructure built by private landowners, and several infrastructure improvements have been made as part of recent projects, such as the Federal Courthouse, the construction of Seaport Boulevard, the Central Artery/Tunnel Project, and the MBTA Transitway Tunnel Project. The Project Area is served by several storm drain outfalls which discharge runoff to the harbor, as described in previous filings. Figure 9-5 shows the existing stormwater infrastructure.

Existing stormwater systems vary across the Project Area and include catch basins and storm drains installed in public roadways as part of recent transportation infrastructure projects. Stormwater treatment systems within the existing blocks are limited to catch basins, which have either been removed as part of the construction process or will be removed in future phases. The storm drain infrastructure within the public right of ways appears to be adequate to accommodate the remaining Project phases.

The 2009 DPIR/DEIR indicated that stormwater from several Blocks would be directed to a new 24-inch storm drain main in Northern Avenue. The storm drain main would be installed as part of the realignment of Northern Avenue, and the main would have directed stormwater from this area to Storm Drain Outfall 015 (SDO 015). However, after coordination with BWSC, the storm drain has been directed to flow west to the newly installed 48-inch storm drain main in Courthouse Way, which was installed as part of the Fan Pier Project.

Seaport Square Boston, Massachusetts

The Blocks that have already been constructed or designed have each separately committed to managing stormwater on site using various systems to meet BWSC requirements. Table 9-3 provides a summary of commitments that the Proponent has made for managing stormwater on site prior to its discharge to the BWSC storm drain mains.

Block	Stormwater Management Approach
А	1/2 inch Recharge from Project Site
B+C	Minimal Irrigation, treatment of surface runoff
Н	1 inch Recharge from Project Site
J	1 inch Recharge from Project Site
К	1 inch Recharge from Project Site
L1	1 inch Reuse and Recharge from Project Site
L2	1 inch Reuse and Recharge from Project Site
M1 + M2	1/2 inch Recharge from Project Site

Table 9-3Stormwater

9.4.2 Proposed Conditions

As previously described in the 2009 DPIR/DEIR, due to the inclusion of large open spaces, green roofs, and site landscape improvements, the Project will result in a reduction in impervious coverage of the Project Site. The proposed building outlines have been updated, however, the general layouts have stayed the same. Each Block is being designed to minimize impervious area as much as possible in combination with on-site stormwater management systems to significantly reduce the peak runoff rates from the Project Site. The Project's intent is to direct stormwater flows to BWSC outfalls, rather than to private outfalls.

Each new Block will be designed to meet BWSC requirements for stormwater storage on site by providing either underground recharge systems or a combination of interior tanks with groundwater recharge wells. Each Block will require overflow connections to the BWSC storm drain systems. The proposed storm drain systems and building drain services are shown in Figure 9-6.

There is a new 24-inch storm drain main proposed in Northern Avenue, which will increase to a 30-inch main to connect into the newly constructed 36-inch storm drain main in Northern Avenue. This storm drain main continues down Courthouse Way and discharges to Boston Harbor.

Seaport Square Boston, Massachusetts

Improvements and connections to BWSC infrastructure will be reviewed as part of the BWSC's Site Plan Review process for the development of each Block. The process will include a comprehensive design review of the proposed service connections, and assessment of Project demands and system capacity.

9.4.3 Water Quality Impact

The Project will strive to improve the water quality of the stormwater that is not contained on site and overflows to the existing BWSC system. If it is determined that groundwater recharge is not feasible, the Proponent will treat the stormwater runoff to adequately capture Total Suspended Solids (TSS) and phosphorus prior to discharging to the BWSC system.

The Project will not affect the water quality of nearby water bodies. Erosion and sediment control measures will be implemented during construction to minimize the transport of site soils to off-site areas and BWSC storm drain systems. During construction, existing catch basins will be protected with filter fabric, straw bales and/or crushed stone, to provide for sediment removal from runoff. These controls will be inspected and maintained throughout the construction phase until the areas of disturbance have been stabilized through the placement of pavement, structure, or vegetative cover.

All necessary dewatering will be conducted in accordance with applicable MWRA and BWSC discharge permits. Once construction is complete, the Project will be in compliance with local and state stormwater management policies, as described below.

9.4.4 MassDEP Stormwater Management Policy Standards

In March 1997, MassDEP adopted a Stormwater Management Policy to address non-point source pollution. In 1997, MassDEP published the Massachusetts Stormwater Handbook as guidance on the Stormwater Policy, which was revised in February 2008. The Policy prescribes specific stormwater management standards for development projects, including urban pollutant removal criteria for projects that may impact environmental resource areas. Compliance is achieved through the implementation of Best Management Practices (BMPs) in the stormwater management design. The Policy is administered locally pursuant to MGL Ch. 131, s. 40.

A brief explanation of each Policy Standard and the Project's compliance is provided below:

Standard #1: No new stormwater conveyances (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

Compliance: The proposed design will comply with this Standard. The design will incorporate the appropriate stormwater treatment and no new untreated stormwater will be directly discharged to, nor will erosion be caused to wetlands or waters of the Commonwealth as a result of stormwater discharges related to the Project.

Standard #2: Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates.

Compliance: The proposed design will comply with this Standard. The existing discharge rate will be met or decreased as a result of the improvements associated with the Project to the maximum extent practicable.

Standard #3: Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmental sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Compliance: The Project will comply with this standard to the maximum extent practicable. The underground recharge systems will be designed to infiltrate stormwater to the maximum extent practicable based on BWSC groundwater recharge requirements.

Standard #4: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:

- a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;
- b. Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- *c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.*

Compliance: The proposed design will comply with this standard by using deep sump catch basins, water quality units, groundwater recharge, and a robust street sweeping program. Within the Project's limit of work, there will be mostly building roof, paved sidewalk, roadway areas, and landscaped areas. Runoff from paved areas that would contribute unwanted sediments or pollutants to the existing storm drain system will be collected by deep sump, hooded catch basins and conveyed through water quality units before discharging into the BWSC system.

Standard #5: For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

Compliance: The proposed design will comply with this standard as required for each Block. Stormwater discharges from areas with higher potential pollutant loads typically require the use of specific stormwater management BMPs, and at least 44 percent TSS removal prior to discharging to an infiltration device. The standard will be met by the incorporation of BMPs, including deep sump and hooded catch basins and particle separators.

Standard #6: Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

Compliance: The proposed design will comply with this Standard. The Project will not discharge untreated stormwater to a sensitive area or any other area.

Standard #7: A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

Compliance: The proposed design will comply with this Standard. The Project complies with the Stormwater Management Standards as applicable to the redevelopment.

Standard #8: A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

Compliance: The Project will comply with this standard. A sedimentation and erosion control program will be implemented during construction.

Standard 9: A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

Compliance: The Project will comply with this standard. An O&M Plan including longterm BMP operation requirements will be prepared for the Project and will assure proper maintenance and functioning of the stormwater management system.

Standard 10: All illicit discharges to the stormwater management system are prohibited.

Compliance: The Project will comply with this standard. There will be no illicit connections associated with the Project.

9.5 Protection Proposed During Construction

Existing public and private infrastructure located within nearby public rights-of-way will be protected during Project construction. The installation of proposed utility connections within public ways will be undertaken in accordance with BWSC, Boston Public Works Department, the Dig-Safe Program, and applicable utility company requirements. Specific methods for constructing proposed utilities where they are near to, or connect with existing water, sewer, and drain facilities will be reviewed by the BWSC as part of its Site Plan Review process. Necessary permits will be obtained as required.

The Proponent will continue to work and coordinate with the BWSC and the utility companies to ensure safe and coordinated utility operations in connection with the Project.

Chapter 10.0

Mitigation Measures

10.0 MITIGATION MEASURES

10.1 Description of Mitigation Measures

Table10-1 provides a summary of mitigation measures for the NPC Project.

Table 10-1 Summary of NPC Project Impacts and Mitigati
--

Subject	Impact	Mitigation	Schedule	
Transportation	Overall, the traffic volumes are very similar to the 2010 Project projections. Of the twenty-three intersections studied, twenty-two are projected to operate at Level of Service D or better in the a.m. and p.m. peak hours in the 2023 Build condition.	Transportation mitigation items are detailed in Section 3.6, are included in the 2023 Build condition, are similar to those measures included in the 2010 Project, and include: An aggressive Transportation Demand Management Plan; enhancements to the pedestrian environment adjacent to its buildings; provision of secure, sheltered bicycle racks and sidewalk-level public bicycle racks; continuation of the existing low-cost bicycle rental program; construction of a new street ("Harbor Way") to provide a direct pedestrian/bicycle connection from Summer Street down to the waterfront; intersection improvements along Northern Avenue, Seaport Boulevard, Boston Wharf Road, East Service Road, Summer Street, and Congress Street corridors, including modifications to lane use, pavement markings, and signal phasings/timings.	During design or occupancy.	
Wind	Generally, the wind conditions improved or stayed the same with the NPC Project in place. The Full Build Configuration results in improved overall wind conditions. In general, the wind speeds are appropriate for the intended uses. Almost 90% (vs 83% in the No Build) of the locations studied have wind speeds suitable for walking or better in the Full Build Configuration. This represents an improvement over the Project studied in the 2009 DPIR/DEIR as well which indicated that 88% of the locations studied had wind speeds suitable for walking or better.	Mitigation such as the addition of coniferous/marcescent trees and/or a series of porous wind screens in the corridor between Blocks L3 and L5 and between Blocks N and P is being considered. Potential mitigation will be determined through the design review process as individual buildings within the NPC Project Site are designed.	During design	

Subject	Impact	Mitigation	Schedule None required.		
Shadow	Since much of the NPC Project Site is predominantly vacant (used as surface parking), redevelopment of these Blocks will increase the amount of shadow cast by the Project when compared with existing conditions. However the amount of shadow will remain consistent with the 2010 Project.	The NPC Project is expected to result in shadows typical of densely-built urban areas. However, off-site open spaces will generally be unaffected by new shadow, and much of the new shadow falls onto the Project Site itself and adjacent streets. In addition, some of the shadow proposed in the 2010 DPIR/DEIR has been eliminated through changes to building massing.			
Daylight	As noted above, because much of the existing site is vacant, there is an increase in daylight obstruction with the Project that is similar to the effect of the 2010 Project.	Daylight obstruction from the Project is consistent with dense urban areas throughout the city and does not require any specific mitigation measures. Proposed building massing within the Project reflects the Proponent's desire to create an "urban room" that allows more light, air, and sun into the public spaces than is typical of a densely-developed urban area.	None required.		
Air Quality	The air quality analysis results show that CO are well below the one-hour and eight-hour NAAQS, as was the case with the 2010 Project.	Mitigation is not required, however the Proponent's transportation demand management program is expected to minimize vehicle trips and related emissions. Proposed changes to traffic signals and lane markings will reduce delays and increase vehicle speeds, further minimizing mobile source emissions.	During construction.		
Noise	As included in the 2009 DPIR/DEIR, predicted noise levels from the Project's mechanical equipment will be below the most stringent City of Boston Zoning District Noise Standards for nighttime and daytime residential zones, and below existing measured baseline noise levels in the area. Impacts associated with the NPC Project are anticipated to be similar.	Most of the mechanical equipment for the buildings will be housed within a mechanical penthouse on the roof. It is expected that any noise from equipment within the penthouses will be attenuated.	During design and occupancy.		

Subject	Impact	Mitigation	Schedule		
Tidelands: Chapter 91 and South Boston Municipal Harbor Plan	No material changes are proposed to the portion of Project within Chapter 91 jurisdiction. Project construction will be consistent with the South Boston Municipal Harbor Plan, where required. No negative	The Project will have numerous benefits to the public, including the newly constructed waterfront way along the City- owned Old Sleeper Street to provide a pedestrian connection linking to the existing Harborwalk between the Children's Museum and the Federal Courthouse.	During construction and occupancy.		
	impacts are anticipated.	The Project includes the construction and maintenance of numerous open spaces in proximity to the waterfront, including Seaport Common, a 36,000 sf acre open space is open adjacent to Fan Pier Park and will continue to be activated to encourage public use and enjoyment. In addition, a contribution to open space enhancements for Parcel E at the Children's Museum will be provided. A series of cultural venues, including outdoor sculpture gardens, public art and performance venues and exhibit spaces will activate the site and provide year- round use.			
		The Project will activate ground level pedestrian activities by providing facilities of public accommodation on the ground floors on most all of the buildings within the Project (both within and outside of Chapter 91 jurisdiction), surpassing the requirements of the Chapter 91 regulatory provisions for the activation of Commonwealth Tidelands. In addition, Facilities of public accommodation will also occupy second floors in many of the Blocks.			

Subject	Impact	Mitigation		
Geotechnical / Groundwater	Conditions on the Project Site are similar to conditions described in the 2009 DPIR/DEIR. The Project Site is underlain by a thick layer of impervious marine clay. The presence of the clay soils is ideal for constructing permanent groundwater cut-off walls around basement areas, and the impervious properties limit groundwater seepage rates. These conditions are also considered favorable for temporary construction dewatering.	Significant infrastructure facilities, including the MBTA Silver Line tunnel below Seaport Boulevard extending south to Congress Street, are located near the Project Site. Protection of these facilities has been considered in development of the design and construction methodology. The measures include using stiff, waterproof excavation support systems and permanent foundation walls to mitigate potential off-site impacts, use of non-vibration generating systems, such as slurry wall construction, and groundwater cut-off criteria to avoid impacts on groundwater levels. Prior to construction an instrumentation and monitoring program will be implemented, similar to what has been used for the other Seaport Blocks during construction. The program will include preconstruction condition surveys of adjacent buildings and the MBTA tunnel, movement monitoring of critical adjacent structures, vibration monitoring as needed, and groundwater level monitoring. Design criteria and construction methodologies that protect groundwater will be selected depending on planned basement depths. These include perimeter groundwater cut-off walls around below-grade garages and no permanent dewatering or perimeter drainage systems which could result in groundwater lowering.	During construction.	
Hazardous Materials	Chemical test results on soil samples indicate the presence of contaminants typical of urban fill materials, similar to the 2010 Project.	Testing of soil and groundwater will be conducted prior to construction on each new development Block to characterize materials to be excavated. Removal of any hazardous waste will be conducted in accordance with applicable laws.	During construction.	

 Table 10-1
 Summary of NPC Project Impacts and Mitigation (Continued)

Subject	Impact	Mitigation	Schedule		
Solid Waste	The Project will generate solid waste typical of mixed-use projects, as did the 2010 Project.	Trash will be collected in a dedicated area in a ground floor loading areas in each of the Blocks until pick up by licensed contractor. Solid waste and recycling from the retail and restaurant components will be stored in dedicated areas of the ground floor loading area. A private trash collector will pick up trash as needed.	During occupancy.		
		The Proponent will investigate the possibility of siting periodic centralized collection bins for batteries and/or fluorescent light bulbs (including CFL's) as a part of the LEED-ND program. Residential projects will handle this as part of their general waste management strategy. Property management will address this with the office and retail tenants.			
Construction	The Project may result in temporary construction impacts on the pedestrian and vehicle environments and have temporary noise and air quality impacts, similar to the 2010 Project.	Secure fencing and barricades will be used to isolate construction areas from pedestrian traffic adjacent to the site. In addition, sidewalk areas and walkways near construction activities will be well marked and lighted to protect pedestrians and ensure their safety. Public safety for pedestrians on abutting sidewalks will also include covered pedestrian walkways when appropriate and, if required, the suspension of the use of certain sidewalks during the most hazardous periods of overhead work activity during the construction of each superstructure. If required by BTD and the Boston Police Department, police details will be provided to facilitate traffic flow. Construction procedures will be designed to meet all Occupational Safety and Health Administration (OSHA) safety standards for specific site construction activities.	During construction.		

Subject	Impact	Mitigation	Schedule
Sustainable Design	Individual Blocks will be LEED certifiable or will pursue LEED certification under LEED-NC or LEED-CS, as published by the USGBC. This commitment is similar to that described in the 2010 DPIR/DEIR. The Seaport Square Project as a whole is certified at the Gold level under the LEED-ND rating system.	Individual Blocks with the Project are targeting, at a minimum, the LEED Silver level, which requires numerous mitigation measures. Proposed mitigation measures relate to water conservation, water efficient landscaping, energy efficiency, transportation demand management, reduction of the heat island effect, public transportation access, and construction and operational waste management.	During design, construction and occupancy.
Open Space	The Project will introduce a new resident and non-resident population to the city that will use existing and future open spaces adjacent to and in the vicinity of the Project Site, as well as regional open space resources. The Project includes creation of new open space.	Approximately 8.8 acres or 37% of the Project Site will be dedicated public open space, including private streets. Approximately 7.0 acres or 30% of the Project Site will be devoted to pedestrian-oriented open space (e.g., Seaport Common, Courthouse Square, Sea Green, Harbor Way, Harbor Square, and Block M Courtyard) including green space, sidewalks, pedestrian ways and streets. Significant portions of the new pedestrian-oriented public open space to be built by the Proponent as part of the Project fall outside of the limits of the Project Site and therefore are not included in the figures stated above (i.e. portions of public sidewalks and median improvements that fall within of the City- owned public ways, public spaces built on land owned by others (Farnsworth pedestrian link), etc.). These improvements provide an additional 3.4 acres of public open space, bringing the total pedestrian-oriented public space created or improved by the Project to over 10 acres.	During design and construction
Historic Resources	The Project includes the demolition of the 1952 Chapel of Our Lady of Good Voyage, 65 Northern Avenue, a property included in the MHC Inventory.	A fully executed Memorandum of Agreement between the Proponent MHC, BLC, and MassDEP identifies mitigation measures. As agreed to in the MOA, a new chapel has been constructed, photographic documentation of the Chapel was completed, and an architectural salvage plan was developed.	During design and construction.

Subject	Impact	Mitigation	Schedule
Accessibility	Impacts are positive, because NPC Project construction will meet current standards for accessibility and dramatically improve accessibility throughout the Project Area.	Public realm improvements and the NPC Project Blocks will be built in accordance with the 2010 Americans with Disabilities Act ("ADA") Standards for Accessible Design and 521 CMR Massachusetts Architectural Access Board ("MAAB") Regulations, including sidewalks, pedestrian ramps, parking spaces, circulation routes, and residential units.	During design and construction.
Wastewater	Based on wastewater generation rates, the Project will generate approximately 1,098,806 gallons of wastewater per day.	Relocations and connections will continue to be coordinated with BWSC throughout the design process to ensure flows are distributed in a manner consistent with the needs and available capacity of the system.	During design, construction and occupancy.
Water Supply	Based on wastewater generation rates, the Project will require approximately 1,208,687 gallons of domestic water per day.	The Proponent is committed to implementing practicable measures to reduce the NPC Project's demand on the public water supply. The building program will include the latest technology in low-flow fixtures and other water conservation measures. The Proponent is investigating offsetting the NPC Project's irrigation water demand through the capture and reuse of roof runoff, which would also reduce the burden on the drainage system.	During design, construction and occupancy.
Water Quality/ Stormwater	Potential impacts are expected to be minor and limited to active construction-period operations, similar to the 2010 Project.	The Proponent will provide a detailed Stormwater Pollution Prevention Plan (SWPPP) to the Boston Water and Sewer Commission's Engineering Design Division. The SWPPP will detail erosion control measures to be implemented during construction to prevent the discharge of sediment and contaminated groundwater or stormwater runoff into the City's drainage system or harbor waters.	During construction.

Appendix A

Transportation

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 1 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Sleeper Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

HV %

0.0%

0.0%

0.0%

1.4%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

TOTAL (CARS & TRUCKS)

		Sleepe North	r Street bound			South	bound	,		Northerr Eastt	n Avenue bound			Northerr West	n Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	5	0	40	0	0	0	0	0	0	1	2	0	22	2	0
7:15 AM	0	3	0	48	0	0	0	0	0	0	0	1	0	21	1	0
7:30 AM	0	0	0	52	0	0	0	0	0	0	1	0	0	18	0	0
7:45 AM	0	2	0	61	0	0	0	0	0	0	1	2	0	28	0	0
8:00 AM	0	3	0	64	0	0	0	0	0	0	0	3	0	36	0	0
8:15 AM	0	2	0	71	0	0	0	0	0	0	1	2	0	40	1	0
8:30 AM	0	1	0	56	0	0	0	0	0	0	0	1	0	42	1	0
8:45 AM	0	6	0	68	0	0	0	0	0	0	0	1	0	34	0	0
		Sleepe North	r Street bound			South	bound			Northerr Eastt	Avenue pound		_	Northerr West	n Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	17	0	0	0	0	0	0	0	1	0	61	0	0
4:15 PM	0	2	0	20	0	0	0	0	0	0	0	2	0	72	0	0
4:30 PM	0	1	0	22	0	0	0	0	0	0	0	2	0	76	0	0
4:45 PM	0	1	0	20	0	0	0	0	0	0	1	3	0	76	1	0
5:00 PM	1	2	0	17	0	0	0	0	0	0	1	3	1	69	0	0
5:15 PM	0	1	0	18	0	0	0	0	0	0	0	4	0	74	2	0
5:30 PM	0	2	0	17	0	0	0	0	0	0	1	2	4	77	3	0
5:45 PM	0	2	0	18	0	0	0	0	0	0	1	2	0	81	3	0
AM PEAK HOUR 8:00 AM]	Sleepe North	r Street bound			South	bound			Northerr Eastt	n Avenue bound			Northerr West	n Avenue bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	12	0	259	0	0	0	0	0	0	1	7	0	152	2	0
PHF		0.	92			0.	00			0.	67			0.	90	
HV %	0.0%	8.3%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	16.4%	0.0%	0.0%
PM PEAK HOUR 5:00 PM		Sleepe North	r Street bound			South	bound			Northerr Eastt	n Avenue bound			Northerr West	n Avenue bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	1	7	0	70	0	0	0	0	0	0	3	11	5	301	8	0
PHF		0.	98			0.	00			0.	88			0.	93	

0.3%

0.0%

0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 1 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Sleeper Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		Sleepe	r Street							Northerr	n Avenue			Northern	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	14	0	0	0	0	0	0	0	0	0	5	0	0
7:15 AM	0	0	0	13	0	0	0	0	0	0	0	0	0	4	0	0
7:30 AM	0	1	0	10	0	0	0	0	0	0	0	0	0	7	0	0
7:45 AM	0	0	0	7	0	0	0	0	0	0	0	0	0	1	0	0
8:00 AM	0	0	0	9	0	0	0	0	0	0	1	0	0	5	0	0
8:15 AM	0	0	0	7	0	0	0	0	0	0	0	0	0	7	0	0
8:30 AM	0	0	0	5	0	0	0	0	0	0	0	0	0	5	0	0
8:45 AM	0	1	0	5	0	0	0	0	0	0	0	0	0	8	0	0
		Sleepe	r Street							Northerr	n Avenue			Northern	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
4:15 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
4:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	_															
AM PEAK HOUR		Sleepe	r Street							Northerr	n Avenue			Northern	n Avenue	
7:00 AM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	1	0	44	0	0	0	0	0	0	0	0	0	17	0	0
PHF		0.	80			0.	00			0.	00			0.	61	

PM PEAK HOUR		Sleepe	er Street							Northerr	n Avenue			Northerr	ו Avenue	
4:00 PM		North	bound			South	bound			East	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	1	0	2	0	0	0	0	0	0	1	0	0	1	0	0
PHF		0.	75			0.	00			0.	25			0.	25	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 1 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Sleeper Street 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		S	leeper Stre	et I			Southbound	d		No	orthern Aver Eastbound	nue		No	orthern Aver Westbound	nue I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	20	0	0	0	0	0	0	0	17	0	0	0	14	
7:15 AM	0	0	1	19	0	0	0	0	0	1	0	16	1	0	0	13	
7:30 AM	1	0	2	25	0	0	0	0	0	0	1	29	0	1	0	24	
7:45 AM	0	0	1	28	0	0	0	0	0	0	0	40	0	0	0	32	
8:00 AM	1	0	11	33	0	0	0	0	0	1	0	43	3	0	0	30	
8:15 AM	1	0	3	34	0	0	0	0	0	2	0	45	1	0	0	25	
8:30 AM	1	0	6	36	0	0	0	0	0	2	1	48	2	0	0	29	
8:45 AM	2	0	1	34	0	0	0	0	0	1	0	47	1	0	0	31	

		S	leeper Stre	et						No	orthern Aver	nue		No	orthern Aver	nue	
			Northbound				Southbound	ł			Eastbound				Westbound		
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	21	0	0	0	0	0	0	0	50	3	0	0	25	
4:15 PM	0	0	0	20	0	0	0	0	0	1	0	48	5	0	0	24	
4:30 PM	0	0	0	22	0	0	0	0	0	0	1	53	6	0	0	15	
4:45 PM	0	0	1	18	0	0	0	0	0	0	0	53	5	0	0	27	
5:00 PM	0	0	0	22	0	0	0	0	0	1	0	62	9	1	0	33	
5:15 PM	0	0	0	23	0	0	0	0	0	0	1	65	12	0	0	36	
5:30 PM	0	0	1	21	0	0	0	0	0	0	0	52	10	0	0	30	
5:45 PM	0	0	0	17	0	0	0	0	0	0	0	34	2	1	0	22	

AM PEAK HOUR ¹		S	leeper Stre	et						No	rthern Aver	ue		No	rthern Aver	iue	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	5	0	24	137	0	0	0	0	0	6	1	183	7	0	0	115	1

PM PEAK HOUR ¹		S	leeper Stre	et						No	orthern Aver	nue		No	orthern Aver	nue	
5:00 PM			Northbound	1			Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	1	83	0	0	0	0	0	1	1	213	33	2	0	121	

¹ Peak hours corresponds to vehicular peak hours.

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 2 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Courthouse Way Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TOTAL (CARS & TRUCKS)

						Courtho	use Way			Northern	n Avenue			Northerr	1 Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	2	0	5	0	28	19	0	0	0	18	7
7:15 AM	0	0	0	0	0	2	0	6	0	35	18	0	0	0	17	12
7:30 AM	0	0	0	0	0	3	0	6	0	38	15	0	0	0	15	16
7:45 AM	0	0	0	0	0	3	0	8	0	39	22	0	0	0	23	12
8:00 AM	0	0	0	0	0	2	0	9	1	48	26	0	0	0	28	7
8:15 AM	0	0	0	0	0	0	0	11	0	47	22	0	0	0	30	13
8:30 AM	0	0	0	0	0	1	0	6	0	41	16	0	0	0	35	7
8:45 AM	0	0	0	0	0	3	0	7	0	43	17	0	0	0	35	13
						Courtho	use Way			Northern	n Avenue			Northerr	1 Avenue	
	=	North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	4	0	29	0	7	12	0	0	0	33	6
4:15 PM	0	0	0	0	0	5	0	36	0	9	11	0	0	0	34	5
4:30 PM	0	0	0	0	0	5	0	39	0	10	9	0	0	0	32	3
4:45 PM	0	0	0	0	0	4	0	36	0	12	10	0	0	0	37	4
5:00 PM	0	0	0	0	0	5	0	30	0	12	10	0	0	0	38	3
5:15 PM	0	0	0	0	0	5	0	33	0	9	14	0	0	0	45	5
5:30 PM	0	0	0	0	0	4	0	32	0	6	14	0	1	0	48	7
5:45 PM	0	0	0	0	0	4	0	34	0	6	15	0	0	0	50	7
	1					O (1								N <i>A</i>		
AM PEAK HOUR		N 1				Courtho	use Way			Northeri	n Avenue			Northerr	Avenue	
8:00 AM		North	bound	Distri		South	bound	Distri		East	bound	Dista		West	bound	D'LL
to	0-Turn	Len	Inru	Right	0-Turn	Lett	Inru	Right	0-Turn	Len	i nru	Right	0-Turn	Len	1 nru	Right
9:00 AM	U	0	0	U	U	6	0	33	1	1/9	81	0	U	0	128	40
PHF	0.00/	0.00/	00	0.00/	0.00/	0.	89	04.00/	0.00/	0.	.87	0.00/	0.00/	0.	88	0.00/
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	21.2%	0.0%	3.9%	37.0%	0.0%	0.0%	0.0%	18.0%	0.0%
	1					0.11				NL				NL ST.		
PM PEAK HOUR		N1				Courtno	use way			Northeri	n Avenue			Northerr	Avenue	
5:00 PM	11 7.000	North	bound	Diskt		South	bound	Dist	117	East		Diskt		West		Dist
to	0-Tum	Leit	Thru	Right	0-1011	Leit	Thru 0	Right	0-Tum	Leit	1 mru	Right	0-Tum	Leit	101	Right
0:00 PM	U	U ^	U 00	U	U	18	07	129	U	33	<u>ວ</u> 3	U	1	0	181	22
rnr mu							9/	0.00/	0.00/	0.00/	.93	0.00/	0.00/	0.0%	09	0.00/
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 2 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Courthouse Way Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
						Courtho	use Way			Northerr	n Avenue			Northerr	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	3	10	0	0	0	4	0
7:15 AM	0	0	0	0	0	0	0	0	0	1	9	0	0	0	4	0
7:30 AM	0	0	0	0	0	0	0	1	0	1	12	0	0	0	7	0
7:45 AM	0	0	0	0	0	0	0	0	0	3	8	0	0	0	5	0
8:00 AM	0	0	0	0	0	0	0	3	0	1	10	0	0	0	8	0
8:15 AM	0	0	0	0	0	0	0	3	0	3	8	0	0	0	5	0
8:30 AM	0	0	0	0	0	0	0	0	0	3	7	0	0	0	7	0
8:45 AM	0	0	0	0	0	0	0	1	0	0	5	0	0	0	3	0
						Courtho	use Way			Northerr	n Avenue			Northerr	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	_															
AM PEAK HOUR						Courtho	use Way			Northerr	n Avenue			Northerr	n Avenue	
7:30 AM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	0	0	0	0	0	7	0	8	38	0	0	0	25	0
PHF		0.	00			0.	58			0.	88			0.	78	
	_															
DM DEAR HOUD						0				N a star a su				N a sta a su		

PM PEAK HOUR						Courtho	use Way			Northerr	n Avenue			Northern	n Avenue	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0
PHF		0.	00			0.	25			0.	50			0.	25	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 2 Location: Seaport, Boston, MA Northern Avenue Street 1: Street 2: Courthouse Way 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

						Co	ourthouse V	Vay		No	orthern Aver	nue		No	orthern Aver	nue	
			Northbound	ł			Southbound	d			Eastbound				Westbound	i -	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	56	1	2	0	0	0	0	0	0	
7:15 AM	0	0	0	0	0	0	0	53	0	3	0	0	0	0	0	0	
7:30 AM	0	0	0	0	1	0	0	69	1	1	0	0	0	0	0	0	
7:45 AM	0	0	0	0	0	0	0	78	2	2	0	0	0	0	0	0	
8:00 AM	0	0	0	0	0	0	1	89	1	3	0	0	0	0	0	0	
8:15 AM	0	0	0	0	0	0	0	91	2	1	0	0	0	0	0	0	
8:30 AM	0	0	0	0	0	0	0	111	0	3	0	0	0	1	0	0	
8:45 AM	0	0	0	0	0	0	0	121	2	3	0	0	0	1	0	0	

			Northbound	ł		Co	ourthouse W Southbound	/ay d		No	orthern Aver Eastbound	nue		No	orthern Aver Westbound	nue I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	2	78	0	0	0	0	0	1	0	0	
4:15 PM	0	0	0	0	0	0	1	74	0	1	0	0	0	2	0	0	
4:30 PM	0	0	0	0	0	0	2	81	0	2	0	0	0	3	0	0	
4:45 PM	0	0	0	0	0	0	1	80	0	1	0	0	0	3	0	0	
5:00 PM	0	0	0	0	1	0	7	105	0	0	0	0	0	1	0	0	
5:15 PM	0	0	0	0	0	0	8	120	0	2	0	0	0	2	0	0	
5:30 PM	0	0	0	0	0	0	6	104	1	3	0	0	0	4	0	0	
5:45 PM	0	0	0	0	0	0	3	78	0	0	0	0	0	3	0	0	

AM PEAK HOUR1						Co	ourthouse V	Vay		No	orthern Aver	nue		No	rthern Aver	nue	
8:00 AM			Northbound				Southbound	b			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	0	0	1	412	5	10	0	0	0	2	0	0	

PM PEAK HOUR ¹						Courthouse Way					Northern Avenue					Northern Avenue				
5:00 PM	Northbound					Southbound					Eastbound					Westbound				
to	Left	Thru	Right	PED		Left	Thru	Right	PED		Left	Thru	Right	PED		Left	Thru	Right	PED	(
6:00 PM	0	0	0	0		1	0	24	407		1	5	0	0		0	10	0	0	

¹ Peak hours corresponds to vehicular peak hours.
Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 3 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Fan Pier Boulevard Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

Northern Avenue

TOTAL (CARS & TRUCKS)

Northern Avenue

		North	bound			South	bound			East	bound			Westh	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	4	0	5	0	3	16	0	0	0	17	19
7:15 AM	0	0	0	0	0	3	0	6	0	4	15	0	0	0	22	19
7:30 AM	0	0	0	0	0	1	0	7	0	4	13	0	0	0	24	18
7:45 AM	0	0	0	0	0	3	0	6	0	3	19	0	0	0	26	15
8:00 AM	0	0	0	0	0	4	0	4	0	2	24	0	0	0	25	10
8:15 AM	0	0	0	0	0	4	0	8	0	3	21	0	0	0	32	11
8:30 AM	0	0	0	0	0	3	0	11	0	4	16	0	0	0	36	11
8:45 AM	0	0	0	0	0	3	0	12	0	4	17	0	0	0	38	12
		North	bound			Fan Pier South	Boulevard bound			Northeri Eastl	n Avenue bound			Northern Westl	Avenue	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	15	0	12	0	4	12	0	0	0	24	2
4:15 PM	0	0	0	0	0	16	0	12	0	3	12	0	0	0	26	4
4:30 PM	0	0	0	0	0	15	0	10	1	1	10	0	0	0	25	5
4:45 PM	0	0	0	0	0	18	0	16	0	3	12	0	0	0	27	5
5:00 PM	0	0	0	0	0	20	0	20	1	4	12	0	0	0	27	4
5:15 PM	0	0	0	0	0	27	0	20	0	4	15	0	0	0	32	5
5:30 PM	0	0	0	0	0	31	0	18	0	3	17	0	0	0	33	6
5:45 PM	0	0	0	0	0	33	0	19	0	3	18	0	0	0	35	6
AM PEAK HOUR 8:00 AM		North	bound			Fan Pier South	Boulevard bound			Northeri Eastl	n Avenue bound			Northern Westl	Avenue	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	14	0	35	0	13	78	0	0	0	131	44
PHF		0.	00	-		0.	82			0.	.88	-		0.8	88	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	14.3%	0.0%	2.9%	0.0%	0.0%	12.8%	0.0%	0.0%	0.0%	9.2%	2.3%
PM PEAK HOUR 5:00 PM		North	bound			Fan Pier South	Boulevard bound			Northern Eastl	n Avenue bound			Northern Westl	Avenue	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	0	0	111	0	77	1	14	62	0	0	0	127	21
PHF		0.	00	-		0.	90			0.	.92	-		0.	90	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	5.2%	0.0%	0.0%	1.6%	0.0%	0.0%	0.0%	7.9%	0.0%

Fan Pier Boulevard

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 3 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Fan Pier Boulevard Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
		North	bound			Fan Pier I South	Boulevard bound			Northeri Eastl	n Avenue bound			Northern Westl	n Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	3	5	0	0	0	4	0
7:15 AM	0	0	0	0	0	3	0	1	0	1	4	0	0	0	5	1
7:30 AM	0	0	0	0	0	1	0	0	0	0	3	0	0	0	4	0
7:45 AM	0	0	0	0	0	0	0	1	0	1	4	0	0	0	3	0
8:00 AM	0	0	0	0	0	1	0	0	0	0	3	0	0	0	1	1
8:15 AM	0	0	0	0	0	1	0	0	0	0	3	0	0	0	4	0
8:30 AM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	3	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0
		North	bound			Fan Pier I South	Boulevard bound			Northern Eastl	n Avenue bound			Northerr Westl	Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4:30 PM	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
5:15 PM	0	0	0	0	0	1	0	3	0	0	1	0	0	0	3	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
AM PEAK HOUR 7:00 AM		North	bound			Fan Pier I South	Boulevard bound			Northern Eastl	n Avenue bound			Northerr Westl	n Avenue bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0	0	0	0	4	0	2	0	5	16	0	0	0	16	1
PHF		0.	00			0.	38			0.	.66			0.	71	
PM PEAK HOUR	l					Fan Pier I	Boulevard			Northeri	n Avenue			Northern	Avenue	

PM PEAK HOUR						Fan Pier I	Boulevard			Northern	n Avenue			Northern	Avenue	
5:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	0	0	1	0	4	0	0	1	0	0	0	10	0
PHF		0.	00			0.	31			0.	25			0.	50	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 3 Location: Seaport, Boston, MA Northern Avenue Street 1: Street 2: Fan Pier Boulevard 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

						Fan	Pier Boule	vard		No	orthern Aver	nue		No	orthern Aver	nue	
			Northbound	t			Southbound	b			Eastbound				Westbound	ł	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0	
7:15 AM	0	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	
7:30 AM	0	0	0	0	0	0	0	32	1	0	0	0	0	0	0	0	
7:45 AM	0	0	0	0	0	0	0	46	0	2	0	0	0	0	0	0	
8:00 AM	0	0	0	0	0	0	0	56	0	1	0	0	0	0	0	0	
8:15 AM	0	0	0	0	1	0	0	71	1	1	0	0	0	1	0	0	
8:30 AM	0	0	0	0	0	0	0	80	0	3	0	0	0	0	0	0	
8:45 AM	0	0	0	0	0	0	1	84	0	2	0	0	0	0	0	0	

			Northbound	ł		Fan	Pier Boule Southbound	vard d		No	rthern Aver Eastbound	nue		No	rthern Aver Westbound	nue I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	60	0	0	0	0	0	0	0	0	
4:15 PM	0	0	0	0	0	0	0	57	0	0	0	0	0	1	0	0	
4:30 PM	0	0	0	0	0	0	0	71	0	3	0	0	0	0	0	0	
4:45 PM	0	0	0	0	1	0	2	79	0	8	0	0	0	0	0	0	
5:00 PM	0	0	0	0	0	0	1	96	1	5	0	0	0	3	0	0	
5:15 PM	0	0	0	0	0	0	0	103	0	1	0	0	0	2	0	0	
5:30 PM	0	0	0	0	1	0	1	92	0	2	0	0	0	2	0	0	
5:45 PM	0	0	0	0	0	0	0	72	0	0	0	0	0	4	0	0	

AM PEAK HOUR1						Fan	Pier Boule	vard		No	rthern Aver	nue		No	orthern Aver	nue	
8:00 AM			Northbound				Southbound	b			Eastbound				Westbound	ł	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	1	0	1	291	1	7	0	0	0	1	0	0	

PM PEAK HOUR ¹			0			Fan	Pier Boule	vard		No	orthern Aver	nue		No	rthern Aver	nue	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	0	1	0	2	363	1	8	0	0	0	11	0	0	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 4 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Marina Park Drive Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

Northern Avenue

TOTAL (CARS & TRUCKS) Marina Park Drive Nor

Northern Avenue

		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	3	0	0	0	1	21	0	0	0	40	20
7:15 AM	0	0	0	0	0	4	0	1	0	2	17	0	0	0	44	25
7:30 AM	0	0	0	0	0	5	0	1	0	1	11	0	0	0	44	27
7:45 AM	0	0	0	0	0	8	0	2	0	5	17	0	0	0	42	37
8:00 AM	0	0	0	0	0	10	0	2	1	8	21	0	0	0	36	43
8:15 AM	0	0	0	0	0	8	0	3	0	6	21	0	0	0	41	41
8:30 AM	0	0	0	0	0	5	0	3	0	4	19	0	0	0	43	36
8:45 AM	0	0	0	0	0	5	0	2	0	4	20	0	0	0	45	38
_		North	bound			Marina P South	ark Drive bound			Northeri Eastl	n Avenue bound			Northerr West) Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	20	0	5	0	2	24	0	1	0	21	2
4:15 PM	0	0	0	0	0	19	0	4	0	1	26	0	0	0	25	3
4:30 PM	0	0	0	0	0	16	0	2	2	0	26	0	0	0	26	2
4:45 PM	0	0	0	0	0	23	0	3	0	2	32	0	0	0	27	5
5:00 PM	0	0	0	0	0	27	0	2	2	3	35	0	0	0	25	7
5:15 PM	0	0	0	0	0	24	0	3	0	2	41	0	0	0	33	6
5:30 PM	0	0	0	0	0	19	0	4	1	3	43	0	0	0	38	5
5:45 PM	0	0	0	0	0	20	0	4	0	3	45	0	0	0	40	5
AM PEAK HOUR 8:00 AM		North	bound	1		Marina P South	ark Drive bound	1		Northern Eastl	n Avenue bound	1		Northerr West	1 Avenue bound	1
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	28	0	10	1	22	81	0	0	0	165	158
PHF		0.	00			0.	79			0.	.87	-		0.	97	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	39.3%	0.0%	40.0%	0.0%	0.0%	25.9%	0.0%	0.0%	0.0%	12.1%	0.0%
PM PEAK HOUR 5:00 PM		North	bound			Marina P South	ark Drive bound			Northern Eastl	n Avenue bound			Northerr West) Avenue bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	0	0	90	0	13	3	11	164	0	0	0	136	23
PHF		0.	00	-		0.	89			0.	.93	-		0.	88	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 4 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Marina Park Drive Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
						Marina F	ark Drive			Northeri	n Avenue			Northern	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	3	0	0	0	0	3	0	0	0	4	0
7:15 AM	0	0	0	0	0	1	0	0	0	0	4	0	0	0	4	0
7:30 AM	0	0	0	0	0	1	0	1	0	0	3	0	0	0	5	0
7:45 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	7	0
8:00 AM	0	0	0	0	0	4	0	3	0	0	4	0	0	0	4	0
8:15 AM	0	0	0	0	0	3	0	1	0	0	5	0	0	0	7	0
8:30 AM	0	0	0	0	0	1	0	0	0	0	7	0	0	0	5	0
8:45 AM	0	0	0	0	0	3	0	0	0	0	5	0	0	0	4	0
						Marina F	ark Drive			Northeri	n Avenue			Northern	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	3	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1															
AM PEAK HOUR						Marina F	ark Drive			Northeri	n Avenue			Northern	n Avenue	
8:00 AM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	11	0	4	0	0	21	0	0	0	20	0
PHF		0.	00			0.	54			0.	.75			0.	.71	
PM PEAK HOUR						Marina F	ark Drive			Northeri	n Avenue			Northern	n Avenue	

PM PEAK HOUR						Marina P	ark Drive			Northerr	n Avenue			Northern	Avenue	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	1	0	1	0	0	4	0	0	0	2	0
PHF	•	0.	00	•		0.	50	-		0.	33			0.	50	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 4 Location: Seaport, Boston, MA Northern Avenue Street 1: Street 2: Marina Park Drive 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

						Ma	rina Park D	rive		No	orthern Ave	nue		No	orthern Ave	nue	
			Northbound				Southbound	d			Eastbound				Westbound	i	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	13	0	0	0	0	0	1	0	12	
7:15 AM	0	0	0	0	1	0	0	12	0	0	0	0	0	1	0	11	
7:30 AM	0	0	0	0	0	0	0	27	0	0	0	0	0	2	0	29	
7:45 AM	0	0	0	0	0	0	1	39	0	0	0	0	0	1	2	45	
8:00 AM	0	0	0	0	0	0	1	43	1	0	0	0	0	2	1	41	
8:15 AM	0	0	0	0	0	0	0	42	0	0	0	0	0	0	0	34	
8:30 AM	0	0	0	0	0	0	2	51	0	2	0	0	0	1	1	46	
8 45 AM	0	0	0	0	0	0	1	56	0	1	0	0	0	2	0	53	

						Ma	rina Park D	rive		No	orthern Aver	nue		No	rthern Aver	nue	
			Northbound	ł			Southbound	d			Eastbound				Westbound		
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	60	0	0	0	0	0	0	0	1	
4:15 PM	0	0	0	0	0	0	0	57	0	0	0	0	0	0	0	2	
4:30 PM	0	0	0	0	0	0	0	65	0	0	0	0	0	0	0	4	
4:45 PM	0	0	0	0	0	0	1	67	1	0	0	0	0	0	0	5	
5:00 PM	0	0	0	0	0	0	0	76	0	1	0	0	0	2	0	4	
5:15 PM	0	0	0	0	1	0	0	78	0	2	0	0	0	3	1	3	
5:30 PM	0	0	0	0	0	0	1	72	1	1	0	0	0	2	1	4	
5:45 PM	0	0	0	0	0	0	0	59	0	0	0	0	0	1	0	4	

AM PEAK HOUR1						Ma	rina Park D	rive		No	rthern Aver	nue		No	rthern Aver	nue	
8:00 AM			Northbound				Southbound	b			Eastbound				Westbound	i -	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	0	0	4	192	1	3	0	0	0	5	2	174	

PM PEAK HOUR ¹						Ma	rina Park D	rive		No	rthern Aver	nue		No	orthern Aver	nue	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	0	1	0	1	285	1	4	0	0	0	8	2	15	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 5 Seaport, Boston, MA Location: Street 1: Northern Avenue Street 2: Harbor Shore Drive Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						Harbor SI	nore Drive	-		Northern	n Avenue			Northern	Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	1	0	3	1	7	16	0	0	0	57	10
7:15 AM	0	0	0	0	0	0	0	2	0	4	17	0	3	0	67	8
7:30 AM	0	0	0	0	0	1	0	1	1	1	14	0	6	0	70	5
7:45 AM	0	0	0	0	0	1	0	2	1	1	23	0	5	0	77	6
8:00 AM	0	0	0	0	0	0	0	1	0	0	31	0	3	0	78	7
8:15 AM	0	0	0	0	0	1	0	2	1	1	27	0	4	0	80	9
8:30 AM	0	0	0	0	0	0	0	1	0	0	24	0	3	0	78	10
8:45 AM	0	0	0	0	0	0	0	1	0	0	25	0	3	0	82	11

						Harbor SI	hore Drive			Northerr	n Avenue			Northerr	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	4	0	5	3	1	40	0	2	0	19	3
4:15 PM	0	0	0	0	0	3	0	4	2	2	41	0	1	0	24	4
4:30 PM	0	0	0	0	0	2	0	3	0	1	41	0	2	0	25	3
4:45 PM	0	0	0	0	0	7	0	3	1	2	52	0	3	0	29	5
5:00 PM	0	0	0	0	0	11	0	2	0	3	59	0	2	0	30	6
5:15 PM	0	0	0	0	0	12	0	3	1	3	61	0	3	0	36	7
5:30 PM	0	0	0	0	0	12	0	2	0	2	60	0	4	0	41	8
5.45 PM	0	0	0	0	0	13	0	2	0	2	63	0	4	0	43	8

AM PEAK HOUR						Harbor Sh	nore Drive			Northerr	n Avenue			Northern	I Avenue	
8:00 AM		North	bound			South	bound			East	oound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	1	0	5	1	1	107	0	13	0	318	37
PHF		0.	00			0.	50			0.	88			0.	96	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	10.3%	0.0%	0.0%	0.0%	6.6%	10.8%

PM PEAK HOUR						Harbor Sh	nore Drive			Northern	Avenue			Northern	Avenue	
5:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
- 00 P2 -						10				1.				-		
6:00 PM	0	0	0	0	0	48	0	9	1	10	243	0	13	0	150	29
6:00 PM PHF	0	0.0	0	0	0	48 0.	0 95	9	1	10 0.	243 98	0	13	0	150 87	29

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 5 Seaport, Boston, MA Location: Street 1: Northern Avenue Street 2: Harbor Shore Drive Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

						Harbor Sh	nore Drive			Northerr	n Avenue			Northerr	n Avenue	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	0	0	0	0	0	0	0	0	5	1	0	1	8	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	4	1	0	1	5	0
7:30 AM	0	1	0	0	0	0	0	0	0	0	3	1	0	0	7	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	8	0
8:00 AM	0	1	0	0	0	0	0	0	0	0	3	1	0	0	5	0
8:15 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	7	1
8:30 AM	0	1	0	0	0	0	0	0	0	0	4	0	0	1	4	3
8:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	5	0

						Harbor Sh	nore Drive			Northerr	n Avenue			Northerr	n Avenue	
		North	bound			South	bound			Eastb	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR						Harbor Sh	nore Drive			Northerr	n Avenue			Northern	Avenue	
7:00 AM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	3	0	0	0	0	0	0	0	0	16	3	0	2	28	0
PHF		0.	75			0.	00			0.	79			0.	83	

PM PEAK HOUR						Harbor SI	nore Drive			Northern	Avenue			Northern	i Avenue	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	2	1	0
PHF		0.	00			0.	00	-		0.	50			0.	75	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 5 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Harbor Shore Drive Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

PEDESTRIANS & BICYCLES

						Har	bor Shore [Drive		No	orthern Ave	nue		No	orthern Ave	nue	
			Northbound	ł			Southbound	d			Eastbound				Westbound	t	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	2	
7:15 AM	0	0	0	0	1	0	0	11	0	0	0	2	0	1	0	3	
7:30 AM	0	0	0	0	0	0	0	13	0	0	0	3	0	0	0	4	
7:45 AM	0	0	0	0	0	0	2	18	0	1	0	8	0	0	0	7	
8:00 AM	0	0	0	0	0	0	0	22	0	0	0	13	0	0	0	9	
8:15 AM	0	0	0	0	0	0	1	32	0	1	0	15	0	1	0	11	
8:30 AM	0	0	0	0	0	0	0	39	0	2	0	16	0	1	0	12	
8:45 AM	0	0	0	0	0	0	0	41	0	0	0	17	0	2	0	13	

			Northbound	ł		Har	bor Shore [Southbound	Drive d		No	orthern Aver Eastbound	nue		No	rthern Ave	nue	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	34	0	0	0	21	0	0	0	9	
4:15 PM	0	0	0	0	0	0	0	32	1	0	0	20	0	0	0	9	
4:30 PM	0	0	0	0	0	0	0	29	0	1	0	17	0	1	0	12	
4:45 PM	0	0	0	0	0	0	0	23	0	0	0	12	0	0	0	10	
5:00 PM	0	0	0	0	0	0	0	29	0	2	0	17	0	1	0	16	
5:15 PM	0	0	0	0	0	0	1	32	1	3	0	20	0	2	0	12	
5:30 PM	0	0	0	0	0	0	2	38	2	2	0	18	0	3	0	10	
5:45 PM	0	0	0	0	0	0	0	41	1	0	0	15	0	1	0	7	

AM PEAK HOUR ¹						Harl	bor Shore D	Drive		No	rthern Aver	nue		No	orthern Aver	nue	
8:00 AM			Northbound				Southbound	ł			Eastbound				Westbound	ł	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	0	0	1	134	0	3	0	61	0	4	0	45	

PM PEAK HOUR ¹						Harl	bor Shore D	Drive		No	rthern Aver	nue		No	rthern Aver	nue	
5:00 PM			Northbound	1			Southbound	ł			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	0	0	0	3	140	4	7	0	70	0	7	0	45	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 6 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Pier 4 Boulevard Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

		Pier 4 B North	oulevard bound			Driveway South	(one way) bound			Northern Eastb	Avenue oound			Drive Westl	eway bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	65	0	2	0	0	0	0	0	0	2	15	0	5	2	0
7:15 AM	0	73	1	1	0	0	0	0	0	0	2	18	0	7	2	0
7:30 AM	0	74	1	0	0	0	0	0	0	0	1	20	0	8	1	0
7:45 AM	0	81	2	1	0	0	0	1	0	0	1	28	0	7	1	0
8:00 AM	0	84	0	2	0	0	0	1	0	0	0	20	0	5	0	0
8:15 AM	0	85	1	3	0	0	0	2	0	1	2	23	0	8	1	0
8:30 AM	0	87	0	3	0	0	0	0	0	0	1	26	0	10	2	0
8:45 AM	0	92	0	2	0	0	0	0	0	1	1	37	0	6	2	0
		Pier 4 B North	oulevard bound			Driveway South	(one way) bound			Northern Eastb	Avenue oound			Drive Westl	eway bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	22	0	5	0	0	0	0	0	0	0	46	0	2	0	0
4:15 PM	0	28	0	7	0	0	0	0	0	0	0	45	0	2	1	0
4:30 PM	0	28	0	9	0	0	0	0	0	0	0	45	0	1	0	0
4:45 PM	0	33	0	7	0	0	0	0	0	0	1	61	0	2	2	0
5:00 PM	0	35	0	4	0	0	0	0	0	0	1	71	0	2	3	0
5:15 PM	0	41	0	6	0	0	0	0	0	0	2	74	0	1	2	0
5:30 PM	0	48	0	7	0	0	0	0	0	0	1	71	0	0	0	0
5:45 PM	0	50	0	7	0	0	0	0	0	0	1	70	0	1	1	0
AM PEAK HOUR 8.00 AM		Pier 4 B North	oulevard bound			Driveway South	(one way)			Northern Fasth	Avenue			Drive Westl	eway	

8:00 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	348	1	10	0	0	0	3	0	2	4	106	0	29	5	0
PHF		0.	95			0.	38			0.7	72			0.	71	
HV %	0.0%	5.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	14.2%	0.0%	3.4%	0.0%	0.0%

PM PEAK HOUR		Pier 4 B	oulevard			Driveway	(one way)			Northern	Avenue			Drive	eway	
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	174	0	24	0	0	0	0	0	0	5	286	0	4	6	0
PHF		0.	87			0.	00			0.9	96			0.	50	
HV %	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 6 Location: Seaport, Boston, MA Street 1: Northern Avenue Street 2: Pier 4 Boulevard Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TRUCKS

		Pier 4 B North	oulevard bound			Driveway South	(one way) bound			Northerr Eastt	n Avenue bound			Drive Westl	eway bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	8	0	1	0	0	3	0	0	0	0	4	0	0	0	0
7:15 AM	0	5	0	0	0	0	4	0	0	0	0	3	0	1	0	0
7:30 AM	0	5	0	0	0	0	5	0	0	1	0	1	0	0	0	0
7:45 AM	0	7	0	1	0	0	4	0	0	0	0	5	0	0	0	0
8:00 AM	0	5	0	0	0	0	1	0	0	0	0	4	0	0	0	0
8:15 AM	0	4	0	0	0	0	1	0	0	0	0	4	0	0	0	0
8:30 AM	0	4	0	0	0	0	0	0	0	0	0	4	0	1	0	0
8:45 AM	0	5	0	0	0	0	0	0	0	1	0	3	0	0	0	0
		Pier 4 B North	oulevard bound			Driveway South	(one way) bound			Northerr Eastt	n Avenue pound			Drive Westl	eway bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
4:30 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 7:00 AM		Pier 4 B North	oulevard bound			Driveway South	(one way) bound			Northerr Eastt	n Avenue bound			Drive West	eway bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	25	0	2	0	0	16	0	0	1	0	13	0	1	0	0
PHF		0.	75			0.	80			0.	70			0.	25	

PM PEAK HOUR		Pier 4 B	oulevard			Driveway	(one way)			Northern	N Avenue			Driv€	eway	
4:00 PM		North	bound			South	bound			Eastb	ound			Westł	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	2	0	1	0	0	0	0	0	0	0	3	0	1	0	0
PHF		0.	75			0.	00			0.	75			0.1	25	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 6 Location: Seaport, Boston, MA Northern Avenue Street 1: Street 2: Pier 4 Boulevard 11/1/2016 Count Date: Day of Week: Tuesday Weather: Partly Cloudy, 55° F

PEDESTRIANS & BICYCLES

		Pi	er 4 Boulev Northbound	ard d			Driv	eway (one Southbound	way) d		No	orthern Aver Eastbound	nue			Driveway Westbound	I	
Start Time	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0		0	0	0	1	0	0	0	0	0	0	0	1	
7:15 AM	0	0	0	1		0	0	0	8	0	0	0	0	0	0	0	7	
7:30 AM	0	0	0	2		0	0	0	15	0	0	0	0	0	0	0	13	
7:45 AM	0	0	0	4		0	0	0	13	0	0	0	0	0	0	0	12	
8:00 AM	0	0	0	5		0	0	0	10	0	0	0	0	0	0	0	9	
8:15 AM	2	0	0	3		0	0	0	9	0	0	0	0	0	0	0	8	
8:30 AM	1 0 0 1					0	0	0	8	0	0	0	0	0	0	0	7	
8.45 AM	1						0	0	8	0	0	0	0	0	0	0	7	

		Pie	er 4 Bouleva Northbound	ard I			Driv	eway (one Southbound	way) d		No	orthern Aver Eastbound	iue			Driveway Westbound	l	
Start Time	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0		0	0	0	33	0	0	0	0	0	0	0	33	
4:15 PM	1	0	0	0		0	0	0	31	0	0	0	0	0	0	0	31	
4:30 PM	0	0	0	0		0	0	0	26	0	0	0	0	0	0	0	25	
4:45 PM	1	0	0	0		0	0	0	18	0	0	2	0	0	0	0	16	
5:00 PM	2	0	0	2		0	0	0	21	0	0	1	0	0	0	0	18	
5:15 PM	0	0	0	4		0	0	0	22	0	0	0	0	0	0	0	18	
5:30 PM	1	0 0 0 4 1 0 0 2					0	0	25	0	0	1	0	0	0	0	23	
5:45 PM	0	0	0	0		0	0	0	25	0	0	0	0	0	0	0	25	

AM PEAK HOUR ¹		Pie	er 4 Bouleva	ard		Driv	eway (one	way)		No	rthern Aver	nue			Driveway		
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	4	0	0	10	0	0	0	35	0	0	0	0	0	0	0	31	

PM PEAK HOUR ¹		Pie	er 4 Bouleva	ard		Driv	eway (one	way)		No	rthern Aver	ue			Driveway		
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	3	0	0	8	0	0	0	93	0	0	2	0	0	0	0	84	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 7 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: Sleeper Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

		Sleepe	r Street			Sleepe	r Street	ι-		Seaport E	Boulevard			Seaport E	Boulevard	
		North	bound			South	bound			Eastb	ound			West	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	14	4	4	0	3	9	15	0	37	116	33	1	1	68	6
7:15 AM	0	17	5	3	0	2	6	16	0	40	122	30	0	2	103	6
7:30 AM	0	19	5	1	0	1	2	15	0	40	116	24	1	2	129	5
7:45 AM	0	20	7	2	0	5	5	22	0	46	131	25	2	3	121	7
8:00 AM	0	20	8	3	0	9	7	26	0	48	134	23	2	3	102	9
8:15 AM	0	19	11	8	0	5	8	25	0	50	163	25	1	4	135	8
8:30 AM	0	17	12	5	0	8	9	21	0	47	165	25	0	4	155	6
8:45 AM	0	18	13	9	0	7	9	22	0	49	157	26	0	3	163	6
		0	0			0	0			0				0		
		Sieepe	r Street bound			Sieepe	r Street bound			Seaport E Fasth	ound			Seaport E West	soulevard	
Start Time	U-Turn	Left	Thru	Riaht	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	45	7	4	0	6	8	56	0	16	122	22	1	4	111	1
4:15 PM	0	41	6	6	0	4	8	61	0	15	127	25	1	4	134	2
4:30 PM	0	34	4	8	0	2	7	61	0	13	120	26	2	4	145	3
4:45 PM	0	44	2	11	0	4	8	59	0	13	158	20	2	5	122	4
5:00 PM	0	49	0	13	0	5	8	65	0	12	180	13	1	5	132	3
5:15 PM	0	40	1	15	0	6	11	66	0	11	177	22	1	9	150	8
5:30 PM	0	28	0	15	0	6	12	65	0	9	158	29	0	12	165	12
5:45 PM	0	29	0	16	0	5	13	68	0	9	166	30	0	13	163	13
<u></u>	1						a									
AM PEAK HOUR		Sleepe	r Street			Sleepe	r Street			Seaport E	Boulevard			Seaport E	Boulevard	
8:00 AM		North	bound	Distri		South	bound	Distri		East	bound	Dista		West	Jound	Distr
to	U-Turn	Left	Inru	Right	U-Turn	Left	Inru	Right	U-Turn	Left	I nru	Right	U-Turn	Left	Inru	Right
9:00 AM	0	/4	44	25	0	29	33	94	0	194	619	99	3	14	555	29
PHF	0.00/	0.	89			0.	93	44 - 04		0.	96	0.00/	0.00/	0.	87	
HV %	0.0%	6.8%	2.3%	0.0%	0.0%	34.5%	0.0%	11.7%	0.0%	5.7%	6.9%	0.0%	0.0%	0.0%	5.9%	37.9%
PM PEAK HOUR	1	Sleepe	r Street			Sleepe	r Street			Seaport E	Boulevard			Seaport E	Boulevard	
5:00 PM		North	bound			South	bound			Eastb	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	146	1	59	0	22	44	264	0	41	681	94	2	39	610	36
PHF		0.	83			0.	96			0.	97			0.	91	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.4%	1.6%	0.0%	0.0%	0.0%	1.8%	2.8%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 7 Location: Seaport, Boston, MA Seaport Boulevard Street 1: Street 2: Sleeper Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
		Sleepe North	r Street bound			Sleepe South	r Street bound			Seaport I Eastl	Boulevard bound			Seaport I West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	0	0	0	4	0	3	0	3	12	0	0	0	14	3
7:15 AM	0	0	1	0	0	3	0	4	0	3	14	0	0	0	17	4
7:30 AM	0	3	0	1	0	1	0	1	0	1	10	0	0	0	12	4
7:45 AM	0	3	0	1	0	3	0	4	0	1	12	0	0	0	10	3
8:00 AM	0	0	1	0	0	3	0	3	0	3	13	0	0	0	9	4
8:15 AM	0	1	0	0	0	1	0	4	0	1	9	0	0	0	7	3
8:30 AM	0	1	0	0	0	4	0	1	0	3	12	0	0	0	9	1
8:45 AM	0	3	0	0	0	2	0	3	0	4	9	0	0	0	8	3
		Sleepe North	r Street bound			Sleepe South	r Street bound			Seaport I East	Boulevard			Seaport I West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	1	3	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	1	4	0	0	0	4	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0
5:30 PM	0	0	0	0	0	0	0	0	0	1	3	0	0	0	4	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0
AM PEAK HOUR 7:00 AM		Sleepe North	r Street bound			Sleepe South	r Street bound			Seaport I Eastl	Boulevard			Seaport I West	Boulevard bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	7	1	2	0	11	0	12	0	8	48	Ŏ	0	0	53	14
PHF		0.	63			0.	82			0.	82			0.	80	
													•			

PM PEAK HOUR		Sleepe	r Street			Sleepe	r Street			Seaport E	Boulevard			Seaport E	Boulevard	
4:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	2	14	0	0	0	11	1
PHF		0.	00			0.	00			0.	80			0.0	60	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: Location 7 BTD #: Location: Seaport, Boston, MA Seaport Boulevard Street 1: Street 2: Sleeper Street 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		S	leeper Stre Northbound	et I		S	leeper Stre Southbound	et d		Sea	aport Boulev Eastbound	vard		Sea	aport Boule Westbound	/ard I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	12	0	0	0	7	0	1	0	11	0	0	0	16	
7:15 AM	0	0	0	11	0	0	0	7	0	2	1	10	0	0	0	15	
7:30 AM	0	0	0	12	0	0	0	18	0	2	0	16	0	0	0	19	
7:45 AM	0	1	0	12	0	1	1	28	1	2	0	11	0	0	0	21	
8:00 AM	0	2	0	14	0	0	1	35	2	6	2	12	0	1	1	33	
8:15 AM	0	2	0	15	0	0	0	38	0	2	3	9	0	0	0	42	
8:30 AM	1	1	0	19	0	2	1	33	1	8	1	12	0	4	1	43	
8:45 AM	1	0	0	21	0	0	0	24	3	13	3	13	0	3	2	39	

		S	leeper Stre Northbound	et I		S	leeper Stre	et 1		Sea	port Boulev Eastbound	vard		Sea	port Boulev	/ard	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	33	0	0	0	17	0	1	0	9	0	2	1	22	
4:15 PM	1	1	0	31	0	1	1	16	1	1	1	9	0	1	2	21	
4:30 PM	0	2	0	33	0	2	0	14	1	3	0	11	0	4	0	21	
4:45 PM	0	1	0	32	0	1	1	11	1	5	0	12	0	3	1	19	
5:00 PM	2	0	0	44	0	0	2	26	0	8	1	15	0	5	2	23	
5:15 PM	3	2	0	52	0	1	2	39	1	11	0	17	0	8	3	24	
5:30 PM	2	1	0	44	0	2	1	32	0	7	0	14	0	7	1	22	
5:45 PM	1	1	0	31	0	0	1	21	0	4	0	9	0	2	0	18	

AM PEAK HOUR ¹		S	leeper Stre	et		S	leeper Stre	et		Sea	port Boulev	/ard		Sea	aport Boulev	/ard	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	2	5	0	69	0	2	2	130	6	29	9	46	0	8	4	157	1

PM PEAK HOUR ¹		S	leeper Stre	et		S	leeper Stre	et		Sea	port Boulev	ard		Sea	aport Boulev	vard	
5:00 PM			Northbound				Southbound	1			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	8	4	0	171	0	3	6	118	1	30	1	55	0	22	6	87	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 8 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: Boston Wharf Road Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

		Boston W	harf Road							Seaport I	Boulevard			Seaport I	Boulevard	
		North	bound			South	bound			Eastb	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	9	0	8	0	0	0	0	2	0	89	20	5	9	51	0
7:15 AM	0	12	0	9	0	0	0	0	1	0	95	26	4	12	75	0
7:30 AM	0	14	0	10	0	0	0	0	2	0	91	30	3	14	91	0
7:45 AM	0	23	0	9	0	0	0	0	1	0	96	36	3	15	95	0
8:00 AM	0	29	0	8	0	0	0	0	0	0	92	38	4	15	90	0
8:15 AM	0	29	0	11	0	0	0	0	1	0	136	36	4	17	108	0
8:30 AM	0	26	0	13	0	0	0	0	0	0	118	44	3	17	116	0
8:45 AM	0	27	0	14	0	0	0	0	0	0	115	35	3	18	122	0
		Boston W	/harf Road							Seaport I	Boulevard			Seaport I	Boulevard	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	21	0	10	0	0	0	0	1	0	91	26	8	10	86	0
4:15 PM	0	25	0	10	0	0	0	0	0	0	109	30	8	15	99	0
4:30 PM	0	27	0	9	0	0	0	0	1	0	117	32	7	19	102	0
4:45 PM	0	26	0	15	0	0	0	0	1	0	130	45	6	29	116	0
5:00 PM	0	22	0	20	0	0	0	0	0	0	131	54	4	37	131	0
5:15 PM	0	25	0	18	0	0	0	0	1	0	123	57	3	32	133	0
5:30 PM	0	19	0	14	0	0	0	0	1	0	104	55	10	36	147	0
5:45 PM	0	27	0	15	0	0	0	0	0	0	126	58	5	30	138	0
	-															
AM PEAK HOUR		Boston W	/harf Road							Seaport I	Boulevard			Seaport I	Boulevard	
8:00 AM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	111	0	46	0	0	0	0	1	0	461	153	14	67	436	0
PHF		0.	.96			0.	00			0.	89			0.	90	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	7.8%	4.6%	0.0%	7.5%	7.1%	0.0%

PM PEAK HOUR		Boston W	harf Road							Seaport E	Boulevard			Seaport E	Boulevard	
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	93	0	67	0	0	0	0	2	0	484	224	22	135	549	0
PHF		0.	93			0.	00			0.9	96			0.	91	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 8 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: Boston Wharf Road Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TRUCKS

8:45 AM	0	0	0	0	0	0	0	0	0	0	10	3	0	1	7	0
				•							•					
		Boston W	harf Road							Seaport E	Boulevard			Seaport E	Boulevard	
		North	bound			South	bound			Eastb	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	8	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	7	0
4:30 PM	0	1	0	0	0	0	0	0	0	0	3	1	0	1	8	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	3	3	0	0	4	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	7	0
5:15 PM	0	1	0	0	0	0	0	0	0	0	4	3	0	0	3	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	5	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	1	0	0	3	0
	1															
AM PEAK HOUR		Boston W	harf Road			. .				Seaport I	Boulevard			Seaport E	Boulevard	
7:00 AM		North	bound			South	bound		· · ·	East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	2	0	0	0	0	0	0	0	0	51	3	0	5	52	0
PHF		0.	50			0.	00			0.	84			0.	84	

PM PEAK HOUR		Boston W	harf Road							Seaport E	Boulevard			Seaport E	Boulevard	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	1	0	0	0	0	0	0	0	0	13	4	0	1	27	0
PHF		0.	25	-		0.	00			0.	71	-		0.	78	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 8 Location: Seaport, Boston, MA Seaport Boulevard Street 1: Street 2: Boston Wharf Road 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		Bos	ton Wharf F	Road			Southbound	Ч		Sea	aport Boule	/ard		Sea	aport Boule	/ard	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	13	0	0	0	0	0	1	0	5	0	1	0	7	
7:15 AM	0	0	0	12	0	0	0	0	0	2	1	3	0	1	0	5	
7:30 AM	0	0	1	25	0	0	0	0	0	3	1	11	0	4	0	17	
7:45 AM	0	0	0	35	0	0	0	0	0	2	0	18	0	3	0	27	
8:00 AM	1	0	0	44	0	0	0	0	0	4	2	22	0	5	0	34	
8:15 AM	0	0	1	49	0	0	0	0	0	3	0	23	0	0	0	37	
8:30 AM	0	0	0	44	0	0	0	0	0	6	1	18	0	4	0	33	
8.45 AM	1	Δ	0	34	0	0	0	0	0	7	2	21	0	6	0	26	

		Bos	ton Wharf F Northbound	Road ध			Southbound	ł		Sea	aport Boule Eastbound	vard		Sea	aport Boulev Westbound	/ard I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	51	0	0	0	0	0	2	0	16	0	1	0	22	
4:15 PM	0	0	0	49	0	0	0	0	0	1	0	15	0	0	0	21	
4:30 PM	1	0	0	62	0	0	0	0	0	4	1	13	0	5	0	15	
4:45 PM	1	0	0	69	0	0	0	0	0	3	1	9	0	4	0	7	
5:00 PM	0	0	0	70	0	0	0	0	0	5	2	15	0	9	0	17	
5:15 PM	2	0	0	65	0	0	0	0	0	8	2	19	0	12	0	25	
5:30 PM	1	0	1	66	0	0	0	0	0	7	3	24	0	8	0	23	
5:45 PM	0	0	0	61	0	0	0	0	0	2	0	21	0	4	0	19	

AM PEAK HOUR ¹		Bos	ton Wharf F	Road						Sea	aport Boulev	/ard		Sea	aport Boulev	vard	
8:00 AM			Northbound				Southbound	b			Eastbound				Westbound	i -	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	2	0	1	171	0	0	0	0	0	20	5	84	0	15	0	130	

PM PEAK HOUR ¹		Bos	ton Wharf F	Road						Sea	port Boulev	/ard		Sea	aport Boulev	/ard	
5:00 PM			Northbound	l			Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	3	0	1	262	0	0	0	0	0	22	7	79	0	33	0	84	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 9 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: East Service Rd/Pier 4 Blvd Count Date: 11/1/2016 Day of Week: Tuesday Partly Cloudy, 55° F Weather:

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		East Serv North	vice Road			Pier 4 B South	oulevard bound	·		Seaport I Eastt	Boulevard bound			Seaport E West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	16	50	13	0	7	0	3	0	3	99	0	0	0	41	14
7:15 AM	0	18	54	13	0	9	0	7	2	4	102	0	0	0	62	17
7:30 AM	0	18	53	14	0	11	0	10	3	4	97	0	0	0	77	18
7:45 AM	0	24	54	11	0	11	0	10	3	5	100	0	0	0	64	25
8:00 AM	0	27	42	7	0	15	0	9	2	6	96	0	0	0	77	30
8:15 AM	0	35	49	6	0	20	0	10	3	7	115	0	0	0	89	22
8:30 AM	0	21	64	9	0	17	0	21	2	8	124	0	0	0	91	30
8:45 AM	0	32	67	15	0	27	0	14	2	8	119	0	0	0	94	24

		East Serv North	/ice Road bound			Pier 4 B South	oulevard bound			Seaport I Eastl	Boulevard bound			Seaport E Westt	Boulevard	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	18	5	31	0	35	0	10	3	10	96	0	0	0	68	12
4:15 PM	0	16	7	30	0	34	0	12	3	11	113	0	0	0	86	17
4:30 PM	0	13	6	27	0	30	0	13	2	11	120	0	0	0	95	20
4:45 PM	0	14	10	28	0	37	0	18	3	10	138	0	0	0	121	20
5:00 PM	0	14	10	26	0	41	0	21	3	10	142	0	0	0	137	19
5:15 PM	0	15	11	27	0	47	0	23	4	9	135	0	0	0	134	27
5:30 PM	0	15	14	25	0	48	0	25	4	8	116	0	0	0	130	33
5:45 PM	0	16	14	26	0	50	0	24	4	8	123	0	0	0	130	35

AM PEAK HOUR		East Serv	vice Road			Pier 4 B	oulevard			Seaport E	Boulevard			Seaport B	Boulevard	
8:00 AM		North	bound			South	bound			Eastb	ound			Westb	ound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	115	222	37	0	79	0	54	9	29	454	0	0	0	351	106
PHF		0.	82			0.	81			0.9	92			0.9	94	
HV %	0.0%	0.0%	1.8%	0.0%	0.0%	13.9%	0.0%	13.0%	0.0%	20.7%	8.8%	0.0%	0.0%	0.0%	9.4%	6.6%

PM PEAK HOUR		East Serv	ice Road			Pier 4 B	oulevard			Seaport B	Boulevard			Seaport E	Boulevard	
5:00 PM		North	ound			South	bound			Eastb	ound			West	ound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	60	49	104	0	186	0	93	15	35	516	0	0	0	531	114
PHF		0.9	95			0.	94			0.	91			0.9	98	
HV %	0.0%	0.0%	0.0%	1.0%	0.0%	1.6%	0.0%	1.1%	0.0%	0.0%	2.1%	0.0%	0.0%	0.0%	1.9%	0.9%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 9 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: East Service Rd/Pier 4 Blvd Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
		East Serv North	vice Road bound			Pier 4 B South	oulevard bound			Seaport I Eastl	Boulevard bound			Seaport I West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	3	14	0	0	0	10	0
7:15 AM	0	0	1	0	0	1	0	1	0	4	18	0	0	0	14	0
7:30 AM	0	0	3	0	0	1	0	1	0	5	20	0	0	0	12	3
7:45 AM	0	0	1	0	0	3	0	0	0	3	17	0	0	0	13	1
8:00 AM	0	0	0	0	0	4	0	3	0	2	10	0	0	0	9	0
8:15 AM	0	0	0	0	0	3	0	1	0	1	9	0	0	0	8	3
8:30 AM	0	0	1	0	0	1	0	0	0	2	12	0	0	0	9	3
8:45 AM	0	0	3	0	0	3	0	3	0	1	9	0	0	0	7	1
		East Serv North	vice Road bound			Pier 4 B South	oulevard bound		•	Seaport I Eastl	Boulevard pound			Seaport I West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
4:15 PM	0	0	0	0	0	0	0	1	0	0	4	0	0	0	3	1
4:30 PM	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0
5:00 PM	0	0	0	0	0	0	0	1	0	0	3	0	0	0	4	1
5:15 PM	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0
5:30 PM	0	0	0	0	0	1	0	0	0	0	4	0	0	0	3	0
5:45 PM	0	0	0	0	0	1	0	0	0	0	3	0	0	0	3	0
AM PEAK HOUR 7:15 AM		East Serv North	vice Road bound			Pier 4 B South	oulevard bound		-	Seaport I Eastl	Boulevard			Seaport I West	Boulevard bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0	5	0	0	9	0	5	0	14	65	0	0	0	48	4
PHF		0.	42			0.	50			0.	.79			0.	87	
PM PEAK HOUR		East Serv	vice Road			Pier 4 B	oulevard			Seaport	Boulevard			Seaport I	Boulevard	

PM PEAK HOUR		East Serv	/ice Road			Pier 4 B	oulevard			Seaport E	Boulevard			Seaport I	Boulevard	
4:15 PM		North	bound			South	bound			Eastb	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	0	1	0	1	0	2	0	0	11	0	0	0	11	2
PHF		0.	25			0.	75			0.	69			0.	65	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 9 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: East Service Rd/Pier 4 Blvd 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		Eas	st Service R Northbound	load I		Pi	er 4 Boulev Southbound	ard d		Sea	aport Boulev Eastbound	vard		Sea	aport Boulev Westbound	/ard I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	11	0	0	0	5	0	0	0	2	0	1	0	5	
7:15 AM	0	0	0	8	0	0	0	1	0	1	0	7	0	1	0	7	
7:30 AM	0	0	0	19	0	0	0	8	0	3	0	13	0	3	0	14	
7:45 AM	0	0	0	28	0	0	1	15	1	4	0	17	0	2	0	20	
8:00 AM	0	0	0	35	1	0	0	23	1	8	0	16	0	7	1	25	
8:15 AM	0	0	0	39	2	0	1	29	1	7	0	14	0	6	2	28	
8:30 AM	0	0	0	47	1	0	2	36	0	11	0	12	0	5	1	17	
8.42 AM	0	0	0	51	0	0	1	39	2	12	0	8	0	8	1	4	

		Eas	t Service R Northbound	oad		Pie	er 4 Boulev Southbound	ard d		Sea	aport Boulev Eastbound	rard		Sea	aport Boulev Westbound	/ard	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	30	0	0	0	40	0	2	0	5	0	2	0	16	
4:15 PM	0	0	0	29	1	0	0	38	0	3	0	8	0	1	1	15	
4:30 PM	0	0	0	32	0	0	0	28	0	4	0	10	0	4	0	14	
4:45 PM	0	0	0	31	0	0	0	35	0	2	0	11	0	5	0	12	
5:00 PM	0	0	0	43	2	0	0	31	0	7	0	11	0	6	0	10	
5:15 PM	0	0	1	51	1	0	0	38	0	9	0	9	0	13	0	7	
5:30 PM	0	0	0	47	1	0	0	35	0	8	0	8	0	9	2	7	
5:45 PM	0	0	0	39	1	0	0	28	0	3	0	7	0	5	0	6	

AM PEAK HOUR1		Eas	st Service R	oad		Pie	er 4 Boulev	ard		Sea	port Boulev	/ard		Sea	port Boulev	/ard	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	172	4	0	4	127	4	38	0	50	0	26	5	74	

PM PEAK HOUR ¹		Eas	st Service R	oad		Pie	er 4 Bouleva	ard		Sea	port Boulev	ard		Sea	port Boulev	vard	
5:00 PM			Northbound			:	Southbound	1			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	1	180	5	0	0	132	0	27	0	35	0	33	2	30	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 10 Seaport, Boston, MA Location: Street 1: Seaport Boulevard Street 2: B Street Count Date: 11/1 &11/2/2016 Day of Week: Tues & Wed Partly Cloudy, 55° F Weather:

		B S	treet					-		Seaport E	Boulevard			Seaport E	Boulevard	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn Left Thru Right U-Turn						Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	38	0	17	0	0	0	0	0	0	108	6	0	9	17	0
7:15 AM	0	42	0	21	0	0	0	0	0	0	109	10	0	10	37	0
7:30 AM	0	42	0	23	0	0	0	0	0	0	105	13	0	10	53	0
7:45 AM	0	51	0	27	0	0	0	0	0	0	109	12	0	11	40	0
8:00 AM	0	55	0	28	0	0	0	0	0	0	105	10	0	9	25	0
8:15 AM	0	90	0	32	0	0	0	0	0	0	124	14	0	10	17	0
8:30 AM	0	68	0	31	0	0	0	0	0	0	131	17	0	9	55	0
8:45 AM	0	71	0	33	0	0	0	0	0	0	128	18	0	9	58	0

		B St	treet							Seaport E	Boulevard			Seaport E	Boulevard	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	35	0	20	0	0	0	0	0	0	142	20	0	7	45	0
4:15 PM	0	46	0	28	0	0	0	0	0	0	154	22	0	12	57	0
4:30 PM	0	52	0	33	0	0	0	0	0	0	153	22	0	16	63	0
4:45 PM	0	53	0	37	0	0	0	0	0	0	169	32	0	18	91	0
5:00 PM	0	48	0	37	0	0	0	0	0	0	168	39	0	19	113	0
5:15 PM	0	54	0	32	0	0	0	0	0	0	164	42	0	19	112	0
5:30 PM	2	55	0	24	0	0	0	0	0	0	144	41	0	18	100	0
5.45 PM	0	58	0	25	0	0	0	0	0	0	155	43	0	19	105	0

AM PEAK HOUR		B St	treet							Seaport E	Boulevard			Seaport E	Boulevard	
8:00 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	284	0	124	0	0	0	0	0	0	488	59	0	37	155	0
PHF		0.	84			0.	00			0.9	92			0.	72	
HV %	0.0%	4.6%	0.0%	6.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	10.5%	5.1%	0.0%	24.3%	28.4%	0.0%

PM PEAK HOUR		B St	reet							Seaport E	Boulevard			Seaport E	Boulevard	
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	2	215	0	118	0	0	0	0	0	0	631	165	0	75	430	0
PHF		0.	97			0.	00			0.9	96			0.9	96	
HV %	0.0%	0.0%	0.0%	0.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.0%	0.0%	0.0%	1.3%	3.7%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 10 Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: B Street Count Date: 11/1 &11/2/2016 Day of Week: Tues & Wed Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		B St North	treet bound			South	bound			Seaport E Eastb	Boulevard bound			Seaport E West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	0	0	0	0	0	0	0	0	9	0	0	1	8	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	12	0	0	3	12	0
7:30 AM	0	3	0	1	0	0	0	0	0	0	10	1	0	0	10	0
7:45 AM	0	1	0	3	0	0	0	0	0	0	12	0	0	3	14	0
8:00 AM	0	4	0	3	0	0	0	0	0	0	14	0	0	2	9	0
8:15 AM	0	3	0	1	0	0	0	0	0	0	13	3	0	3	12	0
8:30 AM	0	3	0	1	0	0	0	0	0	0	10	0	0	3	10	0
8:45 AM	0	3	0	3	0	0	0	0	0	0	14	0	0	1	13	0
		B St North	treet bound			South	bound			Seaport E Eastb	Boulevard			Seaport E West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	0	0	0	0	0	0	0	3	0	0	1	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	8	0
4:30 PM	0	0	0	1	0	0	0	0	0	0	5	0	0	0	7	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	4	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	5	0
5:15 PM	0	0	0	1	0	0	0	0	0	0	4	0	0	1	3	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	4	0
AM PEAK HOUR 8:00 AM		B St North	treet bound			South	bound			Seaport E Eastb	Boulevard bound			Seaport E Westl	Boulevard bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	13	0	8	0	0	0	Ō	0	0	51	3	0	9	44	Ó
PHF	0.75						00			0.	84	•		0.	88	

PM PEAK HOUR		B S	treet							Seaport I	Boulevard			Seaport E	3oulevard	
4:15 PM		North	bound			South	bound			East	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	0	1	0	0	0	0	0	0	17	0	0	0	24	0
PHF		0.	25			0.	00			0.	61			0.	75	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 10 Location: Seaport, Boston, MA Seaport Boulevard Street 1: Street 2: B Street 11/1 &11/2/2016 Count Date: Day of Week: Tues & Wed Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			B Street	1			Southbound	4		Sea	aport Boule Eastbound	vard		Sea	aport Boulev Westbound	/ard	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	18	0	0	0	0	0	2	0	4	0	1	0	3	
7:15 AM	0	0	0	17	0	0	0	0	0	4	0	8	0	2	0	5	
7:30 AM	0	0	0	20	0	0	0	0	0	5	0	9	0	4	0	6	
7:45 AM	0	0	0	15	0	0	0	0	0	3	0	9	0	5	0	7	
8:00 AM	0	0	0	28	0	0	0	0	0	6	0	13	0	6	0	9	
8:15 AM	1	0	0	39	0	0	0	0	0	4	0	15	0	5	0	11	
8:30 AM	1	0	0	51	0	0	0	0	0	5	0	11	0	8	0	12	
8:45 AM	0	0	0	50	0	0	0	0	0	Q	0	5	0	٩	0	12	

			B Street Northbound	ł			Southbound	ł		Sea	aport Boule Eastbound	vard		Sea	aport Boulev Westbound	vard I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	58	0	0	0	0	0	3	0	5	0	2	0	16	
4:15 PM	0	0	0	55	0	0	0	0	0	6	0	5	0	3	0	15	
4:30 PM	0	0	0	64	0	0	0	0	0	5	0	14	0	3	0	15	
4:45 PM	0	0	0	67	0	0	0	0	0	3	0	21	0	1	0	14	
5:00 PM	0	0	0	75	0	0	0	0	0	6	0	16	0	6	0	11	
5:15 PM	0	0	1	76	0	0	0	0	0	2	1	9	0	3	0	16	
5:30 PM	1	0	0	69	0	0	0	0	0	4	0	8	0	5	0	18	
5:45 PM	0	0	0	55	0	0	0	0	0	0	1	7	0	3	0	18	

AM PEAK HOUR ¹			B Street							Sea	port Boulev	/ard		Sea	aport Boulev	/ard	
8:00 AM			Northbound	I		:	Southbound	t			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	2	0	0	177	0	0	0	0	0	23	0	44	0	28	0	44	1

PM PEAK HOUR ¹			B Street							Sea	port Boule	vard		Sea	aport Boulev	/ard	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	1	0	1	275	0	0	0	0	0	12	2	40	0	17	0	63	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 11 Seaport, Boston, MA Location: Seaport Boulevard Street 1: Street 2: Seaport Lane 11/1/2016 Count Date: Day of Week: Tuesday Weather: Partly Cloudy, 55° F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		Seapo	rt Lane					-		Seaport E	Boulevard			Seaport I	Boulevard	
		North	bound			South	bound			Eastb	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	3	0	111	11	0	4	26	0
7:15 AM	0	0	0	0	0	0	0	0	2	0	116	12	1	5	47	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	117	11	0	6	63	0
7:45 AM	0	0	0	0	0	0	0	0	1	0	119	14	1	6	58	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	115	15	1	5	48	0
8:15 AM	0	0	0	0	0	0	0	0	1	0	136	16	0	6	60	0
8:30 AM	0	0	0	0	0	0	0	0	1	0	145	16	0	6	64	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	144	17	0	5	67	0

		Seapo	rt Lane							Seaport B	Boulevard			Seaport I	Boulevard	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	132	30	2	10	52	0
4:15 PM	0	0	0	0	0	0	0	0	1	0	140	41	1	13	69	0
4:30 PM	0	0	0	0	0	0	0	0	1	0	137	48	0	15	79	0
4:45 PM	0	0	0	0	0	0	0	0	2	0	127	50	0	13	109	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	157	48	1	9	132	0
5:15 PM	0	0	0	0	0	0	0	0	1	0	149	46	1	12	131	0
5:30 PM	0	0	0	0	0	0	0	0	2	0	154	39	0	14	118	0
5:45 PM	0	0	0	0	0	0	0	0	2	0	137	41	0	15	124	0

AM PEAK HOUR		Seapo	rt Lane							Seaport E	Boulevard			Seaport E	Boulevard	
8:00 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	0	0	0	2	0	540	64	1	22	239	0
PHF		0.	00			0.	00			0.5	94			0.	91	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	5.7%	3.1%	0.0%	0.0%	13.8%	0.0%

PM PEAK HOUR		Seapo	rt Lane							Seaport B	Boulevard			Seaport B	Boulevard	
5:00 PM		North	bound			South	bound			Easth	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	0	0	0	0	0	5	0	597	174	2	50	505	0
PHF		0.	00			0.	00			0.	95			0.	97	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.4%	0.0%	0.0%	0.0%	3.8%	0.0%

Client: Mr. Andrew Fabiszewski Project #: BTD #: Location 11 Location: Street 1: Street 2: Seaport Lane 11/1/2016 Count Date: Day of Week: Tuesday Weather: Partly Cloudy, 55° F

0010_HSH_Seaport_Boston Seaport, Boston, MA Seaport Boulevard

BOSTON **TRAFFIC DATA** PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		Seapo Northl	rt Lane bound			South	bound			Seaport I Eastl	Boulevard bound			Seaport I West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	21	0	0	0	22	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	31	1	0	0	30	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	23	0	0	0	22	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	18	1	0	0	20	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	10	1	0	0	12	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	4	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	7	1	0	0	8	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	9	0

		Seapo	rt Lane							Seaport E	Boulevard			Seaport I	Boulevard	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	4	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	5	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	8	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	8	0	0	0	7	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0

AM PEAK HOUR		Seapo	rt Lane							Seaport E	Boulevard			Seaport E	Boulevard	
7:00 AM		North	bound			South	bound			Eastb	bound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0	0	0	0	0	0	0	0	0	93	2	0	0	94	0
PHF		0.	00			0.	00			0.	74			0.1	78	

PM PEAK HOUR		Seapo	rt Lane							Seaport E	Boulevard			Seaport E	3oulevard	
4:30 PM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:30 PM	0	0	0	0	0	0	0	0	0	0	24	0	0	0	24	0
PHF		0.	00			0.	00			0.	75	-		0.	75	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 11 Location: Seaport, Boston, MA Seaport Boulevard Street 1: Street 2: Seaport Lane Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

PEDESTRIANS & BICYCLES

		S	Seaport Lar	e						Sea	aport Boule	vard		Sea	aport Boule	vard	
			Northbound	ł			Southbound	d			Eastbound				Westbound	ł	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	19	0	0	0	0	0	2	0	2	0	3	0	5	
7:15 AM	0	0	0	18	0	0	0	0	0	5	0	2	0	2	0	2	
7:30 AM	0	0	0	26	0	0	0	0	0	6	0	4	0	5	0	3	
7:45 AM	1	0	0	32	0	0	0	0	0	4	0	6	0	5	0	4	
8:00 AM	0	0	0	32	0	0	0	0	0	5	0	6	0	6	0	4	
8:15 AM	0	0	0	29	0	0	0	0	0	4	0	5	0	3	0	3	
8:30 AM	1	0	0	38	0	0	0	0	0	8	0	6	0	7	0	8	
8:45 AM	0	0	0	44	0	0	0	0	0	11	0	7	0	8	0	3	

		S	Seaport Lan Northbound	ie d			Southbound	ł		Sea	aport Boulev Eastbound	/ard		Sea	port Boule Westbound	vard I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	45	0	0	0	0	0	1	0	5	0	2	0	3	
4:15 PM	0	0	0	43	0	0	0	0	0	3	0	8	0	3	0	4	
4:30 PM	0	0	0	51	0	0	0	0	0	4	0	14	0	6	0	6	
4:45 PM	0	0	0	54	0	0	0	0	0	3	0	19	0	4	0	7	
5:00 PM	0	0	0	51	0	0	0	0	0	6	0	16	0	5	0	6	
5:15 PM	0	0	0	43	0	0	0	0	0	9	0	12	0	10	0	5	
5:30 PM	0	0	0	48	0	0	0	0	0	8	0	8	0	9	0	9	
5:45 PM	0	0	0	49	0	0	0	0	0	0	0	13	0	1	0	6	

AM PEAK HOUR ¹		5	Seaport Lan	e						Sea	aport Boule	/ard		Sea	aport Boule	vard	
8:00 AM			Northbound	ł			Southbound	ł			Eastbound				Westbound	t l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	1	0	0	143	0	0	0	0	0	28	0	24	0	24	0	18	

PM PEAK HOUR ¹		S	Seaport Lan	е						Sea	port Boulev	/ard		Sea	aport Boulev	/ard	
5:00 PM			Northbound	1			Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	191	0	0	0	0	0	23	0	49	0	25	0	26	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 12 Location: Seaport, Boston, MA Street 1: Seaport Blvd/ Northern Ave Street 2: D Street/ Boston Fish Pier Count Date: 11/1 & 11/2/2016 Day of Week: Tuesday & Wed Partly Cloudy, 55° F Weather:

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		D S North	treet bound			Boston I South	Fish Pier bound	1 -		Seaport E Eastb	Boulevard bound			Northern Westl	Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	22	0	3	0	4	2	2	0	3	82	26	0	11	6	5
7:15 AM	0	26	0	4	0	5	3	3	0	4	82	30	0	11	23	7
7:30 AM	0	28	0	3	0	6	3	4	0	5	81	31	0	9	37	8
7:45 AM	0	32	0	4	0	7	4	5	0	6	78	35	0	9	27	8
8:00 AM	0	32	0	4	0	8	4	5	0	6	73	36	0	9	16	7
8:15 AM	0	35	0	5	0	9	5	4	0	5	92	39	0	10	27	7
8:30 AM	0	36	0	3	0	9	3	3	0	4	103	38	0	10	31	6
8:45 AM	0	38	0	3	0	8	3	3	0	4	100	40	0	11	31	6

		DS	treet			Boston	Fish Pier			Seaport E	Boulevard			Northern	Avenue	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	25	0	4	0	6	11	10	0	7	69	56	0	11	27	7
4:15 PM	0	28	0	4	0	6	11	9	0	7	73	60	0	12	45	7
4:30 PM	0	28	0	5	0	5	9	8	0	6	72	59	0	12	58	6
4:45 PM	0	35	0	5	0	5	9	7	0	7	56	65	0	13	80	6
5:00 PM	0	39	0	4	0	4	8	6	0	6	86	65	0	13	96	5
5:15 PM	0	37	0	5	0	4	7	7	0	6	74	69	0	11	100	6
5:30 PM	0	32	0	6	0	3	5	8	0	5	82	66	0	8	105	6
5:45 PM	0	34	0	6	0	3	5	8	0	5	63	69	0	8	97	5

AM PEAK HOUR	1	D S	treet			Boston I	Fish Pier			Seaport I	Boulevard			Northern	Avenue	
8:00 AM		North	bound			South	bound			East	oound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	141	0	15	0	34	15	15	0	19	368	153	0	40	105	26
PHF		0.	95			0.	89			0.	93			0.	89	
HV %	0.0%	11.3%	0.0%	0.0%	0.0%	23.5%	66.7%	6.7%	0.0%	26.3%	17.1%	13.1%	0.0%	0.0%	48.6%	50.0%

PM PEAK HOUR		D S	treet			Boston F	Fish Pier			Seaport E	Boulevard			Northern	Avenue	
5:00 PM		North	bound			South	bound			Eastb	bound			West	ound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	142	0	21	0	14	25	29	0	22	305	269	0	40	398	22
PHF		0.	95			0.	94			0.	95			0.9	97	
HV %	0.0%	0.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.3%	0.0%	0.0%	0.0%	4.3%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 12 Location: Seaport, Boston, MA Street 1: Seaport Blvd/ Northern Ave Street 2: D Street/ Boston Fish Pier Count Date: 11/1 & 11/2/2016 Day of Week: Tuesday & Wed Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
		D S North	street bound			Boston I South	Fish Pier bound			Seaport I Eastl	Boulevard bound			Northerr West	n Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	5	0	0	0	4	0	0	0	0	7	4	0	0	3	3
7:15 AM	0	4	0	0	0	4	0	0	0	0	8	7	0	0	4	4
7:30 AM	0	4	0	0	0	5	3	1	0	1	12	7	0	0	5	5
7:45 AM	0	3	0	0	0	4	0	3	0	0	16	4	0	0	9	3
8:00 AM	0	5	0	0	0	3	1	0	0	1	14	8	0	0	10	4
8:15 AM	0	4	0	0	0	1	3	0	0	3	18	3	0	0	13	5
8:30 AM	0	4	0	0	0	3	5	1	0	0	14	5	0	0	12	3
8:45 AM	0	3	0	0	0	1	1	0	0	1	17	4	0	0	16	1
		D S North	treet bound			Boston I South	Fish Pier bound			Seaport I Eastl	Boulevard bound			Northerr West	n Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	0	0	0	0	0	0	0	0	5	1	0	0	8	0
4:15 PM	0	3	0	0	0	0	0	0	0	0	7	0	0	0	9	0
4:30 PM	0	1	0	0	0	0	0	0	0	0	9	1	0	0	5	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	3	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	4	0	0	0	8	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	4	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
AM PEAK HOUR 8:00 AM		D S North	itreet bound			Boston South	Fish Pier bound			Seaport I Eastl	Boulevard cound			Northerr West	n Avenue bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	16	0	0	0	8	10	1	0	5	63	20	0	0	51	13
PHF	•	0.	80	•		0.	53	•		0.	92	•		0.	89	•
	1	D	troot			Destan	Tich Dier			Connort	Deuleyerd			Northory	. Avenue	

PM PEAK HOUR		DS	treet			Boston I	Fish Pier			Seaport E	Boulevard			Northerr	ו Avenue	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	5	0	0	0	0	0	0	0	0	26	2	0	0	25	0
PHF		0.	42	-		0.	00			0.	70	-		0.	69	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 12 Location: Seaport, Boston, MA Seaport Blvd/ Northern Ave Street 1: Street 2: D Street/ Boston Fish Pier 11/1 & 11/2/2016 Count Date: Day of Week: Tuesday & Wed Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			D Street Northbound	ł		Bo	ston Fish F Southbound	Pier d		Sea	aport Boulev Eastbound	vard		No	rthern Aver Westbound	nue I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	24	0	0	0	3	0	2	0	4	0	2	0	2	
7:15 AM	1	0	0	23	0	0	0	7	0	2	0	2	0	3	0	3	
7:30 AM	3	0	0	32	0	0	0	8	0	4	1	5	0	4	0	8	
7:45 AM	2	0	0	38	0	0	0	9	0	5	2	8	0	6	0	12	
8:00 AM	3	0	0	49	0	0	0	8	0	4	1	11	0	5	0	11	
8:15 AM	1	0	0	55	0	0	0	7	0	3	0	9	0	1	0	8	
8:30 AM	4	0	0	43	0	0	0	8	0	6	2	7	0	4	0	7	
8.45 AM	0	0	0	26	0	0	0	6	0	5	0	5	0	3	0	5	

			D Street Northbound	I		Bo	oston Fish F Southbound	Pier d		Sea	aport Boule Eastbound	/ard		No	orthern Aver Westbound	nue I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	20	0	0	0	12	0	1	0	3	0	3	0	3	
4:15 PM	0	0	0	19	0	0	0	11	0	1	0	5	0	2	0	2	
4:30 PM	0	0	0	32	0	0	0	8	0	3	0	4	0	5	0	5	
4:45 PM	1	0	0	42	0	0	0	5	0	2	0	3	0	4	0	8	
5:00 PM	0	0	0	50	0	0	0	11	0	4	0	4	0	8	0	12	
5:15 PM	0	0	0	54	0	0	0	16	0	6	0	5	0	12	0	14	
5:30 PM	1	0	0	45	0	0	0	14	0	5	0	8	0	9	0	10	
5:45 PM	0	0	0	32	0	0	0	11	0	1	0	6	0	2	0	5	

AM PEAK HOUR ¹			D Street			Bo	ston Fish F	Pier		Sea	port Boulev	/ard		No	rthern Aver	ue	
8:00 AM			Northbound			:	Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	8	0	0	173	0	0	0	29	0	18	3	32	0	13	0	31	

PM PEAK HOUR ¹			D Street			Bo	ston Fish P	lier		Sea	port Boulev	/ard		No	orthern Aver	nue	
5:00 PM			Northbound			:	Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	1	0	0	181	0	0	0	52	0	16	0	23	0	31	0	41	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 13 Location: Seaport, Boston, MA Street 1: Autumn Lane Watermark Garage Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Partly Cloudy, 55° F Weather:

					Waterm	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	3	0	0	0	2	0	0	0	0	4	2
7:15 AM	0	0	0	0	0	2	0	0	0	2	1	0	0	0	5	1
7:30 AM	0	0	0	0	0	1	0	0	0	1	2	0	0	0	6	0
7:45 AM	0	0	0	0	0	2	0	1	0	2	1	0	0	0	6	1
8:00 AM	0	0	0	0	0	3	0	0	0	1	0	0	0	0	5	2
8:15 AM	0	0	0	0	0	2	0	0	0	0	2	0	0	0	4	2
8:30 AM	0	0	0	0	0	0	0	0	0	1	4	0	0	0	7	1
8:45 AM	0	0	0	0	0	1	0	0	0	0	1	0	0	0	10	2
					Waterm	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	
		North	bound			South	bound			Eastb	ound			West	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	2	0	1	0	1	5	0	0	0	3	2
4:15 PM	0	0	0	0	0	2	0	1	0	1	5	0	0	0	3	2
4:30 PM	0	0	0	0	0	1	0	0	0	0	5	0	0	0	2	1
4:45 PM	0	0	0	0	0	2	0	1	0	1	9	0	0	0	4	1
5:00 PM	0	0	0	0	0	3	0	0	0	0	12	0	0	0	6	0
5:15 PM	0	0	0	0	0	2	0	1	0	1	9	0	0	0	11	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	15	0
5:45 PM	0	0	0	0	0	1	0	0	0	0	5	0	0	0	16	0
I																
AM PEAK HOUR					Waterm	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	
8:00 AM		North	bound			South	bound			Eastb	ound		•	West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	6	0	0	0	2	7	0	0	0	26	7
PHF		0.	00			0.	50			0.	45			0.	69	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	28.6%	0.0%	0.0%	0.0%	7.7%	0.0%
	1															
PM PEAK HOUR					Waterm	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	
5:00 PM		North	bound			South	bound			Eastb	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	0	0	6	0	1	0	1	31	0	0	0	48	0
PHF		0.	00	1		0.	58			0.	67	-		0.	75	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.2%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 13 Location: Seaport, Boston, MA Street 1: Autumn Lane Street 2: Watermark Garage Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	скѕ							
					Waterma	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	
		North	bound			South	bound			Eastb	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	1	0			
					Waterma	ark Seapor	t (Parcel K)	Garage			Autum	n Lane				
		North	bound	Distri		South	bound	Dist	Distri		West	bound	Distr			
Start Time	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Thru	Right	U-Turn	Left	Ihru	Right	
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	1															
AM PEAK HOUR					Waterma	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	
7:30 AM		North	bound			South	bound		· · · · · ·	East	bound		· · ·	West	bound	
to	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right
8:30 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	2	0
PHF		0.	00			0.	.00			0.	50			0.	.50	
PM PEAK HOUR					Waterma	ark Seapor			Autum	n Lane						

ļ	PHF		0.	00			0.	00			0.	25			0.	50	-
	5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0
	to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
	4:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
	PM PEAK HOUR					Waterm	ark Seapor	t (Parcel K)	Garage		Autum	n Lane			Autum	n Lane	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 13 Location: Seaport, Boston, MA Street 1: Autumn Lane Street 2: Watermark Garage 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

					W	atermark S	eaport (Par	cel K) Gara	ige		1	Autumn Lan	е		A	Autumn Lan	e	
			Northbound	ł			Southbound	b				Eastbound				Westbound	i -	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	6		0	0	0	0	0	0	0	0	
7:15 AM	0	0	0	0	0	0	0	13		0	0	0	0	0	0	0	0	
7:30 AM	0	0	0	0	0	0	0	12		0	1	0	0	0	0	0	0	
7:45 AM	0	0	0	0	0	0	0	9		0	1	0	0	0	1	0	0	
8:00 AM	0	0	0	0	0	0	0	10		0	3	0	0	0	3	0	0	
8:15 AM	0	0	0	0	0	0	0	15		0	1	0	0	0	2	0	0	
8:30 AM	0	0	0	0	0	0	0	14		0	3	0	0	0	2	0	0	
8:45 AM	0	0	0	0	0						2	0	0	0	0	0	0	

			Northbound	4	W	atermark S	eaport (Pai Southbound	rcel K) Gara	ige		A	Autumn Lan	е		A	Autumn Lan Westbourc	e	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	3		0	1	0	0	0	0	0	0	
4:15 PM	0	0	0	0	0	0	0	6		0	0	0	0	0	0	0	0	
4:30 PM	0	0	0	0	0	0	0	9		0	0	0	0	0	1	0	0	
4:45 PM	0	0	0	0	0	0	0	5		0	1	0	0	0	0	0	0	
5:00 PM	0	0	0	0	0	0	0	8		0	2	0	0	0	3	0	0	
5:15 PM	0	0	0	0	0	0	0	7		0	2	0	0	0	5	0	0	
5:30 PM	0	0	0	0	0	0	0	13		0	4	0	0	0	2	0	0	
5:45 PM	0	0	0	0	0	0	0	17		0	1	0	0	0	1	0	0	

AM PEAK HOUR ¹					W	atermark S	eaport (Par	cel K) Gara	age		/	Autumn Lan	е		A	Autumn Lan	е	
8:00 AM			Northbound				Southbound	ł				Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	0	0	0	50		0	9	0	0	0	7	0	0	

PM PEAK HOUR ¹					W	atermark S	eaport (Par	cel K) Gara	ge		A	Autumn Lan	е		A	Autumn Lan	е	
5:00 PM			Northbound				Southbound	ł				Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	0	0	0	0	45		0	9	0	0	0	11	0	0	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 14 Location: Seaport, Boston, MA Street 1: Autumn Lane 101 Seaport Garage Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

					101 Sear	oort (Price	Waterhouse	Cooper)		Autum	n Lane			Autum	n Lane	
		North	bound		•	South	bound	• /		East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	1	0	14	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	1	15	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	1	0	15	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	1	2	16	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	3	16	0	0	0	0	0	1
8:15 AM	0	0	0	0	0	0	0	1	2	14	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	1	11	0	0	0	0	0	0
					101 Seap	oort (Price	Waterhouse	e Cooper)		Autum	n Lane			Autum	n Lane	
		North	bound			South	bound			East	pound			West	Jound	•
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	8	0	0	1	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	6	1	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	4	2	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	9	2	1	1	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	13	1	2	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	12	2	1	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	9	2	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	9	1	0	0	0	0	0	0	0
AM PEAK HOUR					101 Seap	port (Price)	Waterhouse	e Cooper)		Autum	n Lane			Autum	n Lane	
7:30 AM		North	bound	B		South	bound	D		East	bound	B		West	Jound	B
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	0	0	0	0	0	3	7	61	0	0	0	0	0	1
PHF		0.	00			0.	.75			0.	89			0.	25	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	1							-								
PM PEAK HOUR					101 Seap	port (Price)	Waterhouse	e Cooper)		Autum	n Lane			Autum	n Lane	
4:45 PM		North	bound	B		South	bound			East	bound	D : 14		West	Jound	
to	U-Turn	Left	Inru	Right	U-Turn	Left	Inru	Right	U-Turn	Left	Inru	Right	U-Turn	Left	Inru	Right
5:45 PM	0	0	0	0	0	0	0	43	1	4	1	0	0	0	0	0
PHF	0.00/	0.		0.00/	0.00/	0.	.83	0.00/	0.00/	0.	/5	0.00/	0.001	0.	00	0.00/
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 14 Location: Seaport, Boston, MA Street 1: Autumn Lane Street 2: 101 Seaport Garage Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	скѕ							
		North	bound		101 Seap	ort (Price \ South	Waterhouse	e Cooper)		Autum East	n Lane			Autum West	n Lane	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0
		North	bound		101 Seap	ort (Price \ South	Vaterhouse bound	e Cooper)		Autum Eastt	n Lane bound			Autum West	n Lane bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR					101 Seap	ort (Price \	Waterhouse	e Cooper)		Autum	n Lane			Autum	n Lane	
8:00 AM		North	bound	-		South	bound			East	pound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	4	0
PHF		0.	00			0.	00			0.	45			0.	.33	
PM PEAK HOUR		N I a setta i	h a a l		101 Seap	ort (Price \	Vaterhouse	e Cooper)		Autum	n Lane			Autum	n Lane	

PM PEAK HOUR					101 Seap	ort (Price V	Vaterhouse	e Cooper)		Autum	n Lane			Autum	n Lane	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PHF		0.	00			0.	00			0.	00			0.	00	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 14 Location: Seaport, Boston, MA Street 1: Autumn Lane Street 2: 101 Seaport Garage 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

					101 Sea	aport (Price	Waterhou	se Cooper)	Garage		A	Autumn Lan	e		A	Autumn Lan	e	
			Northbound	ł			Southbound	d				Eastbound				Westbound	l	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	6		0	1	0	0	0	0	0	0	
7:15 AM	0	0	0	0	0	0	0	10		0	0	0	0	0	0	0	0	
7:30 AM	0	0	0	0	0	0	1	11		0	0	0	0	0	0	0	0	
7:45 AM	0	0	0	0	0	0	0	13		0	2	0	0	0	0	0	0	
8:00 AM	0	0	0	0	0	0	0	9		0	1	0	0	0	0	0	0	
8:15 AM	0	0	0	0	0	0	0	4		0	1	0	0	0	0	0	0	
8:30 AM	0	0	0	0	0	0	1	6		0	2	0	0	0	0	0	0	
8:45 AM	0	0	0	0	0	0	0	3		0	0	0	0	0	0	0	0	

					101 Sea	aport (Price	Waterhou	se Cooper)	Garage		A	Autumn Lan	е		A	Autumn Lan	е	
			Northbound	ł			Southbound	b				Eastbound				Westbound		
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	2		0	0	0	0	0	0	0	0	
4:15 PM	0	0	0	0	0	0	0	3		0	0	0	0	0	0	0	0	
4:30 PM	0	0	0	0	0	0	0	5		0	0	0	0	0	1	0	0	
4:45 PM	0	0	0	0	0	0	0	3		0	0	0	0	0	0	0	0	
5:00 PM	0	0	0	0	0	0	0	7		0	0	0	0	0	0	0	0	
5:15 PM	0	0	0	0	0	0	0	9		0	0	0	0	0	2	0	0	
5:30 PM	0	0	0	0	0	0	0	8		0	0	0	0	0	1	0	0	
5:45 PM	0	0	0	0	0	0	1	6		0	0	0	0	0	0	0	0	

AM PEAK HOUR ¹					101 Se	aport (Price	e Waterhou:	se Cooper)	Garage		A	Autumn Lan	е		A	Autumn Lan	е	
7:30 AM			Northbound				Southbound	d				Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
8:30 AM	0	0	0	0	0	0	1	37		0	4	0	0	0	0	0	0	i

PM PEAK HOUR ¹					101 Se	aport (Price	Waterhous	se Cooper)	Garage		A	Autumn Lan	е		A	utumn Lan	е	
4:45 PM			Northbound				Southbound	ł				Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
5:45 PM	0	0	0	0	0	0	0	27		0	0	0	0	0	3	0	0	
Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 15 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Sleeper Street/ Driveway Count Date: 11/2/2016 Day of Week: Wednesday Weather: Partly Cloudy, 55° F

Driveway

Congress Street

TOTAL (CARS & TRUCKS)

Congress Street

		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	38	0	5	0	3	63	0	0	0	68	18
7:15 AM	0	0	0	0	0	30	0	8	0	3	76	0	0	0	72	20
7:30 AM	0	1	0	1	0	20	0	10	0	3	82	0	0	0	69	21
7:45 AM	0	1	0	0	0	24	0	10	0	5	92	0	0	2	81	28
8:00 AM	0	0	0	1	0	25	0	9	0	7	93	0	0	4	86	33
8:15 AM	0	1	0	0	0	25	0	10	0	11	93	0	0	2	87	35
8:30 AM	0	0	0	1	0	22	0	9	0	13	85	0	0	4	80	33
8:45 AM	0	1	0	0	0	23	0	9	0	14	89	0	0	1	84	35
		Drive North	eway bound			Sleepe South	r Street bound			Congres Eastb	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	29	0	12	0	7	85	0	0	0	55	22
4:15 PM	0	0	0	1	0	28	0	10	0	8	95	0	0	0	61	30
4:30 PM	0	1	0	0	0	24	0	7	0	8	95	0	0	0	61	36
4:45 PM	0	0	0	0	0	25	0	8	0	11	97	0	0	0	69	38
5:00 PM	0	2	0	1	0	23	0	8	0	13	90	0	0	0	70	37
5:15 PM	0	1	0	1	0	21	0	9	0	14	99	0	0	2	77	36
5:30 PM	0	0	0	2	0	17	0	8	0	13	98	0	0	3	76	31
5:45 PM	0	1	0	1	0	18	0	8	0	14	103	0	0	1	80	33
AM PEAK HOUR 8:00 AM		Drive North	eway bound			Sleepe South	r Street bound			Congres Eastb	ss Street			Congres West	ss Street bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	2	0	2	0	95	0	37	0	45	360	0	0	11	337	136
PHF		1.	00	-		0.	94			0.	97	•		0.	98	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	0.0%	0.0%	0.0%	0.0%	5.6%	0.0%	0.0%	0.0%	5.6%	0.0%
PM PEAK HOUR 5:00 PM		Drive North	eway bound			Sleepe South	r Street bound			Congres Eastb	ss Street			Congres West	ss Street bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	4	0	5	0	79	0	33	0	54	390	0	0	6	303	137
PHF		0.	75			0.	90			0.	95			0.	97	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1. 0 %	0.0%	0.0%	0.0%	1.3%	0.0%

Sleeper Street

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 15 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Sleeper Street/ Driveway Count Date: 11/2/2016 Day of Week: Wednesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
		Drive North	eway bound			Sleepe South	r Street bound			Congres East	ss Street			Congres Westl	ss Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	1	0	0	0	0	7	0	0	0	7	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
7:30 AM	0	0	0	0	0	1	0	0	0	0	7	0	0	0	5	0
7:45 AM	0	0	0	0	0	3	0	0	0	0	5	0	0	0	4	0
8:00 AM	0	0	0	0	0	1	0	0	0	0	7	0	0	0	7	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	3	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	5	0
		Drive North	eway bound			Sleepe South	r Street bound			Congres East	ss Street			Congres Westl	ss Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 7:00 AM		Drive Northl	eway bound	1		Sleepe South	r Street bound			Congres East	ss Street			Congres Westl	s Street	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0	0	0	0	5	0	0	0	0	23	0	0	0	20	0
PHF		0.	00			0.	42			0.	.82			0.	71	
PM PEAK HOUR]	Drive	ewav			Sleepe	r Street			Conares	ss Street			Congres	s Street	

PM PEAK HOUR		Driv	eway			Sleepe	r Street			Congres	s Street			Congres	ss Street	
4:15 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	0	0	0	0	0	0	0	0	0	8	0	0	0	5	0
PHF		0.	00			0.	00			0.	67			0.	42	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 15 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Sleeper Street/ Driveway 11/2/2016 Count Date: Day of Week: Wednesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

									-									
			Driveway			S	leeper Stre	et			Co	ongress Str	eet		Co	ongress Str	eet	
			Northbound	ł			Southbound	b				Eastbound				Westbound	i	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	1	0	0	50		0	5	0	0	0	3	0	0	
7:15 AM	0	0	0	0	0	0	1	74		1	4	0	0	0	6	1	0	
7:30 AM	0	0	0	0	1	0	0	90		0	5	0	0	0	4	0	0	
7:45 AM	0	0	0	0	3	0	2	103		2	7	0	0	0	5	0	0	
8:00 AM	0	0	0	0	2	0	1	106		2	9	0	0	0	7	1	0	
8:15 AM	0	0	0	0	1	0	1	178		1	8	0	0	0	7	1	0	
8:30 AM	0	0	0	0	1	0	1	233		1	7	0	0	0	4	0	0	
8:45 AM	0	0	0	0	2	0	2	221		0	5	0	0	0	5	1	0	

			Driveway Northbound	I		S	leeper Stre	et 1		Co	ongress Stre Eastbound	eet		Co	ongress Stre Westbound	eet	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	1	0	0	0	0	1	114	0	4	0	0	0	2	0	0	
4:15 PM	0	0	0	0	1	0	2	109	1	4	0	0	0	3	0	0	
4:30 PM	0	0	0	0	0	0	3	129	1	6	0	0	0	5	1	0	
4:45 PM	0	1	0	0	2	0	1	137	0	5	0	0	0	6	1	0	
5:00 PM	0	0	0	0	3	0	1	164	2	7	0	0	0	6	0	0	
5:15 PM	0	1	0	0	1	0	1	176	1	8	0	0	0	7	1	0	
5:30 PM	0	1	0	0	2	0	2	132	2	5	0	0	0	5	1	0	
5:45 PM	0	0	0	0	1	0	0	75	0	3	0	0	0	4	0	0	

AM PEAK HOUR ¹			Driveway			S	leeper Stre	et		Co	ongress Stre	eet		Co	ongress Stre	et	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	6	0	5	738	4	29	0	0	0	23	3	0	1

PM PEAK HOUR ¹			Driveway			S	leeper Stre	et		Co	ongress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	2	0	0	7	0	4	547	5	23	0	0	0	22	2	0	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 16 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Farnsworth Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

							ΤΟΤΑ	AL (CARS	S & TRUC	CKS)						
						Farnswo	rth Street	-		Congres	s Street			Congres	ss Street	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	4	0	9	0	9	91	0	0	0	93	11
7:15 AM	0	0	0	0	0	4	0	6	0	7	91	0	0	0	99	11
7:30 AM	0	0	0	0	0	3	0	2	0	5	83	0	0	0	96	10
7:45 AM	0	0	0	0	0	5	0	3	0	7	100	0	1	0	103	16
8:00 AM	0	0	0	0	0	6	0	3	0	8	108	0	2	0	101	20
8:15 AM	0	0	0	0	0	7	0	5	0	9	110	0	0	0	116	24
8:30 AM	0	0	0	0	0	6	0	7	0	10	101	0	0	0	119	25
8:45 AM	0	0	0	0	0	6	0	7	0	11	106	0	1	0	125	26
						Farnswo	rth Street			Congres	ss Street			Congres	ss Street	
0 . .		North	bound	B : 17		South	bound	B : 17		Eastb	bound	B : 17		West	bound	B : 17
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right
4:00 PM	0	0	0	0	0	7	0	7	0	6	110	0	0	0	81	8
4:15 PM	0	0	0	0	0	8	0	6	0	5	102	0	0	0	83	6
4:30 PM	0	0	0	0	0	9	0	5	1	4	115	0	0	0	78	3
4:45 PM	0	0	0	0	0	14	0	7	0	3	119	0	0	0	93	5
5:00 PM	0	0	0	0	0	18	0	9	0	2	118	0	0	0	99	6
5:15 PM	0	0	0	0	0 0 14 0 7 0 0 18 0 9 0 0 17 0 11					3	115	0	0	0	100	9
5:30 PM	0	0	0	0	0	15	0	12	0	4	117	0	0	0	102	12
5:45 PM	0	0	0	0	0	16	0	13	0	4	111	0	0	0	100	13
	1					F				0	04			0		
AM PEAK HOUR		NL at				Farnswo	rtn Street			Congres	s Street			Congres	ss Street	
8:00 AM	11 7	North	bound	District		South	bound	Dist	117	East		Diskt		VVest		District
to	0-Turn	Len	Inru	Right	0-Turn	Lett	Inru	Right	0-Turn	Len	i nru	Right		Len	I nru	Right
9:00 AM	U	<u> </u>	0	U	U	25	0	22	U	38	425	U	3	0	461	95
	0.0%	0.00/	00	0.00/	0.0%	0.	90	4 50/	0.0%	0.	97	0.00/	0.0%	0.00/	92	0.00/
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	4.0%	0.0%	4.5%	0.0%	10.5%	6.8%	0.0%	0.0%	0.0%	5.9%	0.0%
	1					F				0				0		
PM PEAK HOUK		North	hound			Farnswo	rth Street			Congres	s Street			Congres	S Street	
5:00 PM	LI Turo	INORT		Diabt	LI Turo	South		Diabt		Easic		Diabt		Vest		Diaht
10 6:00 PM	0-1011		0		0-1011	Leit	0	Kight	0-10/1	12	1111U 161		0-1011		401	
0:00 PM PHF	U	<u>ر</u>	00	U	U	00	96	40	U	13	401	U	U	0	401	40
1 111 HV %	0.0%	<u> </u>							0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.2%	0.0%
FI V 70	0.0 /0	0.0 /0	0.0 /0	0.070	0.070	0.0 /0	0.070	4.4 /0	0.0 /0	0.0 /0	U.4 /0	0.070	0.0 /0	0.0 /0	U.2 /0	0.070

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 16 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Farnsworth Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

5:15 PM

PHF

0

0

0.00

0

0

0

1

0

0.50

0

0

0.50

2

0

0

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
		North	bound			Farnswo South	rth Street bound			Congres East	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	5	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
7:30 AM	0	0	0	0	0	0	0	0	0	1	8	0	0	0	8	0
7:45 AM	0	0	0	0	0	1	0	0	0	1	9	0	0	0	4	0
8:00 AM	0	0	0	0	0	0	0	0	0	3	8	0	0	0	7	0
8:15 AM	0	0	0	0	0	0	0	1	0	1	7	0	0	0	5	0
8:30 AM	0	0	0	0	0	1	0	0	0	0	9	0	0	0	7	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	8	0
		North	bound			Farnswo South	rth Street bound			Congres East	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 7:30 AM		North	bound			Farnswo South	rth Street			Congres East	ss Street			Congres West	ss Street bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:30 AM	0	0	0	0	0	1	0	1	0	6	32	0	0	0	24	0
PHF		0.	00			0.	50			0.	.86			0.	.75	
PM PEAK HOUR 4:15 PM	H-Turo	North	bound	Right	H-Turp	Farnswo South	rth Street bound	Right	H-Turp	Congres Eastt	ss Street	Right	LI-Turn	Congres West	ss Street bound	Right
10	0-runi	LOIL	mu	Night	0-rum	Leit	mu	Night	0-runi	LCIL	mu	Tright	0-runi	Len	mu	Ngn

0.50

0

0

2

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 16 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Farnsworth Street 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

						Fa	rnsworth St	reet		Co	ongress Stre	eet		Co	ongress Str	eet	
			Northbound	t b			Southbound	b			Eastbound				Westbound	i -	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	57	0	3	0	0	0	4	1	0	
7:15 AM	0	0	0	0	0	0	0	54	1	7	0	0	0	3	0	0	
7:30 AM	0	0	0	0	0	0	0	70	2	5	0	0	0	6	1	0	
7:45 AM	0	0	0	0	0	0	0	80	1	4	0	0	0	4	0	0	
8:00 AM	0	0	0	0	0	0	0	107	2	7	0	0	0	8	2	0	
8:15 AM	0	0	0	0	0	0	0	123	1	5	0	0	0	9	2	0	
8:30 AM	0	0	0	0	0	0	0	130	3	6	0	0	0	7	2	0	
8:45 AM	0	0	0	0	0	0	0	125	1	7	0	0	0	10	1	0	

			Northbound	ł		Far	nsworth St Southbound	reet d		Co	ongress Stre Eastbound	eet		Co	ongress Stro Westbound	eet	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	89	0	2	0	0	0	3	0	0	
4:15 PM	0	0	0	0	0	0	0	85	0	1	0	0	0	2	0	0	
4:30 PM	0	0	0	0	0	0	1	84	0	3	0	0	0	4	0	0	
4:45 PM	0	0	0	0	1	0	1	75	0	4	0	0	0	2	0	0	
5:00 PM	0	0	0	0	1	0	0	93	0	5	0	0	0	8	0	0	
5:15 PM	0	0	0	0	0	0	0	102	0	2	0	0	0	14	0	0	
5:30 PM	0	0	0	0	1	0	1	103	0	6	0	0	0	9	0	0	
5:45 PM	0	0	0	0	0	0	2	95	0	2	0	0	0	5	0	0	

AM PEAK HOUR1						Fa	rnsworth St	reet		Co	ongress Str	eet		Co	ongress Stre	et	
8:00 AM			Northbound				Southbound	b			Eastbound	l			Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	0	0	0	485	7	25	0	0	0	34	7	0	

PM PEAK HOUR ¹						Fai	rnsworth Sti	reet		Co	ongress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	I	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	0	2	0	3	393	0	15	0	0	0	36	0	0	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 17 Seaport, Boston, MA Location: Street 1: **Congress Street** Street 2: Thomson Place/A Street Count Date: 11/1/2016 Day of Week: Tuesday Partly Cloudy, 55° F Weather:

TOTAL (CARS & TRUCKS)

		A St	treet			Thomso	n Place			Congres	ss Street			Congres	s Street	
		North	bound			South	bound			East	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	26	3	14	0	1	1	2	0	2	64	29	0	37	76	1
7:15 AM	0	31	3	18	0	2	2	3	0	2	65	28	0	43	76	2
7:30 AM	0	33	2	20	0	1	2	2	0	1	60	25	0	44	71	1
7:45 AM	0	35	2	22	0	2	3	2	0	1	77	28	0	49	82	2
8:00 AM	0	34	2	22	0	3	2	1	0	0	88	28	0	49	86	2
8:15 AM	0	36	3	23	0	4	2	2	0	2	83	32	0	55	102	3
8:30 AM	0	35	3	21	0	5	1	1	0	1	74	32	0	55	108	1
8:45 AM	0	37	3	22	0	5	1	1	0	1	78	34	0	58	113	1
		A St	treet			Thomso	n Place			Congres	ss Street			Congres	s Street	
		North	bound			South	bound			East	bound			West	bound	
O(, T)	-						i									
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0-Turn 0	Left 30	Thru 1	Right 33	U-Turn 0	Left 2	Thru 2	Right 5	U-Turn 0	Left 1	Thru 77	Right 39	U-Turn 0	Left 34	Thru 54	Right 1
4:00 PM 4:15 PM	0-1 urn 0 0	Left 30 32	Thru 1 2	Right 33 35	U-Turn 0 0	Left 2 3	Thru 2 1	Right 5 4	U-Turn 0 0	Left 1 0	Thru 77 91	Right 39 39	U-Turn 0 0	Left 34 37	Thru 54 53	Right 1 1
4:00 PM 4:15 PM 4:30 PM	0-1 urn 0 0 0	Left 30 32 31	Thru 1 2 3	Right 33 35 34	U-Turn 0 0 0	Left 2 3 3	Thru 2 1 2	Right 5 4 3	U-Turn 0 0 0	Left 1 0 1	Thru 77 91 95	Right 39 39 35	U-Turn 0 0 0	Left 34 37 37	Thru 54 53 47	Right 1 1 0
Start Time 4:00 PM 4:15 PM 4:30 PM 4:45 PM	0-Turn 0 0 0 0	Left 30 32 31 34	Thru 1 2 3 3	Right 33 35 34 36	U-Turn 0 0 0 0	Left 2 3 3 4	Thru 2 1 2 2	Right 5 4 3 2	U-Turn 0 0 0 0	Left 1 0 1 1	Thru 77 91 95 95	Right 39 39 35 36	U-Turn 0 0 0 0	Left 34 37 37 36	Thru 54 53 47 69	Right 1 1 0 1
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	0-1 urn 0 0 0 0 0	Left 30 32 31 34 33	Thru 1 2 3 3 2	Right 33 35 34 36 35	U-Turn 0 0 0 0 0	Left 2 3 3 4 4	Thru 2 1 2 2 1 2 1	Right 5 4 3 2 1	U-Turn 0 0 0 0 0	Left 1 0 1 1 0	Thru 77 91 95 95 95 99	Right 39 39 35 36 34	U-Turn 0 0 0 0 0	Left 34 37 37 36 34	Thru 54 53 47 69 76	Right 1 0 1 2
Start Time 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	0-1um 0 0 0 0 0 0	Left 30 32 31 34 33 33	Thru 1 2 3 3 2 2 2	Right 33 35 34 36 35 38	U-Turn 0 0 0 0 0 0 0	Left 2 3 3 4 4 5	Thru 2 1 2 1 2 1 2 1 2 1 2	Right 5 4 3 2 1 2	U-Turn 0 0 0 0 0 0	Left 1 0 1 1 0 1 0 1	Thru 77 91 95 95 99 101	Right 39 39 35 36 34 34	U-Turn 0 0 0 0 0 0 0	Left 34 37 37 36 34 33	Thru 54 53 47 69 76 74	Right 1 0 1 2 3
Start Time 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	0-1um 0 0 0 0 0 0 0 0	Left 30 32 31 34 33 33 30	Thru 1 2 3 2 2 2 2 2 2 2 2 2 2 2	Right 33 35 34 36 35 38 38	U-Turn 0 0 0 0 0 0 0 0	Left 2 3 4 4 5 3	Thru 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Right 5 4 3 2 1 2 2 2 2 2 2	U-Turn 0 0 0 0 0 0 0 0	Left 1 0 1 0 1 0 1 0 1 0 0	Thru 77 91 95 95 99 101 96	Right 39 39 35 36 34 34 34 31	U-Turn 0 0 0 0 0 0 0 0	Left 34 37 37 36 34 33 28	Thru 54 53 47 69 76 74 75	Right 1 0 1 2 3
Start Time 4:00 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0-1um 0 0 0 0 0 0 0 0	Left 30 32 31 34 33 33 30 32	Thru 1 2 3 2 2 2 2 2 2 2 2 2 2	Right 33 35 34 36 35 38 38 40	U-Turn 0 0 0 0 0 0 0 0 0	Left 2 3 4 4 5 3 3 3	Thru 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Right 5 4 3 2 1 2 2 2 2 2 2 2 2	U-Turn 0 0 0 0 0 0 0 0	Left 1 0 1 0 1 0 1 0 0 0	Thru 77 91 95 95 99 101 96 100	Right 39 39 35 36 34 31 33	U-Turn 0 0 0 0 0 0 0 0	Left 34 37 37 36 34 33 28 29	Thru 54 53 47 69 76 74 75 81	Right 1 0 1 2 3 2 2
Start Time 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0-1 um 0 0 0 0 0 0 0 0 0 0 0	Left 30 32 31 34 33 33 30 32	Thru 1 2 3 2 2 2 2 2 2 2 2 2 2 2	Right 33 35 34 36 35 38 38 40	U-Turn 0 0 0 0 0 0 0 0 0	Left 2 3 4 4 5 3 3 3	Thru 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Right 5 4 3 2 1 2 2 2 2 2 2 2 2 2	U-Turn 0 0 0 0 0 0 0 0 0	Left 1 0 1 1 0 1 0 0 0	Thru 77 91 95 95 99 101 96 100	Right 39 39 35 36 34 31 33	U-Turn 0 0 0 0 0 0 0 0 0 0	Left 34 37 37 36 34 33 28 29	Thru 54 53 47 69 76 74 75 81	Right 1 0 1 2 3 2 3 2
Start Time 4:00 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0-1um 0 0 0 0 0 0 0 0 0 0	Left 30 32 31 34 33 33 30 32 A Si	Thru 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Right 33 35 34 36 35 38 40	U-Turn 0 0 0 0 0 0 0 0 0 0	Left 2 3 4 4 5 3 3 3 Thomsc	Thru 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 Place	Right 5 4 3 2 1 2 2 2 2 2 2 2 2 2	U-Turn 0 0 0 0 0 0 0 0 0 0 0	Left 1 0 1 1 0 1 0 0 0 Congres	Thru 77 91 95 95 99 101 96 100 ss Street	Right 39 39 35 36 34 31 33	U-Turn 0 0 0 0 0 0 0 0 0 0 0 0	Left 34 37 37 36 34 33 28 29 Congres	Thru 54 53 47 69 76 74 75 81 ss Street	Right 1 0 1 2 3 2 3 2

8:00 AM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	142	11	88	0	17	6	5	0	4	323	126	0	217	409	7
PHF		0.	97			0.	88			0.	97			0.	92	
HV %	0.0%	4.2%	9.1%	2.3%	0.0%	0.0%	0.0%	40.0%	0.0%	0.0%	5.0%	3.2%	0.0%	0.0%	2.0%	0.0%

PM PEAK HOUR		A S	treet			Thomso	n Place			Congres	s Street			Congres	s Street	
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	RightU-TurnLeftThruRight				U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	128	8	151	0 15 5 7				0	1	396	132	0	124	306	10
PHF		0.	97			0.	75			0.	97			0.9	98	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	0.8%	0.0%	0.0%	0.3%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 17 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Thomson Place/A Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
		A S [:] North	treet bound			Thomso South	on Place bound			Congres East	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	3	1	0	0	4	0
7:30 AM	0	3	0	0	0	0	0	0	0	0	1	0	0	0	1	0
7:45 AM	0	1	1	0	0	0	0	0	0	0	5	1	0	0	3	0
8:00 AM	0	1	0	0	0	0	0	1	0	0	7	3	0	0	3	0
8:15 AM	0	1	0	0	0	0	0	0	0	0	4	1	0	0	1	0
8:30 AM	0	3	1	1	0	0	0	0	0	0	1	0	0	0	0	0
8:45 AM	0	1	0	1	0	0	0	1	0	0	4	0	0	0	4	0
		A S [.] North	treet bound			Thomso South	on Place bound			Congres Eastl	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	3	0	0	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 7:15 AM	 	A S North	treet bound			Thomso South	on Place bound			Congres Eastl	ss Street		=	Congres West	ss Street	
to	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	6	1	0	0	0	0	1	0	0	16	5	0	0	11	0
PHF		0.	58			0.	25			0.	53			0.	69	
PM PFAK HOUR										Congreg	es Street			Congres	es Street	

PM PEAK HOUR		A S	treet			Thomso	on Place			Congres	ss Street			Congres	ss Street	
4:00 PM		North	bound			South	bound			East	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn Left Thru Right				U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	4	0	0	4	0
PHF		0.	.00	•		0.	00			0.	.50			0.	33	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: Location 17 BTD #: Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Thomson Place/A Street 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			A Street Northbound	ł			TI	nomson Pla Southbound	ice d		Co	ongress Str Eastbound	eet		Co	ongress Stro Westbound	eet	
Start Time	Left Thru Right PED 0 0 0 5					Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	5		0	0	0	25	0	1	0	6	0	2	0	2	
7:15 AM	0	0	0	3		0	0	0	39	0	3	2	4	0	1	0	6	
7:30 AM	2	1	0	6		0	0	0	43	0	3	1	27	0	1	0	9	
7:45 AM	3	0	0	9		0	0	0	42	0	4	2	47	0	2	0	12	
8:00 AM	4	0	1	18		0	0	0	54	0	5	3	33	0	2	0	9	
8:15 AM	3	1	0	25		0	0	0	60	0	2	1	16	0	1	0	5	
8:30 AM	6	1	2	24		0	0	0	60	0	3	2	16	0	3	0	6	
8:45 AM	7	0	4	20		0	0	0	55	0	4	1	14	0	2	0	7	

			A Street Northbound	i			Tł	nomson Pla Southbound	ce 1		Co	ongress Stre Eastbound	eet		Co	ongress Stre Westbound	eet I	
Start Time	Left	Left Thru Right PED					Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	1	0	0	13		0	0	0	19	0	0	0	25	0	0	0	3	(
4:15 PM	0	0	0	18		0	0	0	28	0	2	0	24	0	1	0	5	(
4:30 PM	2	0	0	20		0	0	0	33	0	1	0	27	0	2	0	9	(
4:45 PM	1	0	1	21		0	0	0	35	0	2	0	28	0	0	0	13	(
5:00 PM	3	0	0	26		0	1	1	35	0	4	0	36	1	5	0	15	(
5:15 PM	4	0	0	29		0	0	2	32	0	3	0	41	0	7	0	16	(
5:30 PM	5 0 1 25					0	0	1	33	0	5	0	35	0	4	0	14	
5:45 PM	1 0 0 19					0	1	0	30	0	3	0	25	1	1	0	11	

AM PEAK HOUR ¹			A Street			Tł	nomson Pla	ice		Co	ongress Stre	eet		Co	ongress Stre	et	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	20	2	7	87	0	0	0	229	0	14	7	79	0	8	0	27	

PM PEAK HOUR ¹			A Street			Tł	nomson Pla	се		Co	ngress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound				Southbound	1			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	13	0	1	99	0	2	4	130	0	15	0	137	2	17	0	56	

Client: Project #: BTD #: Location: Street 1: Street 2: Count Date: Day of Week: Weather: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Location 18 Seaport, Boston, MA Congress Street Boston Wharf Rd/Service Rd 11/1/2016 Tuesday Partly Cloudy, 55° F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

						7	TOTAL (C	ARS & T	RUCKS)						
		West Serv Northb	vice Road		Bos	ton Wharf F Southbound	Road		Congres Eastl	ss Street			Congre West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	21	9	20	2	13	11	0	11	27	22	5	12	72	15
7:15 AM	0	19	13	20	4	13	12	0	14	38	22	6	15	89	17
7:30 AM	0	16	15	19	6	11	13	0	16	45	19	5	17	98	17
7:45 AM	0	17	22	18	4	12	13	0	14	49	23	5	18	106	24
8:00 AM	0	16	27	15	2	12	12	0	11	48	25	4	18	104	28
8:15 AM	0	22	29	14	8	14	9	0	10	54	36	5	29	123	30
8:30 AM	0	25	28	12	13	15	6	0	8	55	43	4	37	131	30
8:45 AM	0	26	29	13	14	16	6	0	8	58	45	4	39	138	32

		West Serv North	vice Road		Bost	on Wharf F Southbound	Road		Congres East	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	8	7	7	10	37	11	0	11	55	65	4	12	53	6
4:15 PM	0	10	8	7	8	47	13	0	11	64	67	5	20	59	5
4:30 PM	0	11	9	6	6	53	14	0	10	66	63	6	27	59	4
4:45 PM	0	10	8	8	13	55	17	0	11	72	70	6	35	70	8
5:00 PM	0	8	7	10	18	51	19	0	11	72	71	5	39	75	11
5:15 PM	0	10	5	10	17	64	16	0	9	81	70	5	37	73	12
5:30 PM	0	11	3	9	15	70	12	0	6	82	63	4	31	64	11
5:45 PM	0	12	3	9	16	74	13	0	6	86	66	4	33	67	12

AM PEAK HOUR		West Serv	vice Road		Bost	ton Wharf F	Road		Congres	ss Street			Congres	ss Street	
8:00 AM		North	oound		;	Southbound	d		East	ound			West	bound	
to	U-Turn	Left	Thru	Right	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	89	113	54	37	57	33	0	37	215	149	17	123	496	120
PHF		0.9	94			0.88	-		0.	90			0.	89	-
HV %	0.0%	0.0%	7 1%	1 9%	10.8%	5 3%	0.0%	0.0%	0.0%	7 0%	0.0%	0.0%	0.0%	5 2%	7 5%

PM PEAK HOUR		West Serv	ice Road		Bost	ton Wharf F	Road		Congres	ss Street			Congres	ss Street	
5:00 PM		North	oound		;	Southbound	d		Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	41	18	38	66	259	60	0	32	321	270	18	140	279	46
PHF		0.9	97			0.94			0.	97			0.	93	
HV %	0.0%	2.4%	16.7%	0.0%	0.0%	3.1%	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	1.1%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 18 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Boston Wharf Rd/Service Rd Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
		West Ser North	vice Road bound			Boston W South	harf Road bound			Congres Eastl	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0
7:30 AM	0	0	3	3	0	0	3	0	0	0	3	0	0	0	1	0
7:45 AM	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0
8:00 AM	0	0	3	1	0	3	0	0	0	0	0	0	0	0	5	4
8:15 AM	0	0	5	0	0	0	1	0	0	0	8	0	0	0	12	1
8:30 AM	0	0	0	0	0	0	1	0	0	0	3	0	0	0	4	1
8:45 AM	0	0	0	0	0	1	1	0	0	0	4	0	0	0	5	3
		West Ser North	vice Road bound			Boston W South	harf Road bound			Congres East	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	1	0	0	0	0	3	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	3	0	0	0	3	0	0	0	3	0	0	0	3	0
5:45 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 8:00 AM		West Ser North	vice Road bound			Boston W South	harf Road bound			Congres East	ss Street			Congres West	ss Street	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	8	1	0	4	3	0	0	0	15	0	0	0	26	9
PHF		0.	45			0.	58			0.	47			0.	67	

PM PEAK HOUR		West Ser	vice Road			Boston W	harf Road			Congres	ss Street			Congres	ss Street	
4:45 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:45 PM	0	1	4	0	0	0	8	0	0	0	3	0	0	0	3	0
PHF		0.	42			0.	67			0.	25			0.	25	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 18 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Boston Wharf Rd/Service Rd 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		We	st Service F Northbound	Road		Bos	ton Wharf F Southbound	Road d		Co	ongress Str Eastbound	eet		Co	ongress Stre Westbound	eet I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	11	0	0	0	19	0	0	0	3	0	0	0	4	
7:15 AM	0	0	1	10	0	0	0	18	2	0	0	8	0	0	0	9	
7:30 AM	0	0	0	15	0	0	0	25	0	0	0	10	0	1	0	8	
7:45 AM	0	0	0	18	0	0	0	29	0	3	0	11	0	2	0	6	
8:00 AM	0	0	0	17	0	0	0	27	1	2	0	14	0	1	0	7	
8:15 AM	0	1	0	15	0	0	0	23	1	3	0	15	0	2	0	8	
8:30 AM	0	1	1	18	0	0	0	26	2	2	0	17	0	2	1	10	
8:45 AM	0	0	0	19	0	0	0	27	0	2	0	18	0	3	1	11	

		Wes	st Service F Northbound	Road			Bos	ton Wharf F Southbound	Road d		Co	ongress Str Eastbound	eet		Co	ongress Str Westbound	eet I	
Start Time	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	19		0	0	0	17	0	1	0	4	0	0	0	3	
4:15 PM	0	0	0	18		0	0	0	16	0	2	0	7	0	0	0	5	
4:30 PM	0	0	0	21		0	0	0	19	0	0	0	8	0	0	0	7	
4:45 PM	0	0	0	22		0	0	0	21	0	2	0	9	0	1	0	8	
5:00 PM	0	0	0	24		0	0	0	33	1	4	0	23	0	2	0	11	
5:15 PM	0	0	0	24		0	0	0	42	0	2	0	35	0	2	0	12	
5:30 PM	0	0 0 0 20					0	0	30	0	3	0	20	0	3	0	9	
5:45 PM	0	0 0 0 <u>20</u> 0 0 0 15					0	0	16	1	1	0	4	0	1	0	6	

AM PEAK HOUR ¹		Wes	st Service R	oad		Bost	ton Wharf F	Road		Co	ongress Stre	eet		Co	ongress Stre	et	
8:00 AM			Northbound			:	Southbound	ł			Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	2	1	69	0	0	0	103	4	9	0	64	0	8	2	36	1

PM PEAK HOUR ¹		Wes	st Service R	oad		Bost	ton Wharf F	Road		Co	ngress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound			:	Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	83	0	0	0	121	2	10	0	82	0	8	0	38	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 19 Seaport, Boston, MA Location: Street 1: Congress Street Service Rd/I-93, I-90 Ramps Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Partly Cloudy, 55° F Weather:

TOTAL (CARS & TRUCKS)

	ŀ	-93 and I-90) Exit Ramp	S		East Serv	/ice Road			Congres	ss Street			Congres	s Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	31	58	34	0	0	0	0	0	7	39	0	0	0	68	9
7:15 AM	0	39	64	45	0	0	0	0	0	6	55	0	0	0	82	10
7:30 AM	0	43	63	51	0	0	0	0	0	7	60	0	0	0	89	10
7:45 AM	0	56	81	53	0	0	0	0	0	9	59	0	0	0	92	11
8:00 AM	0	63	91	49	0	0	0	0	0	10	50	0	0	0	87	11
8:15 AM	0	73	118	51	0	0	0	0	0	6	68	0	0	0	109	9
8:30 AM	0	76	134	48	0	0	0	0	0	2	75	0	0	0	122	6
8:45 AM	0	80	111	50	0	0	0	0	0	2	80	0	0	0	129	9
	ŀ	-93 and I-90 North) Exit Ramp bound	S		East Serv South	/ice Road bound			Congres Eastb	ss Street			Congres Westt	s Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	17	40	26	0	0	0	0	0	8	77	0	0	0	54	5
4:15 PM	0	19	44	25	0	0	0	0	0	9	84	0	0	0	65	6
4:30 PM	0	19	43	22	0	0	0	0	0	10	83	0	0	0	71	5
4:45 PM	0	23	48	22	0	0	0	0	0	11	99	0	0	0	90	6
5:00 PM	0	23 48 22 24 48 19			0	0	0	0	0	12	105	0	0	0	101	6
5:15 PM	0	24	47	19	0	0	0	0	0	12	114	0	0	0	98	5
5:30 PM	0	22	43	17	0	0	0	0	0	11	111	0	0	0	84	4
5:45 PM	0	23	45	18	0	0	0	0	0	12	116	0	0	0	89	4
AM PEAK HOUR 8:00 AM		-93 and I-90 North) Exit Ramp bound	S		East Serv South	/ice Road bound			Congres Eastb	ss Street			Congres Westt	s Street	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	292	454	198	0	0	0	0	0	20	273	0	0	0	447	35
PHF		0.	91			0.	00			0.	89			0.	87	
HV %	0.0%	0.0%	0.7%	4.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	5.1%	0.0%	0.0%	0.0%	4.5%	2.9%
PM PEAK HOUR 5:00 PM	ļ	-93 and I-90 North) Exit Ramp bound	S		East Serv South	/ice Road bound			Congres Eastb	ss Street			Congres Westt	s Street	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	93	183	73	0	0	0	0	0	47	446	0	0	0	372	19
PHF		0.	96			0.	00			0.	96			0.	91	
HV %	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 19 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Service Rd/I-93, I-90 Ramps Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
	I-	93 and I-90 North) Exit Ramp bound)S		East Serv South	vice Road bound			Congres East	ss Street			Congre: West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0
7:15 AM	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	1
7:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0
8:00 AM	0	0	1	3	0	0	0	0	0	0	4	0	0	0	5	0
8:15 AM	0	0	0	3	0	0	0	0	0	0	3	0	0	0	7	0
8:30 AM	0	0	1	1	0	0	0	0	0	0	3	0	0	0	4	0
8:45 AM	0	0	1	1	0	0	0	0	0	0	4	0	0	0	4	1
	I-	93 and I-90 North) Exit Ramp bound	os		East Serv South	vice Road bound			Congres East	ss Street			Congre: West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 8:00 AM	l-	93 and I-90 North) Exit Ramp bound	os		East Serv South	vice Road bound	1		Congres Eastl	ss Street	1		Congres West	ss Street bound	1
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	3	8	0	0	0	0	0	0	14	0	0	0	20	1
PHF		0.	69			0.	00			0.	88			0.	75	
PM PEAK HOUR	-	93 and I-90) Exit Ramp	os		East Serv	vice Road			Congres	ss Street			Congre	ss Street	

PM PEAK HOUR	I-9	93 and I-90) Exit Ramp	DS		East Serv	/ice Road			Congres	s Street			Congres	s Street	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	1	2	0	0	0	0	0	0	0	0	0	0	1	0
PHF		0.	75			0.	00			0.	00			0.	25	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 19 Location: Seaport, Boston, MA Congress Street Street 1: Street 2: Service Rd/I-93, I-90 Ramps 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

									-									
		I-93 ar	nd I-90 Exit	Ramps		Eas	st Service R	Road			Co	ongress Str	eet		Co	ongress Str	eet	
			Northbound	ł			Southbound	b				Eastbound				Westbound	I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	1	0	0	0	7		1	1	0	1	0	0	0	2	
7:15 AM	0	0	0	5	0	0	0	6		0	0	0	0	0	0	0	0	
7:30 AM	0	0	0	2	0	0	0	11		0	0	0	2	0	1	0	1	
7:45 AM	0	0	0	5	0	0	0	9		1	2	0	1	0	0	0	0	
8:00 AM	0	0	0	3	0	0	0	17		0	2	0	5	0	0	0	3	
8:15 AM	0	0	0	1	0	0	0	25		0	1	0	19	0	1	0	0	
8:30 AM	0	0	0	6	0	0	0	22		1	3	0	8	0	2	0	7	
8:45 AM	0	0	0	0	0	0	0	18		1	4	0	11	0	1	0	2	

		I-93 ar	nd I-90 Exit Northbound	Ramps			Eas	st Service R Southbound	load d		Co	ongress Stre Eastbound	eet		Co	ongress Stro Westbound	eet	
Start Time	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	1		0	0	0	15	0	0	0	3	0	0	0	3	
4:15 PM	0	0	0	3		0	0	0	14	0	2	0	1	0	1	1	0	
4:30 PM	0	0	0	3		0	0	0	23	0	0	0	5	0	1	0	2	
4:45 PM	0	0	0	0		0	0	0	28	0	1	0	0	0	0	0	2	
5:00 PM	0	0	0	5		0	0	0	27	0	1	0	8	0	0	1	7	
5:15 PM	0	0	0	4		0	0	0	25	0	0	0	2	0	0	1	3	
5:30 PM	0	0 0 0 7					0	0	26	0	2	0	6	0	2	0	5	
5:45 PM	0	0	0	1		0	0	0	22	0	1	0	4	0	1	0	2	

AM PEAK HOUR ¹		I-93 ar	nd I-90 Exit	Ramps		Eas	t Service R	load		Co	ongress Stre	eet		Co	ongress Stre	et	
8:00 AM			Northbound			:	Southbound	ł			Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	10	0	0	0	82	2	10	0	43	0	4	0	12	1

PM PEAK HOUR ¹		I-93 ar	d I-90 Exit	Ramps		Eas	t Service R	oad		Co	ongress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	17	0	0	0	100	0	4	0	20	0	3	2	17	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 20 Seaport, Boston, MA Location: Street 1: Congress Street B St/I-93, I-90 Ramps Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TOTAL	(CARS	& TR	UCKS)
-------	-------	------	-------

	I-93	On Ramps	/I-90 Off Ra	mps		B S	treet	L -		Congres	ss Street			Congres	s Street	
Start Time	LI Turo	INORTH	Jouna	Diabt		South		Diaht	LI Turo	Easu		Diaht		VVesu		Diaht
	0-Tum	Leit	11110	Right	0-1011	Leit	10		0-Tum	Leit	Thiu	Right	0-1011	Leit	11110	Right
7:00 AIVI	0	40	20	43	0	5	10	/	0	39	0	20	0	57	24	9
7.15 AIVI	0	51	32	53	0	4	18	0	0	45	20	30	1	67	33	10
7:45 AM	0	51	35	50	0	3	17	0	0	40 59	30	29	<u> </u>	77	40	10
7.45 AM	0	50	40	72	0	4	17	9	0	56	24	32	1	70	30	12
0:00 AM	0	50	41 56	72	0	3	10	7	0	76	14	31	0	79	40	14
8:30 AM	0	58	66	63	0	2	12 8	6	0	70	14	27	0	54	43 64	26
8:45 AM	0	50 61	69	66	0	2	8	6	0	83	17	21	0	57	68	20
0.40 AN	0	01	05	00	0	2	0	0	0	00	17	20	0	51	00	21
	1-93	On Ramos	/I-90 Off Ra	mps		BS	reet			Congres	ss Street			Congres	ss Street	
	100	North	bound	inpo		South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	23	24	72	0	2	16	11	0	12	43	48	0	90	25	13
4:15 PM	0	33	30	74	0	3	28	13	0	18	47	44	0	102	25	15
4:30 PM	0	39	34	68	0	3	37	14	0	23	46	36	0	105	23	16
4:45 PM	0	48	40	69	0	4	41	16	0	27	59	35	0	115	32	19
5:00 PM	0	52	43	63	0	5	41	16	0	29	64	31	0	114	39	20
5:15 PM	0	48	46	69	0	6	42	17	0	32	62	39	0	111	38	28
5:30 PM	0	40	45	68	0	6	39	15	0	31	54	43	0	98	33	33
5:45 PM	0	42	47	71	0	6	41	16	0	33	56	45	0	103	35	35
											_			_	_	
AM PEAK HOUR	1-93	On Ramps	1-90 Off Ra	imps		BS	treet			Congres	ss Street			Congres	s Street	
8:00 AM		North	ound			South	bound	5:1:		East	bound			West	20und	
to	U-Turn	Left	I hru	Right	U-Turn	Left	I hru	Right	U-Turn	Left	l hru	Right	U-Turn	Left	I hru	Right
9:00 AM	U	235	232	2/2	U	10	43	27	U	303	53	116	1	260	212	79
	0.0%	0.00/	94	E 00/	0.0%	0.00/	11	7 40/	0.0%	0.20/	.92	4 20/	0.0%	U.	91	4 30/
HV %	0.0%	0.0%	0.0%	5.9%	0.0%	0.0%	10.0%	7.4%	0.0%	0.3%	30.2%	4.3%	0.0%	5.0%	7.3%	1.3%
DM DEAK HOUD	1 102	On Pampa		mnc		D C	root			Congreg	se Street			Congreg	se Street	
5:00 PM	1-90	North	bound	unps		South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	182	181	271	0	23	163	64	0	125	236	158	0	426	145	116
PHF		0.	97			0.	96			0.	.97			0.	97	
HV %	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	1.2%	0.0%	0.0%	0.8%	2.1%	0.0%	0.0%	0.5%	6.2%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 20 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: B St/I-93, I-90 Ramps Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
	I-93 (On Ramps North	/I-90 Off Ra bound	amps		B Si South	treet bound			Congres Eastl	ss Street			Congres West	ss Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	4	0	0	3	0	0	0	3	3	0	3	1	0
7:15 AM	0	0	0	3	0	0	1	0	0	0	4	1	0	1	4	0
7:30 AM	0	0	0	3	0	0	1	1	0	1	4	1	0	1	3	1
7:45 AM	0	0	0	4	0	0	4	0	0	0	3	1	0	3	3	0
8:00 AM	0	0	0	4	0	0	3	1	0	0	5	3	0	4	4	0
8:15 AM	0	0	0	3	0	0	1	1	0	0	4	0	0	1	3	0
8:30 AM	0	0	0	5	0	0	1	0	0	0	3	1	0	3	4	0
8:45 AM	0	0	0	4	0	0	3	0	0	1	4	1	0	5	5	1
	I-93 (On Ramps North	/I-90 Off Ra bound	amps		B Si South	treet bound			Congres Eastl	ss Street			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	4	0	0	1	0	0	0	3	0	0	3	1	0
4:15 PM	0	0	0	3	0	0	1	0	0	0	4	0	0	4	3	0
4:30 PM	0	0	0	4	0	0	0	1	0	1	3	0	0	0	3	0
4:45 PM	0	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0
5:00 PM	0	0	0	1	0	0	1	0	0	0	0	0	0	1	4	0
5:15 PM	0	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0
5:30 PM	0	0	0	1	0	0	0	0	0	0	3	0	0	0	3	0
5:45 PM	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
AM PEAK HOUR 8:00 AM	I-93 (On Ramps North	/I-90 Off Ra bound	amps		B Si South	treet bound			Congres Eastl	ss Street			Congres West	ss Street	1
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	16	0	0	8	2	0	1	16	5	0	13	16	1
PHF		0.	80			0.	63			0.	.69			0.	68	
PM PEAK HOUR	I-93 (On Ramps	/I-90 Off Ra	amps		B S	treet			Congres	ss Street			Congres	ss Street	

PM PEAK HOUR	I-93 (On Ramps	/I-90 Off Ra	amps		B St	treet			Congres	s Street			Congres	ss Street	
4:00 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	12	0	0	3	1	0	1	11	0	0	8	8	0
PHF		0.	75			1.	00			0.	75			0.	57	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 20 Location: Seaport, Boston, MA Congress Street Street 1: Street 2: B St/I-93, I-90 Ramps 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		I-93 On R	amps/I-90 (Off Ramps			B Street			Co	ongress Str	eet		Co	ongress Str	eet	
			Northbound	ł			Southbound	b			Eastbound				Westbound	I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	3	0	0	0	11	0	1	0	5	0	2	0	6	
7:15 AM	0	0	0	1	0	0	0	15	0	1	0	2	0	1	0	1	
7:30 AM	0	0	0	5	0	0	0	19	0	0	0	11	0	1	1	11	
7:45 AM	0	0	0	4	0	0	0	12	0	0	0	7	0	1	0	15	
8:00 AM	0	0	0	7	0	0	0	9	0	1	0	15	0	4	0	19	
8:15 AM	0	0	0	8	0	0	0	18	0	2	0	11	0	5	1	21	
8:30 AM	0	0	0	5	0	0	0	23	0	1	0	9	0	3	0	18	
8 45 AM	0	0	0	4	0	0	0	18	0	1	0	6	0	3	0	17	

		I-93 On R	amps/I-90 (Northbound	Off Ramps				B Street Southbound	d		Co	ongress Str Eastbound	eet		Co	ongress Str Westbound	eet I	
Start Time	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	3		0	0	0	4	0	0	0	2	0	1	0	12	
4:15 PM	0	0	0	6		0	0	0	8	0	0	0	3	0	0	0	9	
4:30 PM	0	0	0	5		0	0	0	16	0	0	0	9	0	1	0	15	
4:45 PM	0	0	0	2		0	0	0	12	0	0	0	6	0	2	1	13	
5:00 PM	0	0	0	7		1	0	0	20	0	1	0	4	0	2	0	19	
5:15 PM	0	0	0	5		1	0	0	16	0	1	0	8	0	1	1	13	
5:30 PM	0	0	0	2		0	0	0	11	0	1	0	3	0	3	0	17	
5:45 PM							0	0	24	0	2	0	8	0	2	0	21	

AM PEAK HOUR ¹		I-93 On R	amps/I-90 (Off Ramps			B Street			Co	ongress Stre	eet		Co	ongress Stre	et	
8:00 AM			Northbound			:	Southbound	t			Eastbound				Westbound	l.	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	24	0	0	0	68	0	5	0	41	0	15	1	75	1

PM PEAK HOUR ¹		I-93 On Ra	amps/I-90 C	Off Ramps				B Street			Co	ngress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound					Southbound	ł			Eastbound				Westbound	I	
to	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0 0 0 21					2	0	0	71	0	5	0	23	0	8	1	70	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 21 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: D Street Count Date: 11/1 & 11/2/2016 Day of Week: Tuesday & Wednesday Weather: Partly Cloudy, 55° F

TOTAL (CARS & TRUCKS)

		D S	treet			DS	treet	(Congre	ss Street			Congres	s Street	
		North	bound		· · · –	South	bound			East	bound			West	Jound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	l hru	Right	U-Turn	Left	Thru	Right
7:00 AM	1	51	20	5	0	6	35	11	2	21	35	53	0	9	15	4
7:15 AM	0	58	25	6	1	6	35	11	3	20	43	60	0	12	20	5
7:30 AM	1	59	28	6	0	7	31	10	2	18	47	61	0	14	24	5
7:45 AM	0	66	26	5	0	7	31	9	2	18	55	70	0	15	20	4
8:00 AM	1	66	21	6	0	6	28	8	1	16	57	73	0	14	15	5
8:15 AM	1	78	24	6	1	5	33	9	2	18	61	68	0	16	19	4
8:30 AM	0	83	25	5	1	4	34	10	3	19	59	57	0	16	22	5
8:45 AM	0	87	26	5	0	4	36	11	3	20	62	60	0	17	23	5
		D S	treet			DS	treet			Congre	ss Street			Congres	s Street	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	62	22	8	1	3	77	6	2	10	24	43	0	17	25	8
4:15 PM	1	75	24	9	0	5	85	11	3	14	26	49	0	20	27	9
4:30 PM	2	80	24	9	1	6	84	15	4	16	25	51	0	22	26	10
4:45 PM	1	78	27	8	2	6	88	14	5	21	30	50	0	24	32	12
5:00 PM	2	68	27	7	1	5	83	12	6	24	33	45	0	24	35	12
5:15 PM	2	79	30	11	2	6	81	13	6	26	39	48	0	33	43	18
5:30 PM	1	51	30	13	3	7	72	13	5	25	42	47	0	38	46	22
5:45 PM	1	69	32	14	3	7	76	14	5	26	44	49	0	40	48	23
	-															
AM PEAK HOUR		D S ¹	treet			DS	treet			Congre	ss Street			Congres	s Street	
8:00 AM		North	bound			South	bound			East	bound		_	West	Jound	-
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	2	314	96	22	2	19	131	38	9	73	239	258	0	63	79	19
PHF		0.	92			0.	93			0.	.97			0./	89	
HV %	0.0%	4.5%	9.4%	9.1%	0.0%	0.0%	10.7%	0.0%	0.0%	0.0%	6.3%	3.9%	0.0%	1.6%	22.8%	0.0%
	1															
PM PEAK HOUR		D S ¹	treet			D S	treet			Congre	ss Street			Congres	s Street	
5:00 PM		North	bound		Southbound					East	bound			Westh	Jound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	6	267	119	45	9	25	312	52	22	101	158	189	0	135	172	75
PHF		0.	90	0.98						0.	.95			0.	86	
HV %	0.0%	1.9%	2.5%	0.0%	0.0%	0.0%	1.0%	0.0%	0.0%	0.0%	3.8%	2.6%	0.0%	0.0%	1.7%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 21 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: D Street Count Date: 11/1 & 11/2/2016 Day of Week: Tuesday & Wednesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
		D S [.] North	treet bound			D S South	treet bound			Congre East	ss Street bound			Congres West	ss Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	4	3	0	0	0	3	0	0	0	4	3	0	1	1	0
7:15 AM	0	3	3	1	0	0	4	0	0	0	3	4	0	0	4	0
7:30 AM	0	3	1	0	0	0	3	0	0	0	3	3	0	3	1	0
7:45 AM	0	1	3	1	0	0	4	0	0	0	3	5	0	1	4	0
8:00 AM	0	3	1	1	0	0	5	0	0	0	1	4	0	0	4	0
8:15 AM	0	3	0	0	0	0	3	0	0	0	3	1	0	0	3	0
8:30 AM	0	4	3	1	0	0	3	0	0	0	4	1	0	0	4	0
8:45 AM	0	4	5	0	0	0	3	0	0	0	7	4	0	1	7	0
		D S [.] North	treet bound			D S South	treet bound			Congre East	ss Street bound			Congres West	ss Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	0
4:15 PM	0	3	0	0	0	0	3	0	0	0	3	0	0	0	1	0
4:30 PM	0	1	0	0	0	0	1	0	0	0	3	0	0	0	3	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
5:00 PM	0	3	1	0	0	0	1	0	0	0	3	1	0	0	1	0
5:15 PM	0	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0
5:30 PM	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0
5:45 PM	0	0	1	0	0	0	1	0	0	0	1	3	0	0	1	0
AM PEAK HOUR 8:00 AM]	D S North	treet bound			D S South	treet bound			Congre: Eastl	ss Street bound			Congres West	ss Street	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	14	9	2	0	0	14	0	0	0	15	10	0	1	18	0
PHF		0.	69	•		0.	70	•		0.	.57	•		0.	59	•

PM PEAK HOUR		D S	treet			D St	treet			Congres	s Street			Congres	ss Street	
4:15 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	7	1	0	0	0	5	0	0	0	10	1	0	0	6	0
PHF	•	0.	50			0.	42			0.	69			0.	50	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 21 Location: Seaport, Boston, MA Street 1: Congress Street Street 2: D Street 11/1 & 11/2/2016 Count Date: Day of Week: Tuesday & Wednesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			D Street Northbound	ł			D Street Southbound	d		Co	ongress Str Eastbound	eet		Co	ongress Str Westbound	eet I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	1	0	0	5	0	1	0	3	0	1	0	5	0	0	0	6	
7:15 AM	0	1	0	3	0	0	0	6	0	0	0	4	0	0	0	2	
7:30 AM	2	1	0	9	0	1	0	9	0	2	0	11	0	1	0	6	
7:45 AM	1	0	0	14	0	0	0	12	0	1	0	17	0	0	0	10	
8:00 AM	1	2	0	18	0	1	0	8	0	1	1	13	0	2	1	13	
8:15 AM	0	1	0	21	0	0	0	3	0	2	0	8	0	1	0	14	
8:30 AM	1	1	0	25	0	0	0	6	0	2	0	15	0	1	0	15	
8:45 AM	2	2	0	26	0	0	0	9	0	3	1	20	0	3	1	15	

			D Street Northbound	i			D Street Southbound	d		Co	ongress Str Eastbound	eet		Co	ongress Str Westbound	eet I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	1	0	16	0	1	0	4	0	2	0	12	0	1	0	3	
4:15 PM	0	1	0	15	0	2	0	9	0	3	0	11	0	0	0	7	
4:30 PM	0	0	0	20	0	2	0	11	0	1	0	11	0	0	0	15	
4:45 PM	0	0	0	24	0	2	0	12	0	2	0	9	0	1	0	21	
5:00 PM	0	1	0	20	0	1	0	13	0	2	1	13	0	1	0	20	
5:15 PM	0	2	0	15	0	2	0	12	0	2	0	10	0	2	0	17	
5:30 PM	0	1	0	13	0	2	0	14	0	1	1	8	0	0	0	13	
5:45 PM	0	0	0	9	0	3	0	11	0	2	0	6	0	2	0	7	

AM PEAK HOUR ¹			D Street				D Street			Co	ongress Stre	eet		Co	ongress Stre	eet	
8:00 AM			Northbound			:	Southbound	t			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	4	6	0	90	0	1	0	26	0	8	2	56	0	7	2	57	

PM PEAK HOUR ¹			D Street				D Street			Co	ngress Stre	eet		Co	ongress Stre	eet	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	4	0	57	0	8	0	50	0	7	2	37	0	5	0	57	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 22 Seaport, Boston, MA Location: Street 1: Summer Street Street 2: Melcher Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

abiszewski port_Boston n 22 ton, MA Street Street 016 ay

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TOTAL (CARS & TRUCKS)

		Melche	r Street					-		Summe	er Street			Summe	er Street	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	21	0	5	0	0	0	0	0	0	94	56	0	9	90	0
7:15 AM	0	23	0	6	0	0	0	0	0	0	121	60	0	11	101	0
7:30 AM	0	23	0	5	0	0	0	0	0	0	136	58	0	11	102	0
7:45 AM	0	29	0	8	0	0	0	0	0	0	158	65	0	13	122	0
8:00 AM	0	32	0	10	0	0	0	0	0	0	165	66	0	13	131	0
8:15 AM	0	30	0	13	0	0	0	0	0	0	169	72	0	15	131	0
8:30 AM	0	25	0	15	0	0	0	0	0	0	157	72	0	16	118	0
8:45 AM	0	26	0	16	0	0	0	0	0	0	165	76	0	17	124	0

		Melche	r Street							Summe	er Street			Summe	er Street	
		North	bound			South	bound			East	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	34	0	13	0	0	0	0	0	0	119	31	0	7	67	0
4:15 PM	0	38	0	14	0	0	0	0	0	0	138	37	0	7	91	0
4:30 PM	0	39	0	14	0	0	0	0	0	0	144	39	0	7	106	0
4:45 PM	0	45	0	19	0	0	0	0	0	0	169	36	0	7	96	0
5:00 PM	0	47	0	23	0	0	0	0	0	0	178	30	0	6	77	0
5:15 PM	0	59	0	24	0	0	0	0	0	0	180	27	0	5	96	0
5:30 PM	0	65	0	23	0	0	0	0	0	0	165	21	0	4	105	0
5:45 PM	0	68	0	24	0	0	0	0	0	0	173	22	0	4	110	0

AM PEAK HOUR		Melche	r Street							Summe	er Street			Summe	er Street	
8:00 AM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	113	0	54	0	0	0	0	0	0	656	286	0	61	504	0
PHF		0.	97	•		0.	00			0.	98			0.	97	-
HV %	0.0%	6.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.4%	0.0%	0.0%	0.0%	4.2%	0.0%

PM PEAK HOUR		Melche	r Street							Summe	er Street			Summe	er Street	
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	239	0	94	0	0	0	0	0	0	696	100	0	19	388	0
						-	-	•	•	-			-			-
PHF		0.	90			0.	00	, ,	•	0.	96		-	0.	89	

Client: Mr. Andrew Fabiszewski Project #: BTD #: Location 22 Location: Street 1: Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

0010_HSH_Seaport_Boston Seaport, Boston, MA Summer Street Melcher Street

BOSTON **TRAFFIC DATA** PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		Melche North	r Street			South	bound			Summe Fast	er Street			Summe West	er Street	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	1	0	0	0	0	0	0	0	0	3	0	0	0	4	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	3	0
7:30 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	3	0
7:45 AM	0	3	0	0	0	0	0	0	0	0	3	0	0	0	3	0
8:00 AM	0	3	0	0	0	0	0	0	0	0	4	0	0	0	5	0
8:15 AM	0	3	0	0	0	0	0	0	0	0	5	0	0	0	7	0
8:30 AM	0	1	0	0	0	0	0	0	0	0	4	0	0	0	5	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0

		Melche	r Street							Summe	er Street			Summe	er Street	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
4:30 PM	0	1	0	0	0	0	0	0	0	0	3	0	0	0	4	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	1	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	1	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	4	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0

AM PEAK HOUR		Melche	r Street							Summe	r Street			Summe	r Street	
7:45 AM		North	bound			South	bound			Eastb	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	10	0	0	0	0	0	0	0	0	16	0	0	0	20	0
PHF		0.	83			0.	00			0.	80			0.	71	

PM PEAK HOUR		Melche	r Street							Summe	er Street			Summe	er Street	
4:00 PM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	1	0	0	0	0	0	0	0	0	14	0	0	0	12	0
PHF		0.	25			0.	00			0.	88			0.	75	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 22 Location: Seaport, Boston, MA Summer Street Street 1: Street 2: Melcher Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

PEDESTRIANS & BICYCLES

		M	lelcher Stre	et						S	ummer Stre	et		S	ummer Stre	et	
			Northbound	ł			Southbound	d			Eastbound				Westbound	Ł	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	5	0	1	28	0	0	0	0	0	4	3	26	0	3	0	0	
7:15 AM	6	0	0	27	0	0	0	0	0	5	0	25	0	2	0	0	
7:30 AM	7	0	0	39	0	0	0	0	0	5	4	40	0	3	0	0	
7:45 AM	6	0	0	48	0	0	0	0	0	4	1	52	1	4	0	0	
8:00 AM	8	0	1	63	0	0	0	0	0	6	2	70	0	6	0	0	
8:15 AM	10	0	0	72	0	0	0	0	0	4	3	81	2	4	0	0	
8:30 AM	9	0	0	77	0	0	0	0	0	4	3	96	0	4	0	0	
8:45 AM	8	0	1	75	0	0	0	0	0	5	5	101	0	5	0	0	

		N	lelcher Stre Northbound	et d			Southbound	ł		S	ummer Stre Eastbound	eet		S	ummer Stre Westbound	eet 1	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	3	0	0	33	0	0	0	0	0	3	2	42	0	2	0	0	
4:15 PM	1	0	0	31	0	0	0	0	0	2	1	40	0	2	0	0	
4:30 PM	2	0	1	36	0	0	0	0	0	4	2	54	0	4	0	0	
4:45 PM	2	0	0	38	0	0	0	0	0	1	0	62	0	1	0	0	
5:00 PM	4	0	0	60	0	0	0	0	0	3	3	82	0	5	0	0	
5:15 PM	5	0	0	76	0	0	0	0	0	3	3	95	0	7	0	0	
5:30 PM	4	0	1	57	0	0	0	0	0	5	1	77	0	6	0	0	
5:45 PM	4	0	0	32	0	0	0	0	0	2	2	51	0	5	0	0	

AM PEAK HOUR ¹		N	lelcher Stre	et						S	ummer Stre	et		S	ummer Stre	et	
8:00 AM			Northbound				Southbound	ł			Eastbound				Westbound	1	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	35	0	2	287	0	0	0	0	0	19	13	348	2	19	0	0	

PM PEAK HOUR ¹		Μ	lelcher Stre	et			0			Su	ummer Stre	et		S	ummer Stre	et	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	17	0	1	225	0	0	0	0	0	13	9	305	0	23	0	0	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 23 Seaport, Boston, MA Location: Street 1: Melcher Street Street 2: A Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TOTAL (CARS & TRUCKS)

		A St	treet			A St	reet	-		Melche	r Street					
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	12	50	2	0	7	72	21	0	5	0	17	0	0	0	0
7:15 AM	0	16	58	1	0	6	72	21	0	6	0	23	0	0	0	0
7:30 AM	0	19	60	0	0	4	66	19	0	7	0	26	0	0	0	0
7:45 AM	0	22	64	2	0	3	75	23	0	8	0	30	0	0	0	0
8:00 AM	0	23	62	3	0	2	77	25	0	9	0	31	0	0	0	0
8:15 AM	0	24	71	3	0	2	80	28	0	11	0	31	0	0	0	0
8:30 AM	0	22	74	2	0	1	76	29	0	11	0	28	0	0	0	0
8:45 AM	0	23	78	2	0	1	80	30	0	12	0	29	0	0	0	0

		A S	treet			A S	treet			Melche	r Street					
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	13	72	4	0	2	65	11	0	13	0	23	0	0	0	0
4:15 PM	0	17	66	6	0	1	70	13	0	13	0	24	0	0	0	0
4:30 PM	0	19	54	8	0	0	68	14	0	12	0	23	0	0	0	0
4:45 PM	0	20	65	5	0	1	73	15	0	19	0	24	0	0	0	0
5:00 PM	0	20	70	2	0	2	71	14	0	24	0	23	0	0	0	0
5:15 PM	0	22	75	4	0	2	68	18	0	22	0	23	0	0	0	0
5:30 PM	0	21	72	6	0	1	59	21	0	18	0	20	0	0	0	0
5:45 PM	0	22	76	6	0	1	62	22	0	19	0	21	0	0	0	0

AM PEAK HOUR		A St	treet			A St	reet			Melche	r Street					
8:00 AM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	92	285	10	0	6	313	112	0	43	0	119	0	0	0	0
PHF		0.	94			0.	97			0.	96			0.	00	
HV 0/	0.00/	4 4 0/	2 00/	0.00/	0.00/	0.00/	2 00/	0.09/	0.00/	0.09/	0.09/	0.00/	0.00/	0.09/	0.00/	0.09/

PM PEAK HOUR		A St	reet			A St	reet			Melche	r Street					
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	85	293	18	0	6	260	75	0	83	0	87	0	0	0	0
DUC																
PHF		0.	95			0.9	97			0.	90			0.0	00	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 23 Seaport, Boston, MA Location: Street 1: Melcher Street Street 2: A Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		A S	treet			A S	treet			Melche	r Street					
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	0	0
7:15 AM	0	1	3	0	0	0	3	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	3	1	0	0	0	0	0	0	0	0
7:45 AM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
8:00 AM	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	3	0	0	0	4	1	0	0	0	0	0	0	0	0
8:30 AM	0	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0

		A St	treet			A S	treet			Melche	r Street					
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:45 PM	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AM PEAK HOUR		A St	reet			A St	reet			Melche	r Street					
7:45 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:45 AM	0	1	8	0	0	0	9	1	0	0	0	0	0	0	0	0
PHF		0.	75			0.	50			0.	00			0.	00	

PM PEAK HOUR		A S	treet			A S	treet			Melche	r Street					
4:15 PM		North	bound			South	bound			Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	2	4	0	0	0	4	1	0	0	0	0	0	0	0	0
PHF	-	0.	50			0.	42			0.	00			0.	00	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 23 Location: Seaport, Boston, MA Melcher Street Street 1: Street 2: A Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

PEDESTRIANS & BICYCLES

			A Street				A Street			N	lelcher Stre	et					
			Northbound	ł			Southbound	d			Eastbound				Westbound	ł	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	2	4	0	4	0	3	0	3	0	0	0	5	0	0	0	0	
7:15 AM	3	2	0	6	0	2	0	6	0	0	0	7	0	0	0	0	
7:30 AM	2	5	0	11	0	5	1	12	1	0	0	13	0	0	0	0	
7:45 AM	5	9	0	14	0	7	0	16	0	0	0	17	0	0	0	0	
8:00 AM	4	6	0	17	0	6	0	18	0	0	1	23	0	0	0	0	
8:15 AM	5	9	0	19	0	7	1	17	2	0	0	27	0	0	0	0	
8:30 AM	3	8	0	18	0	9	1	15	1	0	1	24	0	0	0	0	
8.45 AM	5	11	0	16	0	8	0	12	0	0	0	18	0	0	0	0	

			A Street				A Street			N	lelcher Stre	et					
			Northbound	ł			Southbound	d			Eastbound				Westbound	1	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	2	0	5	0	3	0	4	0	0	1	12	0	0	0	0	
4:15 PM	0	1	0	4	0	3	0	6	0	0	0	11	0	0	0	0	
4:30 PM	1	4	0	7	0	7	0	8	0	0	1	17	0	0	0	0	
4:45 PM	0	3	0	9	0	6	0	7	0	0	2	21	0	0	0	0	
5:00 PM	1	5	0	8	0	5	1	10	1	0	1	20	0	0	0	0	
5:15 PM	2	5	0	7	0	8	0	12	1	0	2	17	0	0	0	0	
5:30 PM	1	7	0	13	0	9	2	12	2	0	3	20	0	0	0	0	
5:45 PM	1	6	0	18	0	8	0	11	1	0	2	22	0	0	0	0	

AM PEAK HOUR ¹			A Street				A Street			N	lelcher Stre	et					
8:00 AM			Northbound				Southbound	ł			Eastbound				Westbound	ł	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	17	34	0	70	0	30	2	62	3	0	2	92	0	0	0	0	

PM PEAK HOUR ¹			A Street				A Street			N	elcher Stre	et					
5:00 PM			Northbound	1			Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	5	23	0	46	0	30	3	45	5	0	8	79	0	0	0	0	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 24 Location: Seaport, Boston, MA Street 1: Summer Street Street 2: World Trade Center Avenue Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TOTAL (CARS & TRUCKS)

	Wo	orld Trade (Center Aver	ue	Wo	rld Trade (Center Aver			Summe	er Street			Summe	er Street	
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	3	4	4	0	3	0	0	0	2	82	6	0	9	94	2
7:15 AM	0	3	2	6	0	4	0	3	0	4	102	10	0	13	102	3
7:30 AM	0	2	0	7	0	4	0	5	0	5	113	13	0	16	100	4
7:45 AM	0	4	0	8	0	5	0	5	0	4	135	11	0	16	115	7
8:00 AM	0	6	0	8	0	6	0	4	0	2	145	8	0	15	119	9
8:15 AM	0	7	0	13	0	5	0	5	0	3	149	17	0	21	126	7
8:30 AM	0	8	0	16	0	6	0	6	0	2	138	24	0	25	118	4
8:45 AM	0	8	0	17	0	6	0	6	0	2	145	25	0	26	110	4
	Wo	orld Trade (Center Aver	iue	Wo	rld Trade C	Center Aver	nue		Summe	er Street			Summe	er Street	
		North	bound	-		South	bound			East	pound	-		West	oound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	10	1	16	0	5	1	3	1	4	134	13	1	14	69	2
4:15 PM	0	10	1	16	0	7	0	3	2	6	141	12	2	15	76	5
4:30 PM	0	9	0	15	0	8	0	2	2	7	134	10	2	14	75	7
4:45 PM	0	11	0	18	0	13	0	6	1	12	150	15	1	13	67	12
5:00 PM	0	11	0	20	0	16	0	9	2	16	151	19	2	10	53	16
5:15 PM	0	13	0	20	0	18	0	9	3	14	165	29	3	11	77	13
5:30 PM	0	13	0	19	0	18	0	8	3	10	164	37	4	11	94	8
5:45 PM	0	14	0	20	0	19	0	8	2	11	172	39	4	12	99	8
AM PEAK HOUR 8:00 AM	Wo	orld Trade (North	Center Aver	iue	Wo	rld Trade C South	Center Aver	nue		Summe Fasth	er Street			Summe Westl	er Street	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	29	0	54	0	23	0	21	0	9	577	74	0	87	473	24
PHF		0.	83			0.	92			0.	96			0.	95	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.7%	0.0%	0.0%	0.0%	8.2%	0.0%
PM PEAK HOUR	Wo	orld Trade (Center Aver	iue	Wo	rld Trade (Center Aver	nue		Summe	er Street			Summe	er Street	
5.00 I WI	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turp	L eft	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	51	0	79	0	71	0	34	10	51	652	124	13	44	323	45
PHF	v	0.	96		• I	0.	97	0.		0.	93			0.	86	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.0%	0.0%	0.0%	0.0%	5.9%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 24 Location: Seaport, Boston, MA Street 1: Summer Street Street 2: World Trade Center Avenue Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
	Wo	orld Trade (Center Aver	nue	Wo	orld Trade (Center Ave	nue		Summe	er Street			Summe	er Street	
Start Time	U-Turn	Left	Thru	Riaht	U-Turn	Left	Thru	Riaht	U-Turn	Left	Thru	Riaht	U-Turn	Left	Thru	Riaht
7:00 AM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	7	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	10	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	8	0	0	0	4	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	8	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	7	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	13	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	9	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	10	0
	Wo	orld Trade (North	Center Aver bound	nue	Wo	orld Trade (South	Center Aver	nue		Summe Eastl	er Street bound			Summe West	er Street bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	8	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	12	0	0	0	5	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	5	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	4	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	8	0	0	0	7	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0
AM PEAK HOUR 8:00 AM	Wo	orld Trade (North	Center Aver bound	nue	Wo	orld Trade (South	Center Aver	nue		Summe Eastl	er Street bound			Summe West	er Street bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	0	0	0	0	0	0	0	27	0	0	0	39	0
PHF		0.	00			0.	.00			0.	.75			0.	.75	

PM PEAK HOUR	Wo	orld Trade C	Center Aver	nue	Wo	orld Trade C	Center Aver	nue		Summe	er Street			Summe	r Street	
4:00 PM		North	bound			South	bound			Eastb	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	0	27	0	0	0	20	0
PHF		0.	00			0.	00			0.	56			0.	63	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 24 Location: Seaport, Boston, MA Summer Street Street 1: Street 2: World Trade Center Avenue 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

									-									
		World T	rade Cente	r Avenue		World T	rade Cente	r Avenue			S	ummer Stre	et		S	ummer Stre	eet	
			Northbound	ł			Southbound	d				Eastbound				Westbound	ł	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	5	0	0	0	6		0	3	0	7	0	4	0	5	
7:15 AM	0	0	0	9	0	0	0	4		0	2	0	12	0	5	0	3	
7:30 AM	0	0	0	14	0	0	0	5		1	2	0	7	0	5	0	5	
7:45 AM	0	0	0	11	0	0	0	7		2	2	0	9	0	4	1	6	
8:00 AM	0	0	0	15	0	0	0	11		1	5	0	13	0	6	1	7	
8:15 AM	0	1	0	18	0	0	0	9		0	4	0	10	0	7	0	15	
8:30 AM	0	1	0	22	0	0	0	13		0	4	0	16	0	4	1	12	
8:45 AM	0	1	0	20	0	0	0	8		1	S	0	15	0	5	0	14	

		World T	rade Cente Northbound	r Avenue		World T	rade Cente Southbound	r Avenue d		S	ummer Stre Eastbound	et		S	ummer Stre Westbound	⊭et J	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	11	0	0	0	11	0	2	0	11	0	1	0	2	
4:15 PM	0	0	0	18	1	0	1	9	0	2	0	15	0	0	0	6	
4:30 PM	0	0	0	12	1	0	0	5	0	3	0	7	0	0	0	7	
4:45 PM	0	0	0	14	0	0	1	6	0	1	0	12	0	1	0	9	
5:00 PM	0	0	0	17	1	0	1	14	0	2	0	9	0	3	0	11	
5:15 PM	0	0	0	25	1	0	0	12	0	5	0	14	0	2	0	15	
5:30 PM	0	0	0	21	0	0	1	17	0	3	0	21	0	2	0	17	
5:45 PM	0	0	0	27	1	0	0	18	0	4	0	17	0	3	0	21	

AM PEAK HOUR1		World T	rade Cente	r Avenue		World T	rade Cente	r Avenue		S	ummer Stre	et		S	ummer Stre	et	
8:00 AM			Northbound	ł			Southbound	d			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	3	0	75	0	0	0	41	2	16	0	54	0	22	2	48	

PM PEAK HOUR ¹		World T	rade Center	Avenue		World T	rade Center	Avenue		S	ummer Stre	et		S	ummer Stre	et	
5:00 PM			Northbound				Southbound	1			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	90	3	0	2	61	0	14	0	61	0	10	0	64	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 25 Location: Seaport, Boston, MA Street 1: Summer Street Street 2: D Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

1.9%

0.0%

HV %

18.2%

6.8%

0.0%

TOTAL (CARS & TRUCKS)

		D S	treet			DS	treet	ſ		Śumme	er Street			Summe	r Street	
		North	bound			South	bound			East	pound			West	Jound	-
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	34	49	3	0	38	13	20	0	9	72	8	0	3	43	56
7:15 AM	0	33	39	4	0	44	18	19	0	12	90	10	0	4	56	77
7:30 AM	0	29	25	3	0	46	22	17	0	14	99	11	0	4	61	91
7:45 AM	0	30	26	4	0	47	20	19	0	19	117	12	0	5	78	97
8:00 AM	0	29	25	5	0	44	17	19	0	22	125	12	0	6	87	94
8:15 AM	0	31	26	6	0	47	15	22	0	30	123	14	0	7	90	103
8:30 AM	0	30	26	7	0	45	11	22	0	35	111	14	0	8	87	102
8:45 AM	0	32	27	7	0	47	13	23	0	37	116	15	0	8	90	107
		D S	treet			D S	treet			Summe	er Street			Summe	r Street	
		North	bound			South	bound			East	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	16	47	9	0	35	20	14	0	61	69	25	0	12	52	61
4:15 PM	0	16	50	8	0 43 19 16 0 46 18 17 0 45 20 17				0	61	77	26	0	11	57	74
4:30 PM	0	15	47	7	0	46	18	17	0	56	77	24	0	9	54	79
4:45 PM	0	15	51	7	0 46 18 17 0 45 20 17 0 40 23 16				0	55	101	25	0	7	52	71
5:00 PM	0	14	56	6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	48	115	24	0	5	43	96
5:15 PM	0	14	68	6	0	41	22	16	0	49	130	24	0	5	69	90
5:30 PM	0	12	49	5	0	38	23	15	0	46	133	22	0	4	88	98
5:45 PM	0	13	47	5	0	40	36	16	0	48	140	23	0	4	92	94
AM PEAK HOUR		D S	treet			D S	treet			Summe	er Street			Summe	r Street	
8:00 AM		North	bound			South	bound			East	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	122	104	25	0	183	56	86	0	124	475	55	0	29	354	406
PHF		0.	95			0.	97			0.	97			0.	96	
HV %	0.0%	0.8%	26.9%	28.0%	.0% 0.0% 4.4% 30.4% 3.5%					0.8%	11.6%	9.1%	0.0%	3.4%	16.9%	3.7%
PM PEAK HOUR		D S	treet		D Street					Summe	er Street			Summe	r Street	
5:00 PM		North	bound		Southbound					East	bound			West	bound	
to	U-Turn	Left	Thru	Right	light U-Turn Left Thru Right					Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0 PM 0 53 220 22 0					159	104	63	0	191	518	93	0	18	292	378
PHF		0.	84			0.	89			0.	95			0.	91	

11.5%

1.9%

0.0%

0.0%

1.0%

6.6%

1.1%

11.1%

12.0%

2.6%

0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 25 Location: Seaport, Boston, MA Street 1: Summer Street Street 2: D Street Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

								TRU	CKS							
		D S	treet			D S	treet			Summe	er Street			Summe	er Street	
		North	bound			South	bound			Eastb	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	5	3	0	0	3	0	0	0	5	1	0	0	8	3
7:15 AM	0	0	8	3	0	3	7	0	0	1	9	3	0	1	13	3
7:30 AM	0	1	8	5	0	1	7	3	0	1	9	3	0	1	9	3
7:45 AM	0	0	7	1	0	0	5	1	0	0	7	0	0	1	8	4
8:00 AM	0	0	4	2	0	1	3	1	0	1	10	1	0	0	10	7
8:15 AM	0	1	5	1	0	0	4	1	0	0	16	1	0	0	17	1
8:30 AM	0	0	9	3	0	3	5	0	0	0	9	0	0	0	12	4
8:45 AM	0	0	10	1	0	4	5	1	0	0	20	3	0	1	21	3
		D S	treet			D S	treet			Summe	er Street			Summe	er Street	
		North	bound			South	bound			Eastb	pound	-		West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	1	4	0	0	0	3	0	0	0	5	1	0	1	7	1
4:15 PM	0	0	5	0	0	1	4	1	0	0	9	0	0	0	9	3
4:30 PM	0	0	7	1	0	3	5	0	0	1	7	0	0	0	10	4
4:45 PM	0	0	4	1	0	1	4	1	0	1	3	0	0	1	3	1
5:00 PM	0	1	9	0	0	0	5	0	0	0	9	0	0	0	12	5
5:15 PM	0	0	1	1	0	1	3	0	0	0	7	1	0	0	7	1
5:30 PM	0	0	4	3	0	1	3	0	0	1	10	0	0	1	7	4
5:45 PM	0	0	1	0	0	1	1	0	0	1	8	0	0	1	9	0
	-															
AM PEAK HOUR		D S	treet			D S	treet			Summe	er Street			Summe	er Street	
8:00 AM		North	bound	•		South	bound	•		Eastb	pound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	1	28	7	0	8	17	3	0	1	55	5	0	1	60	15
PHF		0.	75			0.	70			0.	66			0.	76	

PM PEAK HOUR		D St	treet			D St	reet			Summe	r Street			Summe	r Street	
4:15 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:15 PM	0	1	25	2	0	5	18	2	0	2	28	0	0	1	34	13
PHF		0.	70			0.	78			0.	83			0.	71	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 25 Location: Seaport, Boston, MA Street 1: Summer Street Street 2: D Street 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			D Street Northbound	ł			D Street Southbound	d		S	ummer Stre Eastbound	et		S	ummer Stre Westbound	et I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	2	0	4	0	0	0	4	0	0	0	6	0	2	1	5	
7:15 AM	0	3	0	6	0	0	0	7	0	1	0	4	0	2	3	2	
7:30 AM	0	4	1	7	0	0	1	8	0	2	0	6	0	1	5	4	
7:45 AM	1	5	2	7	0	0	0	8	0	0	0	7	0	4	3	5	
8:00 AM	1	8	0	5	0	1	0	9	0	1	1	5	0	3	2	7	
8:15 AM	0	5	0	3	0	0	0	9	0	3	0	2	0	5	2	8	
8:30 AM	1	9	1	9	0	0	0	8	0	2	1	7	0	3	4	10	
8:45 AM	0	10	0	14	0	1	1	7	0	3	2	11	0	4	2	12	

			D Street Northbound	i			D Street Southbound	ł		S	ummer Stre Eastbound	et		S	ummer Stre Westbound	eet I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	6	0	0	0	5	0	1	0	7	0	2	0	6	
4:15 PM	0	0	0	3	0	0	0	9	0	2	0	2	0	3	0	8	
4:30 PM	0	2	0	9	0	1	1	8	0	1	0	7	0	1	0	10	
4:45 PM	0	1	0	14	0	0	0	7	0	3	0	11	0	3	0	12	
5:00 PM	0	0	0	13	0	2	0	9	0	2	0	13	0	4	0	10	
5:15 PM	0	1	0	12	0	4	1	10	0	3	0	15	0	3	0	8	
5:30 PM	0	1	0	14	0	1	0	8	0	3	0	9	0	5	0	10	
5:45 PM	0	0	0	15	0	2	0	10	0	4	0	14	0	4	0	12	

AM PEAK HOUR1			D Street				D Street			Su	ummer Stre	et		Su	ummer Stre	et	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound		
to	Left	Thru	Right	PED													
9:00 AM	2	32	1	31	0	2	1	33	0	9	4	25	0	15	10	37	

PM PEAK HOUR ¹			D Street				D Street			S	ummer Stre	et		Su	ummer Stre	et	
5:00 PM			Northbound			:	Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED													
6:00 PM	0	2	0	54	0	9	1	37	0	12	0	51	0	16	0	40	

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 26 Seaport, Boston, MA Location: Street 1: D Street Street 2: I-90 On-ramps Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TOTAL (CARS & TRUCKS)

		D S	treet			D St	reet	•		Í-90 Or	n-ramps					
<u>.</u>		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	38	76	0	0	0	71	27	0	0	0	0	0	0	0	0
7:15 AM	0	39	89	0	0	0	81	26	0	0	0	0	0	0	0	0
7:30 AM	0	37	93	0	0	0	85	22	0	0	0	0	0	0	0	0
7:45 AM	0	45	97	0	0	0	86	30	0	0	0	0	0	0	0	0
8:00 AM	0	48	93	0	0	0	80	36	0	0	0	0	0	0	0	0
8:15 AM	0	51	108	0	0	0	84	34	0	0	0	0	0	0	0	0
8:30 AM	0	50	113	0	0	0	78	29	0	0	0	0	0	0	0	0
8:45 AM	0	53	118	0	0	0	83	30	0	0	0	0	0	0	0	0

		D S	treet			D St	treet			I-90 Or	n-ramps					
		North	bound			South	bound			East	oound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	77	92	0	0	0	69	68	0	0	0	0	0	0	0	0
4:15 PM	0	77	108	0	0	0	78	77	0	0	0	0	0	0	0	0
4:30 PM	0	69	94	0	0	0	81	78	0	0	0	0	0	0	0	0
4:45 PM	0	85	101	0	0	0	82	81	0	0	0	0	0	0	0	0
5:00 PM	0	93	113	0	0	0	79	77	0	0	0	0	0	0	0	0
5:15 PM	0	93	103	0	0	0	79	85	0	0	0	0	0	0	0	0
5:30 PM	0	85	113	0	0	0	76	84	0	0	0	0	0	0	0	0
5:45 PM	0	89	100	0	0	0	92	74	0	0	0	0	0	0	0	0

AM PEAK HOUR		D St	reet			D St	reet			I-90 On	-ramps					
8:00 AM		North	bound			South	oound			Eastb	ound			Westb	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
0.00 AM	0	0 202 432 0					205	400	•	0	•	0	•		•	•
9.00 AM	U	202	43Z	U 1	U	U	325	129	0	U	0	U	0	0	0	0
9.00 AM PHF	0	202	432 93	0	0	0.9	325 96	129	U	0.	00	U	0	0.0	00	0

PM PEAK HOUR		D S	treet			D St	reet			I-90 Or	n-ramps					
5:00 PM		North	bound			South	bound			Eastb	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	360	429	0	0	0	326	320	0	0	0	0	0	0	0	0
PHF		0.	96			0.9	97			0.	00			0.	00	
HV %	0.0%	0.96 0.0% 0.0% 1.2% 0.0%				0.0%	3.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010 HSH Seaport Boston BTD #: Location 26 Location: Seaport, Boston, MA Street 1: D Street Street 2: I-90 On-ramps 11/1/2016 Count Date: Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TRUCKS D Street D Street I-90 On-ramps Southbound Westbound Northbound Eastbound Start Time U-Turn Left Thru Right U-Turn Left Thru Right U-Turn Left Thru Right U-Turn Left Thru Right 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM D Street D Street I-90 On-ramps Northbound Southbound Eastbound Westbound U-Turn Start Time U-Turn Left Thru Right U-Turn Left Thru Right Left Thru Right U-Turn Left Thru Right 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM AM PEAK HOUR D Street D Street I-90 On-ramps

7:15 AM		North	bound			South	bound			Eastb	ound		Westbound					
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right		
8:15 AM	0	11	31	0	0	0	32	9	0	0	0	0	0	0	0	0		
PHF		0.	88	-		0.	79	•		0.	00		0.00					

PM PEAK HOUR		DS	treet			D S	treet			I-90 Or	n-ramps							
4:00 PM		North	bound			South	bound			Eastb	bound		Westbound					
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right		
5:00 PM	0 2 14 0			0 0 21 1				0	0	0	0	0	0	0	0			
PHF		0.	80			0.	69			0.	00		0.00					

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 26 Location: Seaport, Boston, MA Street 1: D Street Street 2: I-90 On-ramps 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			D Street				D Street			I-	90 On-ramp	os								
			Northbound	1			Southbound	d			Eastbound				Westbound					
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED			
7:00 AM	0	4	0	0	0	0	0	0	0	0	0	9		0	0	0	0			
7:15 AM	0	6	0	0	0	0	0	0	0	0	0	7		0	0	0	0			
7:30 AM	0	7	0	0	0	0	0	0	0	0	0	14		0	0	0	0			
7:45 AM	0	8	0	0	0	0	0	0	0	0	0	8		0	0	0	0			
8:00 AM	0	9	0	0	0	1	0	0	0	0	0	11		0	0	0	0			
8:15 AM	0	7	0	0	0	0	0	0	0	0	0	13		0	0	0	0			
8:30 AM	0	11	0	0	0	1	0	0	0	0	0	15		0	0	0	0			
8:45 AM	0	12	0	0	0	2	0	0	0	0	0	23		0	0	0	0			

	D Street							D Street			I-	90 On-ram	S						
			Northbound	ł				Southbound	b			Eastbound			Westbound				
Start Time	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	
4:00 PM	0	0	0	0		0	0	0	0	0	0	0	4		0	0	0	0	
4:15 PM	0	0	0	0		0	0	0	0	0	0	0	7		0	0	0	0	
4:30 PM	0	1	0	0		0	0	0	0	0	0	0	14		0	0	0	0	
4:45 PM	0	1	0	0		0	0	0	0	0	0	0	11		0	0	0	0	
5:00 PM	0	0	0	0		0	3	0	0	0	0	0	15		0	0	0	0	
5:15 PM	0	1	0	0		0	5	0	0	0	0	0	18		0	0	0	0	
5:30 PM	0	2	0	0		0	5	0	0	0	0	0	12		0	0	0	0	
5:45 PM	0	0	0	0		0	2	0	0	0	0	0	4		0	0	0	0	

AM PEAK HOUR ¹			D Street				D Street				I-9	90 On-ramp	S								
8:00 AM			Northbound		Southbound							Eastbound			Westbound						
to	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED		Left	Thru	Right	PED			
9:00 AM	0	39	0	0	0	4	0	0		0	0	0	62		0	0	0	0			

PM PEAK HOUR ¹	D Street							D Street				1-1	90 On-ramp	S									
5:00 PM			Northbound			Southbound						Eastbound						Westbound					
to	Left	Thru	Right	PED		Left	Thru	Right	PED		Left	Thru	Right	PED		Left	Thru	Right	PED				
6:00 PM	0	3	0	0		0	15	0	0		0	0	0	49		0	0	0	0				
Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 27 Seaport, Boston, MA Location: Street 1: D Street Street 2: Silver Line Way Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TOTAL (CARS & TRUCKS)

		D S	treet			D S	treet	1-		Silver L	ine Way			Silver L	ine Way	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	76	0	0	0	98	0	0	0	7	0	0	0	9	0
7:15 AM	0	0	89	0	0	0	107	0	0	0	8	0	0	0	9	0
7:30 AM	0	0	93	0	0	0	107	0	0	0	8	0	0	0	8	0
7:45 AM	0	0	97	0	0	0	116	0	0	0	9	0	0	0	9	0
8:00 AM	0	0	93	0	0	0	116	0	0	0	10	0	0	0	9	0
8:15 AM	0	0	108	0	0	0	118	0	0	0	11	0	0	0	8	0
8:30 AM	0	0	113	0	0	0	107	0	0	0	10	0	0	0	8	0
8:45 AM	0	0	118	0	0	0	113	0	0	0	11	0	0	0	7	0
		D S	treet			D S	treet			Silver L	ine Way			Silver L	ine Way	
	-	North	bound			South	bound			Eastb	ound		_	West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	92	0	0	0	137	0	0	0	5	0	0	0	4	0
4:15 PM	0	0	108	0	0	0	145	0	0	0	6	0	0	0	6	0
4:30 PM	0	0	113	0	0	0	151	0	0	0	7	0	0	0	8	0
4:45 PM	0	0	101	0	0	0	149	0	0	0	8	0	0	0	8	0
5:00 PM	0	0	113	0	0	0	158	0	0	0	7	0	0	2	7	1
5:15 PM	0	0	103	0	0	0	164	0	0	0	8	0	0	0	7	0
5:30 PM	0	0	113	0	0	0	163	0	0	0	7	0	0	2	6	0
5:45 PM	0	0	100	0	0	0	157	0	0	0	7	0	0	0	6	0
	1															
AM PEAK HOUR		D S	treet			DS	treet			Silver L	ine Way			Silver L	ine Way	
8:00 AM		North	bound			South	bound	_		Eastb	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right
9:00 AM	0	0	432	0	0	0	454	0	0	0	42	0	0	0	32	0
PHF		0.	92			0.	.96	/		0.	95			0.	.89	
HV %	0.0%	0.0%	7.2%	0.0%	0.0%	0.0%	8.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	1					D 0				01				0.1		
PM PEAK HOUR		DS	treet			DS	treet			Silver L	ine way			SilverL	ine way	
5:00 PM	LI Turn	INORT	oouna Thru	Diabt		South		Diaht	LI Turo	East	Thru	Diabt	LI Turn	VVest		Dight
to	0-1011		1110								20		0-1011		26	Right
	U	۰ ۱	423	U	U		98	U	^ ^	2 3 01	v	U	4	78		
1 111 [.] HV 0/	0.0%	0.0%	1 2%	0.0%	0.0%	0.0%	1 0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
FI V 70	0.0 /0	0.0 /0	1.2/0	0.0 /0	0.0 /0	0.070	1.3 /0	0.070	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location 27 Location: Seaport, Boston, MA Street 1: D Street Street 2: Silver Line Way Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

								TRU	CKS							
		D S North	treet bound			D S South	treet Ibound			Silver L Eastl	ine Way bound			Silver L West	ine Way bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	7	0	0	0	7	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	9	0	0	0	13	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	5	0	0	0	8	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	8	0	0	0	9	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	9	0	0	0	10	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	4	0	0	0	8	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	8	0	0	0	7	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	10	0	0	0	13	0	0	0	0	0	0	0	0	0
		D S North	treet bound			D S South	treet bound			Silver L Eastl	ine Way bound			Silver L West	ine Way bound	_
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	4	0	0	0	5	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	5	0	0	0	8	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	4	0	0	0	7	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	3	0	0	0	5	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 7:15 AM	<u> </u>	D S North	treet bound	1		D S South	treet bound		1	Silver L Eastl	ine Way bound	1		Silver L West	ine Way bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0	31	0	0	0	40	0	0	0	0	0	0	0	0	0
PHF		0.	86			0.	.77			0.	.00			0.	00	
PM PFAK HOUR	1	٦S	troot			פח	troot			Silver I	ine Way			Silver I	ine Way	

PM PEAK HOUR		D St	treet			D St	reet			Silver Li	ine Way			Silver Li	ine Way	
4:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	14	0	0	0	23	0	0	0	0	0	0	0	0	0
PHF	•	0.	70			0.	72			0.	00			0.	00	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location 27 Location: Seaport, Boston, MA Street 1: D Street Street 2: Silver Line Way 11/1/2016 Count Date: Day of Week: Tuesday Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			D Street Northbound	I			D Street Southbound	d		Si	lver Line W Eastbound	ay		Si	lver Line W Westbound	ay I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	5	0	0	0	1	0	0	0	0	0	6	0	0	0	9	
7:15 AM	0	6	0	0	0	0	0	0	0	0	0	8	0	0	0	12	
7:30 AM	0	7	0	0	0	0	0	0	0	0	0	14	0	0	0	16	
7:45 AM	0	8	0	0	0	0	0	0	0	0	0	10	0	0	0	14	
8:00 AM	0	10	0	0	0	2	0	0	0	0	0	17	0	0	0	18	
8:15 AM	0	7	0	0	0	0	0	0	0	0	0	14	0	0	0	22	
8:30 AM	0	10	0	0	0	1	0	0	0	0	0	22	0	0	0	25	
8.42 AM	0	12	0	0	0	2	0	0	0	0	0	25	0	0	0	20	

			D Street Northbound	l			D Street Southbound	ł		Si	lver Line W Eastbound	ay		Si	lver Line W Westbound	ay I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	1	0	0	0	0	0	0	0	0	0	6	0	0	0	7	
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	8	
4:30 PM	0	1	0	0	0	1	0	0	0	0	0	10	0	0	0	14	
4:45 PM	0	1	0	0	0	0	0	0	0	0	0	12	0	0	0	11	
5:00 PM	0	1	0	0	0	3	0	0	0	0	0	16	0	0	0	17	
5:15 PM	0	1	0	0	0	4	0	0	0	0	0	21	0	0	0	19	
5:30 PM	0	2	0	0	0	5	0	0	0	0	0	24	0	0	0	22	
5:45 PM	0	0	0	0	0	2	0	0	0	0	0	6	0	0	0	9	

AM PEAK HOUR1			D Street				D Street			Si	lver Line W	ay		Si	lver Line W	ay	
8:00 AM			Northbound				Southbound	ł			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	39	0	0	0	5	0	0	0	0	0	78	0	0	0	85	

PM PEAK HOUR ¹			D Street				D Street			Si	ver Line W	ау		Si	lver Line W	ay	
5:00 PM			Northbound			:	Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	4	0	0	0	14	0	0	0	0	0	67	0	0	0	67	

¹ Peak hours corresponds to vehicular peak hours.

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location A Location: Seaport, Boston, MA Street 1: Boston Wharf Road Driveway (for Parking Lot) Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Partly Cloudy, 55° F Weather:

TOTAL (CARS & TRUCKS)

		Boston W	harf Road			Boston W	harf Road			Fast	ound		Dr	riveway (for	Parking Lo	ot)
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Lasu	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	31	4	0	7	25	0	0	0	0	0	0	1	0	1
7:15 AM	0	0	34	10	0	8	28	0	0	0	0	0	0	1	0	1
7:30 AM	0	0	33	15	0	7	28	0	0	0	0	0	0	2	0	0
7:45 AM	0	0	47	13	0	8	27	0	0	0	0	0	0	2	0	0
8:00 AM	0	0	56	10	0	8	25	0	0	0	0	0	0	1	0	0
8:15 AM	0	0	57	12	0	7	28	0	0	0	0	0	0	3	0	1
8:30 AM	0	0	54	12	0	5	32	0	0	0	0	0	0	2	0	1
8:45 AM	0	0	56	13	0	5	34	0	0	0	0	0	0	2	0	0
		Boston W North	harf Road			Boston W South	harf Road bound			East	pound		Dı	riveway (fo Westl	Parking Lo	ot)
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	23	1	0	1	46	0	0	0	0	0	0	12	0	10
4:15 PM	0	0	23	1	0	0	55	0	0	0	0	0	0	13	0	10
4:30 PM	0	0	25	0	0	1	60	0	0	0	0	0	0	13	0	9
4:45 PM	0	0	27	0	0	0	68	0	0	0	0	0	0	17	0	12
5:00 PM	0	0	29	0	0	1	69	0	0	0	0	0	0	19	0	14
5:15 PM	0	0	25	1	0	2	74	0	0	0	0	0	0	23	0	12
5:30 PM	0	0	20	0	0	1	73	0	0	0	0	0	0	24	0	8
5:45 PM	0	0	21	0	0	1	78	0	0	0	0	0	0	25	0	8
AM PEAK HOUR 8:00 AM		Boston W North	harf Road		· · · -	Boston W South	harf Road bound			East	ound		Di	riveway (for West	Parking Lo	ot)
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	223	47	0	25	119	0	0	0	0	0	0	8	0	2
PHF		0.	98			0.	92			0.	00			0.	63	
HV %	0.0%	0.0%	5.8%	0.0%	0.0%	0.0%	10.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
PM PEAK HOUR 5:00 PM		Boston W North	harf Road			Boston W South	harf Road bound			East	pound		Dı	riveway (fo Westl	Parking Lo	ot)

5.001 M		NOTUL	bound			South	bound			Lasu	Jouriu			VV CSIL	Jouriu	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	95	1	0	5	294	0	0	0	0	0	0	91	0	42
PHF		0.	83			0.9	95			0.	00			0.9	95	
HV %	0.0%	0.0%	1.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location A Location: Seaport, Boston, MA Street 1: Boston Wharf Road Street 2: Driveway (for Parking Lot) Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		Boston W North	harf Road bound			Boston W South	harf Road bound			East	ound		Dr	iveway (for Westl	· Parking Lo	ot)
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	5	0	0	0	3	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	5	0	0	0	5	0	0	0	0	0	0	0	0	0
		Boston W North	harf Road			Boston W South	harf Road			East	ound		Dr	iveway (for West	Parking Lo	ot)
Start Time	U-Turn	Left	Ihru	Right	U-Turn	Left	Ihru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PIVI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.40 FIVI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR 8:00 AM		Boston W North	harf Road bound			Boston W South	harf Road bound			East	ound		Dr	iveway (for Westl	· Parking Lo	ot)
to	U-Turn Left Thru Right U-Turn Left Thru Right									Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	13	Ő	0	0	12	Ő	0	0	0	Ő	0	0	0	Ő
PHF		0.	65			0.	60			0.	00		•	0.	00	

PM PEAK HOUR		Boston W	harf Road			Boston W	harf Road						Dr	iveway (for	r Parking Lo	ot)
4:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0
PHF		0.	50			0.	50			0.	00			0.	00	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location A Location: Seaport, Boston, MA Boston Wharf Road Street 1: Street 2: Driveway (for Parking Lot) 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

BOSTON TRAFFIC DATA PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259 DataRequest@BostonTrafficData.com

PEDESTRIANS & BICYCLES

		Bos	ton Wharf F	Road		Bos	ton Wharf F	Road						Drivewa	ay (for Park	ing Lot)	
			Northbound	l			Southbound	b			Eastbound				Westbound	l	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7	
7:15 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	10	
7:30 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	5	
7:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	11	
8:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	
8:30 AM	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	6	
8:45 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	12	

		Bos	ton Wharf F	Road		Bos	ton Wharf F	Road						Drivewa	ay (for Park	ing Lot)	
			Northbound				Southbound	t l			Eastbound				Westbound		
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	
4:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	9	
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	
5:00 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	7	
5:15 PM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	13	
5:30 PM	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	11	
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	

AM PEAK HOUR ¹		Bost	ton Wharf F	load		Bos	ton Wharf F	Road						Drivewa	ay (for Park	ing Lot)	
8:00 AM			Northbound				Southbound	b			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	4	0	0	0	2	0	0	0	0	0	0	0	0	0	37	

PM PEAK HOUR ¹		Bost	ton Wharf R	load		Bos	ton Wharf F	Road						Drivewa	ay (for Park	ing Lot)	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	l	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	5	0	0	0	2	0	0	0	0	0	0	0	0	0	44	

¹ Peak hours corresponds to vehicular peak hours.

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location B Seaport, Boston, MA Location: Street 1: Congress Street Driveway (for Parking Lot) Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Partly Cloudy, 55° F Weather:

TOTAL (CARS & TRUCKS)

		Parkir	ng Lot					-		Northern	Avenue			Northern	n Avenue	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	46	8	0	0	99	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	61	7	0	0	121	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	67	8	0	0	132	0
7:45 AM	0	0	0	1	0	0	0	0	0	0	67	9	0	0	148	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	60	9	0	0	150	0
8:15 AM	0	0	0	1	0	0	0	0	0	0	73	8	0	0	182	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	77	7	0	0	198	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	82	7	0	0	209	0

		Parki	ng Lot							Northern	Avenue			Northern	Avenue	
		North	bound			South	bound			Eastb	ound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	9	0	0	0	0	0	0	76	0	0	0	71	0
4:15 PM	0	0	0	9	0	0	0	0	0	0	84	0	0	0	84	0
4:30 PM	0	0	0	9	0	0	0	0	0	0	84	0	0	0	90	0
4:45 PM	0	0	0	12	0	0	0	0	0	0	98	1	0	0	113	0
5:00 PM	0	0	0	14	0	0	0	0	0	0	103	2	0	0	125	0
5:15 PM	0	0	0	14	0	0	0	0	0	0	112	1	0	0	122	0
5:30 PM	0	0	0	12	0	0	0	0	0	0	110	0	0	0	106	0
5:45 PM	0	0	0	13	0	0	0	0	0	0	115	0	0	0	112	0

AM PEAK HOUR		Parki	ng Lot							Northern	Avenue			Northerr	n Avenue	
8:00 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	1	0	0	0	0	0	0	292	31	0	0	739	0
PHF		0.	25			0.	00			0.9	91			0.	88	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.1%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR		Parki	ng Lot							Northern	Avenue			Northern	Avenue	
5:00 PM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	53	0	0	0	0	0	0	440	3	0	0	465	0
PHF		0.	95			0.	00			0.9	96			0.	93	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.6%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location B Location: Seaport, Boston, MA Street 1: Congress Street Street 2: Driveway (for Parking Lot) Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		Parki North	ng Lot bound			South	bound			Northerr Eastt	n Avenue bound			Northern West	Avenue	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Parkii North	ng Lot bound			South	bound			Northerr Eastt	Avenue pound			Northern Westl	Avenue bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
AM PEAK HOUR	ו	Parki	ng Lot							Northerr	Avenue			Northern	Avenue	
7:15 AM		North	bound			South	bound			East	bound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:15 AM	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0
PHF	0.00 0.00									0.	75			0.	00	
									•							

PM PEAK HOUR		Parki	ng Lot							Northern	n Avenue			Northern	Avenue	
4:00 PM		North	bound			South	bound			Eastb	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0
PHF		0.	00			0.	00			0.	50			0.	00	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location B Location: Seaport, Boston, MA Congress Street Street 1: Street 2: Driveway (for Parking Lot) 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

			Parking Lot	t						No	rthern Aver	nue		No	rthern Aver	nue	
			Northbound	ł			Southbound	b			Eastbound				Westbound	ł	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	
7:15 AM	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	
7:30 AM	0	0	0	11	0	0	0	0	0	1	0	0	0	0	0	0	
7:45 AM	0	0	0	9	0	0	0	0	0	1	0	0	0	0	0	0	
8:00 AM	0	0	0	14	0	0	0	0	0	2	0	0	0	0	0	0	
8:15 AM	0	0	0	12	0	0	0	0	0	1	0	0	0	0	0	0	
8:30 AM	0	0	0	15	0	0	0	0	0	1	0	0	0	0	0	0	
8.45 AM	0	0	0	5	0	0	0	0	0	2	0	0	0	0	0	0	

			Parking Lot				Southbound	4		No	orthern Aver	nue		No	orthern Aver	nue	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	3	0	0	0	0	0	1	0	0	0	0	0	0	
4:15 PM	0	0	0	5	0	0	0	0	0	3	0	0	0	0	0	0	
4:30 PM	0	0	0	9	0	0	0	0	0	2	0	0	0	0	0	0	
4:45 PM	0	0	0	7	0	0	0	0	0	2	0	0	0	0	0	0	
5:00 PM	0	0	0	19	0	0	0	0	0	4	0	0	0	0	0	0	
5:15 PM	0	0	0	21	0	0	0	0	0	1	0	0	0	0	0	0	
5:30 PM	0	0	0	16	0	0	0	0	0	3	0	0	0	0	0	0	
5:45 PM	0	0	0	11	0	0	0	0	0	2	0	0	0	0	0	0	

AM PEAK HOUR ¹			Parking Lot							No	rthern Aver	ue		No	rthern Aver	iue	
8:00 AM			Northbound			:	Southbound	b			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	46	0	0	0	0	0	6	0	0	0	0	0	0	1

PM PEAK HOUR ¹			Parking Lot							No	rthern Aver	nue		No	orthern Aver	nue	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	67	0	0	0	0	0	10	0	0	0	0	0	0	

¹ Peak hours corresponds to vehicular peak hours.

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location C Seaport, Boston, MA Location: Street 1: East Service Rd Driveway (for Parking Lot) Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

Office: 978-746-1259 DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TOTAL (CARS & TRUCKS)

		East Serv	vice Road					•	Di	riveway (fo	r Parking Lo	ot)	Di	riveway (for	r Parking Lo	ot)
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	11	58	5	0	0	0	0	0	0	1	0	0	0	0	0
7:15 AM	0	12	60	8	0	0	0	0	0	0	1	0	0	0	0	0
7:30 AM	0	12	58	10	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	15	70	11	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	17	94	11	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	19	92	12	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	19	107	11	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	20	95	12	0	0	0	0	0	0	0	0	0	0	0	0

		East Serv	/ice Road						Di	riveway (fo	r Parking Lo	ot)	D	riveway (for	Parking Lo	ot)
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	50	3	0	0	0	0	0	1	0	0	0	0	0	1
4:15 PM	0	0	54	4	0	0	0	0	0	0	0	0	0	0	0	2
4:30 PM	0	0	53	4	0	0	0	0	0	1	0	0	0	0	0	3
4:45 PM	0	1	49	6	0	0	0	0	0	1	0	0	0	0	0	5
5:00 PM	0	1	55	7	0	0	0	0	0	0	0	0	0	0	0	6
5:15 PM	0	0	54	8	0	0	0	0	0	1	0	0	0	0	0	6
5:30 PM	0	1	55	8	0	0	0	0	0	1	0	0	0	0	0	5
5:45 PM	0	1	52	7	0	0	0	0	0	0	0	0	0	0	0	5

AM PEAK HOUR		East Serv	ice Road						D	riveway (fo	r Parking Lo	ot)	D	riveway (for	Parking Lo	t)
8:00 AM		North	bound			South	bound			East	oound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	75	388	46	0	0	0	0	0	0	0	0	0	0	0	0
PHF		0.	93			0.	00			0.	.00			0.	00	
HV %	0.0%	0.0%	3.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

PM PEAK HOUR		East Serv	vice Road						Di	riveway (fo	r Parking Lo	ot)	Dr	iveway (for	Parking Lo	t)
5:00 PM		North	oound			South	bound			East	oound			West	ound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	3	216	30	0	0	0	0	0	2	0	0	0	0	0	22
PHF		0.9	97			0.	00			0.	50			0.9	92	
HV %	0.0%	0.0%	1.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location C Location: Seaport, Boston, MA Street 1: East Service Rd Street 2: Driveway (for Parking Lot) Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

TRUCKS

		East Serv	ice Road						Di	riveway (fo	r Parking Lo	ot)	Dr	iveway (for	r Parking Lo	ot)
		North	bound			South	bound			East	pound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0
		East Serv	/ice Road						Di	riveway (fo	r Parking Lo	ot)	Dr	iveway (foi	r Parking Lo	ot)
		North	bound			South	bound			East	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM PEAK HOUR		East Serv	ice Road						Di	riveway (fo	r Parking Lo	ot)	Dr	iveway (for	r Parking Lo	ot)
8:00 AM		North	bound			South	bound			East	bound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0
PHF		0.	43			0.	00			0.	.00			0.	00	-

PM PEAK HOUR		East Serv	vice Road						Di	riveway (fo	r Parking Lo	ot)	Dr	iveway (fo	r Parking Lo	ot)
4:30 PM		North	bound			South	bound			East	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:30 PM	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
PHF		0.	42			0.	00			0.	00			0.	00	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location C Location: Seaport, Boston, MA East Service Rd Street 1: Street 2: Driveway (for Parking Lot) 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

									-									
		Eas	st Service R	load							Drivew	ay (for Park	ing Lot)		Drivewa	ay (for Park	ing Lot)	
			Northbound	ł			Southbound	d				Eastbound				Westbound	l	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED		Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	0	0	0	0	3		0	0	0	0	0	0	0	2	
7:15 AM	0	0	0	0	0	0	0	2		0	0	0	0	0	0	0	1	
7:30 AM	0	0	0	0	0	0	0	4		0	0	0	0	0	0	0	4	
7:45 AM	0	0	0	0	0	0	0	7		0	0	0	0	0	0	0	1	
8:00 AM	0	0	0	0	0	0	0	8		0	0	0	0	0	0	0	2	
8:15 AM	0	0	0	0	0	0	0	6		0	0	0	0	0	0	0	2	
8:30 AM	0	0	0	0	0	0	0	5		0	0	0	0	0	0	0	1	
8:45 AM	0	0	0	0	0	0	0	6		0	0	0	0	0	0	0	0	

		Eas	st Service R Northbound	toad			Southbound	đ		Drivew	ay (for Park Eastbound	ing Lot)		Drivewa	ay (for Park Westbound	ing Lot) I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	0	0	0	0	9	0	0	0	1	0	0	0	2	
4:15 PM	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	3	
4:30 PM	0	0	0	0	0	0	0	15	0	0	0	1	0	0	0	1	
4:45 PM	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0	2	
5:00 PM	0	0	0	0	0	0	0	17	0	0	0	0	0	0	0	3	
5:15 PM	0	0	0	0	0	0	0	14	0	0	0	1	0	0	0	1	
5:30 PM	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	5	
5:45 PM	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	6	

AM PEAK HOUR ¹		Eas	st Service R	load						Drivewa	ay (for Park	ing Lot)		Drivewa	ay (for Park	ing Lot)	
8:00 AM			Northbound	ł			Southbound	b			Eastbound				Westbound	ł	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	0	0	0	0	25	0	0	0	0	0	0	0	5	

PM PEAK HOUR ¹		Eas	t Service R	oad			0			Drivewa	ay (for Park	ing Lot)		Drivewa	ay (for Park	ing Lot)	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound	I	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	0	0	0	0	52	0	0	0	1	0	0	0	15	

¹ Peak hours corresponds to vehicular peak hours.

Client: Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston BTD #: Location D Seaport, Boston, MA Location: Street 1: Seaport Boulevard Driveway (for Parking Lot) Street 2: Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

TOTAL (CARS & TRUCKS)

	Dr	iveway (for Northl	Parking Lo	ot)		South	bound	•		Seaport E Eastb	Boulevard Jound			Seaport I West	Boulevard bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
7:00 AM	0	0	0	0	0	0	0	0	0	0	114	5	0	0	55	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	119	5	0	0	79	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	118	4	0	0	95	0
7:45 AM	0	0	0	1	0	0	0	0	0	0	120	6	0	0	91	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	115	8	0	0	110	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	138	6	0	0	104	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	148	5	0	0	103	0
8:45 AM	0	0	0	1	0	0	0	0	0	0	145	5	0	0	122	0

	Di	riveway (for	Parking Lo	ot)						Seaport E	Boulevard			Seaport I	Boulevard	
		North	bound			South	bound			Eastb	bound			West	bound	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	7	0	0	0	0	0	0	155	7	0	0	80	0
4:15 PM	0	0	0	5	0	0	0	0	0	0	171	6	0	0	103	0
4:30 PM	0	0	0	3	0	0	0	0	0	0	172	5	0	0	115	0
4:45 PM	0	0	0	7	0	0	0	0	0	0	194	9	0	0	144	0
5:00 PM	0	0	0	10	0	0	0	0	0	0	197	12	0	0	161	0
5:15 PM	0	0	0	12	0	0	0	0	0	0	194	15	0	0	166	0
5:30 PM	0	0	0	12	0	0	0	0	0	0	173	16	0	0	155	0
5.45 PM	0	0	0	13	0	0	0	0	0	0	185	14	0	0	163	0

AM PEAK HOUR	Di	riveway (for	Parking Lo	ot)						Seaport E	Boulevard			Seaport E	Boulevard	
8:00 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
9:00 AM	0	0	0	1	0	0	0	0	0	0	546	24	0	0	439	0
PHF		0.	25			0.0	00			0.9	93			0.	90	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.3%	0.0%	0.0%	0.0%	8.9%	0.0%

PM PEAK HOUR	D	riveway (for	Parking Lo	ot)						Seaport B	oulevard			Seaport E	Boulevard	
5:00 PM		North	oound			South	bound			Eastb	ound			West	oound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
6:00 PM	0	0	0	47	0	0	0	0	0	0	749	57	0	0	645	0
PHF		0.9	90			0.	00			0.9	96			0.	97	
HV %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.1%	0.0%	0.0%	0.0%	1.7%	0.0%

Mr. Andrew Fabiszewski Project #: 0010_HSH_Seaport_Boston Location D Location: Seaport, Boston, MA Street 1: Seaport Boulevard Street 2: Driveway (for Parking Lot) Count Date: 11/1/2016 Day of Week: Tuesday Weather: Partly Cloudy, 55° F

U-Turn

Client:

BTD #:

Start Time

7:00 AM

7:15 AM

7:30 AM

7:45 AM

8:00 AM

8:15 AM

8:30 AM

8:45 AM

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Thru

Right

Driveway (for Parking Lot) Seaport Boulevard Seaport Boulevard Northbound Southbound . Eastbound . Westbound U-Turn Left Thru Right U-Turn Left Thru Right Left Thru Right U-Turn Left Driveway (for Parking Lot) Seaport Boulevard Seaport Boulevard Northbound Southbound . Fastbound . Westbound

TRUCKS

		1101111	bound			Oouin	bound			Laon	Journa			**000	oouna	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
4:00 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	5	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	3	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0

AM PEAK HOUR	Dr	iveway (fo	r Parking Lo	ot)						Seaport E	Boulevard			Seaport I	Boulevard	
7:00 AM		North	bound			South	bound			Eastb	ound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
8:00 AM	0	0	0	0	0	0	0	0	0	0	75	0	0	0	52	0
PHF		0.	00			0.	00			0.	89	•		0.	93	

PM PEAK HOUR	Dr	riveway (fo	r Parking Lo	ot)						Seaport I	Boulevard			Seaport E	3oulevard	
4:00 PM		North	bound			South	bound			East	oound			West	bound	
to	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	0	0	0	15	0	0	0	12	0
PHF		0.	00			0.	00			0.	94			0.	75	

Client: Mr. Andrew Fabiszewski 0010_HSH_Seaport_Boston Project #: BTD #: Location D Location: Seaport, Boston, MA Seaport Boulevard Street 1: Street 2: Driveway (for Parking Lot) 11/1/2016 Count Date: Tuesday Day of Week: Partly Cloudy, 55° F Weather:

PEDESTRIANS & BICYCLES

		Drivewa	ay (for Park	ting Lot)			Southbound	h		Sea	aport Boulev Eastbound	vard		Sea	aport Boule	/ard	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
7:00 AM	0	0	0	9	0	0	0	0	0	0	0	0	0	1	0	0	
7:15 AM	0	0	0	6	0	0	0	0	0	1	0	0	0	1	0	0	
7:30 AM	0	0	0	17	0	0	0	0	0	3	0	0	0	3	0	0	
7:45 AM	0	0	0	26	0	0	0	0	0	4	0	0	0	2	0	0	
8:00 AM	0	0	0	33	0	0	0	0	0	9	0	0	0	8	0	0	
8:15 AM	0	0	0	37	0	0	0	0	0	9	0	0	0	8	0	0	
8:30 AM	0	0	0	45	0	0	0	0	0	12	0	0	0	6	0	0	
8.45 AM	0	Δ	0	40	0	0	0	0	0	12	0	0	0	٩	0	0	

		Drivewa	ay (for Park Northbound	ting Lot)			Southbound	d		Sea	aport Boule Eastbound	/ard		Sea	aport Boule Westbound	vard I	
Start Time	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
4:00 PM	0	0	0	28	0	0	0	0	0	2	0	0	0	2	0	0	
4:15 PM	0	0	0	27	0	0	0	0	0	4	0	0	0	2	0	0	
4:30 PM	0	0	0	30	0	0	0	0	0	4	0	0	0	4	0	0	
4:45 PM	0	0	0	29	0	0	0	0	0	2	0	0	0	5	0	0	
5:00 PM	0	0	0	41	0	0	0	0	0	9	0	0	0	6	0	0	
5:15 PM	0	0	0	49	0	0	0	0	0	11	0	0	0	13	0	0	
5:30 PM	0	0	0	45	0	0	0	0	0	9	0	0	0	11	0	0	
5:45 PM	0	0	0	37	0	0	0	0	0	4	0	0	0	5	0	0	

AM PEAK HOUR ¹		Drivewa	ay (for Park	ing Lot)						Sea	aport Boulev	/ard		Sea	aport Boulev	vard	
8:00 AM			Northbound	ł			Southbound	b			Eastbound				Westbound	i	
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
9:00 AM	0	0	0	164	0	0	0	0	0	42	0	0	0	31	0	0	

PM PEAK HOUR ¹		Drivewa	ay (for Park	ing Lot)						Sea	aport Boulev	/ard		Sea	aport Boulev	/ard	
5:00 PM			Northbound				Southbound	ł			Eastbound				Westbound		
to	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	Left	Thru	Right	PED	
6:00 PM	0	0	0	172	0	0	0	0	0	33	0	0	0	35	0	0	

¹ Peak hours corresponds to vehicular peak hours.

Crash Rate Table - Seaport Square 2012-2014

YearYearNetNet201301100201301100201410221Total100001Total000000Single Vicke000000Renend000110Argin000100Single Vicke000000Single Vicke000000Argin0000000Single Vicke0000000Single Vicke0000000Single Vicke0000000Single Vicke0000000Single Vicke0000000Single Vicke1000000Single Vicke1000000Single Vicke1000000Single Vicke1000000Single Vicke1000000Single Vicke1000 <t< th=""><th>Scenario</th><th>Congress Street / B Street</th><th>Congress Street / Boston Wharf Road</th><th>Congress Street / D Street</th><th>Northern Avenue / D Street</th><th>Seaport Boulevard / B Street</th></t<>	Scenario	Congress Street / B Street	Congress Street / Boston Wharf Road	Congress Street / D Street	Northern Avenue / D Street	Seaport Boulevard / B Street
2012 201300100201410221201410221Type Sing Vehice100011Sing Vehice001111Sing Vehice001100Reat-raid0011000Sing Vehice1001000Sing Vehice0000000Sing Vehice000	Year					
201301100201410221Trail100000Single Velicle000000Rear end0000000Angle000110Angle001100Sidewipo1000000Costain Invoked0000000Vestific Invoked0000000Cyclis Invoked0000000Cyclis Invoked0000000Cyclis Invoked0000000Cyclis Invoked0000000Cyclis Invoked0000000Introv Method0000000Introv Method0000000Introv Method0000000Introv Method0000000Introv Method0000000Introv Method0000000Introv Method0 <t< td=""><td>2012</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td></t<>	2012	0	0	0	1	0
Def to the sector of the sec	2013	0	1	1	0	0
TopsII331Single Violicie000000Rear-end000111Angle00110000Angle0001000<	2014	1	0	2	2	1
TypeImage with a set of the se	Tota	al 1	1	3	3	1
Single Vhicke00000Aragle00111Angle00110Aragle00100Haad on00000Vedestrian Involved00000Opdestrian Involved00000Unknown Cher000000Vedestrian Involved000000Unknown Cher0000000Poptry Damage Chry01100000Personal Injury01331000<	Туре					
Rear-end00111Angle00110Sideswpe100000Pedestinn hvolved00000Pedestinn hvolved00000Cyclist hvolved00000Cyclist hvolved00000Cyclist hvolved00000Cyclist hvolved00000Percoral name000000Percoral name000000Percoral name0000000Percoral name0000000	Single Vehicle	0	0	0	0	0
Angle00110Bidswipe1000000Haad-on00000000Cyclist Involved00	Rear-end	0	0	1	1	1
Sidesinging Headson10010Pedesting Involved00100Pedesting Involved00000Cystell traveled00000Total113.3311Swerity013.3311Paperty Damage Only012011Parsonal ingury012011Parsonal ingury000000Parsonal ingury <td>Angle</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td>	Angle	0	0	1	1	0
Head-on Dedestina involved01000Cyclist Involved000000Cyclist Involved000000Total113311Properly Damage Only1011010Fusional Injury0120110Frastily0120000Frastily00000000Hard nn000000000Unknown00	Sideswipe	1	0	0	1	0
Pedestant involved Cysitet involved Cysitet involved Cysitet involved Cysitet involved Cysitet involved Cysitet involved Severity0000Total110000Severity Perperity amage Only Person injury101100Severity Person injury0120110Person injury Person injury0120110Hand run Infuation00000000Hand run Constant0000000000Hund run Infuation00 <th< td=""><td>Head-on</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td></th<>	Head-on	0	1	0	0	0
Cyclist Involved0000Total11331Werkown (Other001331Paper (Damage Only101101Parsonal Injuny012010Parsonal Injuny012010Parsonal Injuny012010Parsonal Injuny0000000Parsonal Injuny00000000Parsonal Injuny000000000Parsonal Injuny0000000000Parsonal Injuny00000000000Parsonal Injuny00<	Pedestrian Involved	0	0	1	0	0
Unknown Other0000Streitly10331Properly Damage Dily10110Personal injury01201Personal injury01201Personal injury01201Personal injury001200Patata000000Patata000000Unknown0000000Total11331Poper Damage000000Other000000Other000000Other000000Other000000Other000000Other000000Other000000Other000000Other000000Other000000Other000000Other000000Other00<	Cyclist Involved	0	0	0	0	0
Total 1 3 3 1 Poporty Damago Only 1 0 1 1 0 Personal injury 0 1 2 0 1 Personal injury 0 1 2 0 1 Personal injury 0 0 0 0 0 Falaity 0 0 0 0 0 0 Unknown 0 0 0 0 0 0 0 Unknown 0 0 0 0 0 0 0 Haur of Day 1 1 0 0 0 0 0 610 a.m. 0 0 0 0 0 0 0 0 0 102 a.m. 0 <t< td=""><td>Unknown/ Other</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Unknown/ Other	0	0	0	0	0
SeverityImageImageImageImageImageImagePersonal iquy01201Patalaty00000Hand run00000Unknown00000Total11331Hour of Day1331For and the and run00000Total1133110-2 p.m.0000006-10 a.m.0000006-2 p.m.00000010-2 p.m.00000010-2 p.m.00000010-2 m.m.00000010-2	Tota	al 1	1	3	3	1
Property Damage Only 1 1 1 0 Personal injury 0 1 2 0 1 Fatality 0 0 0 0 0 Fatality 0 0 0 0 0 Inter Administry 0 0 0 0 0 Inter Administry 1 1 3 3 1 Inter Administry 0 0 0 2 0 Inter Administry 0 0 0 1 0 0 610 a.m. 0 0 0 0 0 0 0 62 p.m. 0 1 1 1 1 0 0 640 p.m. 0 0 0 0 0 0 0 640 p.m. 0 0 0 0 0 0 0 102 p.m. 0 0 0 0 0 0 0	Severity					
Personal injury Fortal 101201Platity000000Hit and run000000Total13311Hour of Day6000010010-2 p.m.00200010-2 p.m.00200024 p.m.001111610 p.m.10000024 p.m.00000026 a.m.00000070tal113311Morday000000010 statisty000000010 statisty000000010 statisty000000010 statisty000000010 statisty000000010 statisty000000010 statisty000000010 statisty000000010 statisty000 </td <td>Property Damage Only</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td>	Property Damage Only	1	0	1	1	0
Falaily Hit and run 0 0 0 0 0 Hit and run 0 0 0 0 0 International 1 1 3 3 1 International 1 1 3 3 1 6/10 a.m. 0 0 0 1 0 10-2 p.m. 0 0 1 1 1 1 6/10 p.m. 1 0 0 0 0 0 0 2 6 p.m. 0 0 0 0 0 0 0 6/10 p.m. 1 0 0 0 0 0 0 2 6 p.m. 0 0 0 0 0 0 0 102 a.m. 0 0 0 0 0 0 0 104 b.m. 1 1 1 0 0 0 0 104 b.m. 0 0 0 <td>Personal injury</td> <td>0</td> <td>1</td> <td>2</td> <td>0</td> <td>1</td>	Personal injury	0	1	2	0	1
Hit and run 0 0 0 0 0 0 Unknown 0 0 0 2 0 Total 1 3 3 1 Hour of Day 10-2 p.m. 0 0 0 2 0 0 10-2 p.m. 0 0 2 0 0 2 6 (0 p.m. 1 0 0 0 0 0 0 10-2 p.m. 0 0 0 0 0 0 0 10-2 a.m. 0 0 0 0 0 0 0 2 m.m. 0 0 0 0 0 0 0 0 4 model 1 0 0 0 0 0 0 6 dot 1 1 0 0 0 0 Weather 1 <th1< th=""> 0 0</th1<>	Fatality	0	0	0	0	0
Unknown 0 0 2 0 Total 1 3 3 1 Hour of Day - - - - 6-10 a.m. 0 0 0 1 0 10-2 p.m. 0 0 1 1 0 26 p.m. 0 1 1 1 1 1 6-10 p.m. 1 0 0 0 0 0 26 p.m. 0 0 0 0 0 0 0 26 a.m. 0 0 0 0 0 0 0 Total 1 3 3 1 0 0 0 Total 1 1 3 3 1 0 Total 1 0 0 0 1 0 0 Total 1 0 0 1 0 0 0 0 0 0	Hit and run	0	0	0	0	0
Total 1 1 3 3 1 Hour of Day 0 0 0 1 0 6·0 a.m. 0 0 1 0 0 10-2 p.m. 0 1 1 1 0 0 26 p.m. 0 1 1 1 1 1 1 6:00 p.m. 1 0 0 0 0 0 0 10-2 a.m. 0 0 0 0 0 0 0 10-2 d.m. 0 0 0 0 0 0 0 Clast 1 1 3 3 1 0 0 Useday 0 0 1 1 0 0 0 0 0 Weedseday 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unknown	0	0	0	2	0
Hour of Day · <th< td=""><td>Tota</td><td>al 1</td><td>1</td><td>3</td><td>3</td><td>1</td></th<>	Tota	al 1	1	3	3	1
6+0 am, 10-2 pm, 2 c pm, 6+0 am, 6+0 pm, 10-2 am, 2 c pm, 10-2 am, 10-2 am, 10	Hour of Day					
10-2 p.m. 0 2 0 0 2-6 p.m. 0 1 1 1 1 6-10 p.m. 1 0 0 0 0 10-2 a.m. 0 0 0 0 0 2-6 a.m. 0 0 0 0 0 Day of Week 0 0 0 0 Monday 0 0 0 1 0 0 0 Yeekas 0 0 0 1 0 0 0 Yeekas 0 0 0 1 0 0 0 Yeekas 0 0 0 0 0 0 0 Yeehasday 0	6-10 a.m.	0	0	0	1	0
26 p.m. 0 1 1 1 1 610 p.m. 1 0 0 0 0 102 a.m. 0 0 0 0 0 26 a.m. 0 0 0 1 0 Total 1 1 3 3 1 Day of Week Monday 0 0 0 1 0 0 Veednesday 0 0 0 0 0 0 0 Wednesday 0 0 0 0 0 0 0 Thursday 0 0 0 0 0 0 0 Sturday 0 0 0 0 0 0 0 Sturday 0 0 0 3 1 0 0 Cloady 1 1 0 1 0 0 0 <td>10-2 p.m.</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td>	10-2 p.m.	0	0	2	0	0
6-10 p.m. 1 0 0 0 0 10-2 a.m. 0 0 0 0 0 Total 1 1 3 3 1 Day of Week Moday 0 0 0 1 0 Tuesday 0 0 1 1 0 0 Tuesday 0 0 1 1 0 0 Wednesday 0 0 1 0 0 0 1 Saturday 0 0 0 0 0 0 0 Saturday 0 0 0 0 0 0 0 Saturday 0 0 0 1 3 3 1 Veather Clear 0 0 0 0 0 0 <	2-6 p.m.	0	1	1	1	1
10-2 a.m. 0 0 0 0 0 2-6 a.m. 0 0 0 1 0 Total 1 1 3 3 1 Day of Week Monday 0 0 0 1 0 0 Tuesday 0 0 0 1 0 0 Weednesday 0 0 0 0 0 0 Thursday 0 0 0 0 0 0 0 Keednesday 0 0 0 0 0 0 0 Sturday 0 0 0 0 0	6-10 p.m.	1	0	0	0	0
2-6 a.m. 0 0 1 0 Total 1 1 3 3 1 Day of Week Monday 0 0 0 1 0 Monday 0 0 0 1 0 Wednesday 0 1 1 0 0 Wednesday 0 0 1 0 0 Thursday 0 0 1 0 0 Friday 1 0 0 0 0 0 Sturday 0 0 0 0 0 0 0 Sturday 0 0 0 1 2 0 Sturday 0 0 0 1 2 0 Sturday 0 0 0 3 1 0 Clear 0 0 0 0 0 0 </td <td>10-2 a.m.</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	10-2 a.m.	0	0	0	0	0
Total 1 1 3 3 1 Day of Week 0 0 0 1 0 Monday 0 0 0 1 0 0 Tuesday 0 1 1 0 0 1 0 Wednessday 0 0 0 1 0 1 0 1 Thursday 0	2-6 a.m.	0	0	0	1	0
Day of Week 0 0 0 1 0 Tuesday 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	Tota	al 1	1	3	3	1
Monday 0 0 1 0 Tuesday 0 1 1 0 0 Wednesday 0 0 1 0 0 Thursday 0 0 0 0 0 Thursday 0 0 0 0 0 Friday 1 0 0 0 0 Sturday 0 0 0 0 0 0 Sturday 0 0 0 0 0 0 0 Sturday 0 0 0 1 2 0 0 Sturday 0 0 0 1 2 0 0 Sturday 0 0 0 3 1 0 <t< td=""><td>Day of Week</td><td></td><td></td><td></td><td></td><td></td></t<>	Day of Week					
Tuesday 0 1 1 0 0 Wednesday 0 0 1 0 1 Thursday 0 0 0 0 0 Friday 1 0 0 0 0 Sturday 0 0 0 0 0 Sturday 0 0 1 2 0 Sturday 0 0 1 0 1 0 Sturday 0 0 0 1 0 1 0 Clear 0 0 0 0 0 0 0 0 0 Snow 0 0 0 0 <td>Monday</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td>	Monday	0	0	0	1	0
Wednesday 0 0 1 0 1 Thursday 0 0 0 0 0 0 Friday 1 0 0 0 0 0 0 Saturday 0 0 0 0 0 0 0 0 0 Sunday 0 0 0 1 2 0	Tuesday	0	1	1	0	0
Thursday 0 0 0 0 0 Friday 1 0 0 0 0 0 Saturday 0 0 0 0 0 0 0 Sturday 0 0 0 0 0 0 0 0 0 Sturday 0 <	Wednesday	0	0	1	0	1
Friday 1 0 0 0 0 Saturday 0 0 0 0 0 0 Sunday 0 0 1 2 0 Total 1 1 3 3 1 Weather - - - - - Clear 0 0 3 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 <	Thursday	0	0	0	0	0
Saturday 0 0 0 0 0 Sunday 0 0 1 2 0 Total 1 3 3 1 Weather - - - - Clear 0 0 3 1 0 Cloudy 1 1 0 1 1 0 Snow 0 0 0 0 1 1 Snow 0 0 0 0 0 0 0 Snow 0 0 0 0 0 0 0 0 Snow 0 0 0 0 0 0 0 0 Severe Crosswinds 0	Friday	1	0	0	0	0
Sunday 0 1 2 0 Total 1 1 3 3 1 Weather Clear 0 0 3 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1	Saturdav	0	0	0	0	0
Total 1 3 3 1 Weather 0 0 3 1 0 Clear 0 0 3 1 0 Cloudy 1 1 0 1 1 Rain 0 0 0 1 0 Snow 0 0 0 0 0 0 Sleet, Hail, Freezing Rain 0 <	Sunday	0	0	1	2	0
Weather 0 0 3 1 0 Clear 0 1 1 0 1 1 Cloudy 1 1 1 0 1 1 Rain 0 0 0 1 0 0 0 Snow 0	Tota	al 1	1	3	3	1
Clear 0 3 1 0 Cloudy 1 1 0 1 1 Rain 0 0 0 1 0 Snow 0 0 0 0 0 0 Snow 0 0 0 0 0 0 0 Sleet, Hail, Freezing Rain 0 <td>Weather</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Weather					
Cloudy 1 1 0 1 1 Rain 0 0 0 1 0 Snow 0 0 0 0 0 0 Snow 0	Clear	0	0	3	1	0
Rain 0 0 0 1 0 Snow 0 0 0 1 0 Snow 0 0 0 0 0 0 Sleet, Hail, Freezing Rain 0 0 0 0 0 0 Fog, Smog, Smoke 0 0 0 0 0 0 0 Severe Crosswinds 0 0 0 0 0 0 0 Blowing sand, snow 0 0 0 0 0 0 0 Other 0 0 0 0 0 0 0 0 Unknown 0 0 0 0 0 0 0 0	Cloudy	1	1	0	1	1
SindOOOOSnowOOOOOSleet, Hail, Freezing RainOOOOOFog, Smog, SmokeOOOOOFog, Smog, SmokeOOOOOSevere CrosswindsOOOOOBlowing sand, snowOOOOOOtherOOOOOUnknownOOOOO	Rain	0	0	0	1	0
SilverSilve	Snow	ů n	0	0	0	0
Fog, Smog, Smoke0000Severe Crosswinds00000Blowing sand, snow00000Other000000Unknown000000	Sleet, Hail, Freezing Rain	0	0	0	0	0
Severe Crosswinds0000Blowing sand, snow00000Other00000Unknown00000	Fog Smog Smoke	0	0	0	0	0
Blowing sand, snow 0	Severe Crosswinds	0	0	0	0	0
Distring stand, show 0	Blowing sand spow	0	0	0	0	0
One O	Other	0	0	0	0	0
		0	0	0	0	0
	Tot	al 1	1	3	3	1

CITY/TOWN : Boston				COUNT DAT	E:	Nov-16
DISTRICT : 4	UNSIGN	IALIZED :		SIGNA	LIZED :	X
		~ IN	TERSECTION	N DATA ~		
MAJOR STREET :	Congress Str	reet				
MINOR STREET(S)	B Street					
	<u>1 50 Ramps</u>					
					5	
INTERSECTION	North	Congress S	t I I I I I I I I I I I I I I I I I I I			- /
DIAGRAM			1.			
(Label Approaches)		13 Jam		to it	Teris and Top of	
		1				
		1-9(Ramps		BENGERESE	30
			Deals Have		AN SALAROS	
APPROACH :	1	2	геак пои	r volumes	5	Total
	-	-	3	4	5	
DIRECTION :	EB	WB	NB	SB	5	Entering Vehicles
DIRECTION : VOLUMES (AM/PM) :	EB 519	WB 687	NB 634	SB 250		Entering Vehicles 2,090
DIRECTION : VOLUMES (AM/PM) : " K " FACTOR :	EB 519 0.090	WB 687 APPROA	NB 634 CH ADT :	SB 250 23,222	ADT = TOTAL	Entering Vehicles 2,090
DIRECTION : VOLUMES (AM/PM) : "K" FACTOR : TOTAL # OF CRASHES :	EB 519 0.090	WB 687 APPROA # OF YEARS :	3 NB 634 CH ADT : 3	+ SB 250 23,222 AVERA CRASH	ADT = TOTAL GE # OF ES (A) :	Entering Vehicles 2,090
DIRECTION : VOLUMES (AM/PM) : " K " FACTOR : TOTAL # OF CRASHES : CRASH RATE CALCU	EB 519 0.090 1 JLATION :	WB 687 APPROA # OF YEARS : 0.04	J NB 634 CH ADT : 3 RATE =	+ SB 250 23,222 AVERA CRASH (A*1,((ADT	ADT = TOTAL GE # OF ES (A) :	Entering Vehicles 2,090
DIRECTION : VOLUMES (AM/PM) : "K" FACTOR : TOTAL # OF CRASHES : CRASH RATE CALCU	EB 519 0.090 1 JLATION :	WB 687 APPROA # OF YEARS : 0.04	3 NB 634 CH ADT : 3 RATE =	+ SB 250 23,222 AVERA CRASH (A*1,0 (ADT	ADT = TOTAL GE # OF ES (A) : 2000,000) * 365)	Entering Vehicles 2,090

CITY/TOWN : Boston	_			COUNT DAT	E:	Nov-16
DISTRICT :4	UNSIGN	ALIZED :		SIGNA	LIZED :	x
		~ IN	TERSECTION	N DATA ~		
MAJOR STREET :	Congress Str	eet				
MINOR STREET(S) :	Boston Whar	f Road/West S	Service Road			
INTERSECTION DIAGRAM (Label Approaches)	North	West State			Congres	Address of the second s
APPROACH :	1	2	Peak Hou 3	4	5	Total
DIRECTION :	EB	WB	NB	SB		Entering Vehicles
VOLUMES (AM/PM) :	623	483	97	385		1,588
"K "FACTOR :	0.090	APPROA	CH ADT :	17,644	ADT = TOTAL	VOL / "K" FACT.
TOTAL # OF CRASHES :	1	# OF YEARS :	3	AVERA CRASH	GE # OF ES(A):	0.33
CRASH RATE CALCU	JLATION :	0.05	RATE =	<u>(A * 1,0</u> (ADT	000,000) * 365)	
Comments :						
Draiget Title & Date:						

CITY/TOWN : Boston	_			COUNT DAT	E:	Nov-16
DISTRICT : 4	UNSIGN	IALIZED :		SIGNA	LIZED :	x
		~ IN	TERSECTION	N DATA ~		
MAJOR STREET :	Congress Str	reet				
MINOR STREET(S) :	D Street					
INTERSECTION DIAGRAM (Label Approaches)	North	Congress St	Peak Hou	Volumes		
APPROACH :	1	2	3	4	5	Total
DIRECTION :	EB	WB	NB	SB		 Entering Vehicles
VOLUMES (AM/PM) :	470	382	437	398		1,687
"K " FACTOR :	0.090	APPROA	CH ADT :	18,744	ADT = TOTAL	VOL/"K" FACT.
TOTAL # OF CRASHES :	3	# OF YEARS :	3	AVERA CRASH	GE # OF ES(A):	1.00
CRASH RATE CALCU	JLATION :	0.15	RATE =	<u>(A * 1,(</u> (ADT	000,000) * 365)	
Project Title & Date:						

CITY/TOWN : Boston				COUNT DAT	E:	Nov-16
DISTRICT : 4	UNSIGN	ALIZED :		SIGNA	LIZED :	x
		~ IN	TERSECTION	N DATA ~		
MAJOR STREET :	Seaport Boul	evard/Norther	n Avenue			
MINOR STREET(S) :	D Street/Fish	Pier				
INTERSECTION DIAGRAM (Label Approaches)		Seaport Bly	Peak Hou	SS Volumes	Level and Level	Orthern Ave
APPROACH :	1	2	3	4	5	Total
DIRECTION :	EB	WB	NB	SB		- Entering Vehicles
VOLUMES (AM/PM) :	711	439	85	79		1,314
"K " FACTOR :	0.090	APPROA	CH ADT :	14,600	ADT = TOTAL	VOL / "K" FACT.
TOTAL # OF CRASHES :	3	# OF YEARS :	3	AVERA CRASH	GE # OF ES(A):	1.00
CRASH RATE CALCU	ILATION :	0.19	RATE =	<u>(A * 1,</u> 0 (ADT	000,000) * 365)	
Comments :						
Project Litle & Date:						

CITY/TOWN : Boston				COUNT DAT	E:	Nov-16
DISTRICT : 4	UNSIGN	IALIZED :		SIGNA	LIZED :	x
		~ IN	TERSECTION	N DATA ~		
MAJOR STREET :	Seaport Boul	evard				
MINOR STREET(S) :	B Street					
INTERSECTION DIAGRAM (Label Approaches)	North		Seaport E	Blvd		
APPROACH :	1	2	3	4	5	Total
DIRECTION :	EB	WB	NB	SB		 Entering Vehicles
VOLUMES (AM/PM) :	796	505	335			1,636
"K "FACTOR :	0.090	APPROA	CH ADT :	18,178	ADT = TOTAL	VOL / "K" FACT.
TOTAL # OF CRASHES :	1	# OF YEARS :	3	AVERA CRASH	GE # OF ES(A) :	0.33
CRASH RATE CALCU	JLATION :	0.05	RATE =	<u>(A * 1,</u> (ADT	000,000) * 365)	
Comments : Project Title & Date:						

CITY/TOWN : Boston				COUNT DAT	re:	Nov-16
DISTRICT : 4	UNSIGN	ALIZED :	x	SIGNA	LIZED :	
		~ IN	TERSECTION	N DATA ~		
MAJOR STREET :	Seaport Boul	evard				
MINOR STREET(S) :	Seaport Lane	9				
INTERSECTION DIAGRAM (Label Approaches)		Seapo	Drt Blvd	Volumes		
APPROACH :	1	2	3	4	5	Total
DIRECTION :	EB	WB	NB	SB		Entering Vehicles
VOLUMES (AM/PM) :	776	557				1,333
"K " FACTOR :	0.090	APPROA	CH ADT :	14,811	ADT = TOTAL	. VOL/"K" FACT.
TOTAL # OF CRASHES :	4	# OF YEARS :	3	AVERA CRASH	GE # OF IES(A):	1.33
CRASH RATE CALCU	ILATION :	0.25	RATE =	<u>(A * 1,</u> (ADT	000,000) * 365)	
Comments :						

MASSACHUSETTS HIGHWAY DEPARTMENT - STATEWIDE TRAFFIC DATA COLLECTION

2011 WEEKDAY SEASONAL FACTORS *	* Note: These	e are weekday fa	ctors. The averag	e of the factors i	for the year will r	not equal 1, as w	veekend data ar	e not considered				
FACTOR GROUP	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
GROUP 1 - WEST INTERSTATE	0.98	0.93	0.90	0.89	0.90	0.88	0.91	0.90	0.89	0.89	0.93	0.95
Use group 2 for R5, R6, & R0 GROUP 2 - RURAL MAJOR COLLECTOR (R-5)	1.12	1.12	1.07	0.99	0.91	0.90	0.86	0.86	0.92	0.93	1.01	1.05
GROUP 3A - RECREATIONAL **(1-4) See below	1.26	1.25	1.20	1.06	0.96	0.89	0.76	0.76	0.92	0.99	1.08	1.14
GROUP 3B - RECREATIONAL ***(5) See below	1.22	1.26	1.22	1.06	0.96	0.90	0.72	0.74	0.97	1.02	1.14	1.15
GROUP 4 - I-495 INTERSTATE	1.02	1.00	1.00	0.96	0.92	0.89	0.85	0.83	0.93	0.96	1.01	1.03
GROUP 5 - EAST INTERSTATE	1.04	1.00	0.96	0.93	0.92	0.91	0.91	0.89	0.93	0.93	0.96	1.01
GROUP 6: Use group 6 for U2, U3, U5, U6, U0, R2, & R3 URBAN ARTERIALS, COLLECTORS & RURAL ARTERIALS (R-2, R-3)	1.03	1.01	0.96	0.92	0.91	0.90	0.92	0.92	0.93	0.92	0.97	0.97
GROUP 7 - I-84 PROXIMITY (STA. 17, 3921)	1.24	1.24	1.15	1.04	0.99	1.00	0.93	0.89	1.05	1.05	1.05	1.12
GROUP 8 - I-295 PROXIMITY (STA. 6590)	1.00	0.99	0.95	0.92	0.94	0.91	0.93	0.92	0.95	0.94	0.97	0.95
GROUP 9 - I-195 PROXIMITY (STA. 7)	1.13	1.05	1.03	0.95	0.89	0.87	0.86	0.79	0.88	0.91	0.99	1.03
RECREATIONAL: (ALL YEARS) **GROUP 3A: 1. CAPE COD (ALL TOWNS)		2011 AXLE C F	ORRECTION FA	CTORS RY CATION	AX	LE CORRECTN FACTOR	ON			ROUND OFF 0 - 999. > 1,000	1	10 00
2.PLYMOUTH(SOUTH OF RTE.3A)		1	RURAL			0.05		1.11				
7014, 7079,7080,7090,7091,7092,7093,7094,7095,7096,7097,7108,7178			2			0.95						
		-	3			0.98						
			0.5.6			0.98						
GROUP 3B:		ι	JRBAN	J								
5.PERMANENTS 2 & 189			1			0.96						
1066, 1067, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092,			2,3			0.98						
1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,			5			0.98			Apply I-8	4 factor t	o station:	5:
1105,1106,1107,1108,1113,1114,1116,2196,2197,2198			0,6			0.99				3290, 393	21, 3929	
	_		1-84	215	392	0.90						

Seaport Square PDA NPC - Block D Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share ²	Shuttle Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour																								
Office Building ⁴	425	Total		11.030	4,688	1.13	5,298		0	0	5,298	55%	2,914	19%	1,008	17%	900	9%	476		34	1.13	796	830
	KSF	In	50%	5.515	2,344	1.13	2,649	0%	0	0	2,649	55%	1,457	19%	504	17%	450	9%	238	14	17	1.13	398	415
		Out	50%	5.515	2,344	1.13	2,649	0%	0	0	2,649	55%	1,457	19%	504	17%	450	9%	238	14	17	1.13	398	415
Shopping Center ⁵	69.4	Total		42.700	2,964	1.78	5,276	25%	1,320	1,320	3,956	27%	1,068	39%	1,542	34%	1,346		0		0	1.78	756	756
	KSF	In	50%	21.350	1,482	1.78	2,638	25%	660	660	1,978	27%	534	39%	771	34%	673	0%	0	14.00	0	1.78	378	378
		Out	50%	21.350	1,482	1.78	2,638	25%	660	660	1,978	27%	534	39%	771	34%	673	0%	0	14.00	0	1.78	378	378
Total		Total			7,652		10,574		1,320	1,320	9,254		3,982		2,550		2,246		476				1,552	
		In			3,826		5,287		660	660	4,627		1,991		1,275		1,123		238				776	
		Out			3,826		5,287		660	660	4,627		1,991		1,275		1,123		238				776	
AM Peak Hour																								
Office Building ⁴	425	Total		2.11	897	1.13	1,014		0	0	1,014		558		192		173		91		6	1.13	153	159
	KSF	In	97%	2.040	867	1.13	980	0%	0	0	980	55%	539	19%	186	17%	167	9%	88	14	6	1.13	148	154
		Out	3%	0.070	30	1.13	34	0%	0	0	34	55%	19	19%	6	17%	6	9%	3	14	0	1.13	5	5
Shopping Center ⁵	69.4	Total		0.96	66	1.78	118	25%	22	22	96	27%	26	39%	37	34%	33		0		0	1.78	19	19
	KSF	In	62%	0.595	41	1.78	73	25%	11	11	62	27%	17	39%	24	34%	21	0%	0	5.75	0	1.78	12	12
		Out	38%	0.365	25	1.78	45	25%	11	11	34	27%	9	39%	13	34%	12	0%	0	5.75	0	1.78	7	7
Total		Total			963		1,132		22	22	1,110		584		229		206						172	178
		In			908		1,053		11	11	1,042		556		210		188						160	166
		Out			55		79		11	11	68		28		19		18						12	12
PM Peak Hour																								
Office Building ⁴	425	Total		2.02	859	1.13	971		0	0	971		534		185		165		87		6	1.13	146	152
	KSF	In	3%	0.070	30	1.13	34	0%	0	0	34	55%	19	19%	6	17%	6	9%	3	14	0	1.13	5	5
		Out	97%	1.950	829	1.13	937	0%	0	0	937	55%	515	19%	179	17%	159	9%	84	14	6	1.13	141	147
Shopping Center ⁵	69.4	Total		3.71	258	1.78	460	25%	110	110	350	27%	95	39%	136	34%	119		0		0	1.78	66	66
	KSF	In	48%	1.781	124	1.78	221	25%	55	55	166	27%	45	39%	65	34%	56	0%	0	5.75	0	1.78	31	31
		Out	52%	1.929	134	1.78	239	25%	55	55	184	27%	50	39%	71	34%	63	0%	0	5.75	0	1.78	35	35
Total		Total			1,117		1,431		110	110	1,321		629		321		284						212	218
		In			154		255		55	55	200		64		71		62						36	36
		Out			963		1,176		55	55	1,121		565		250		222						176	182

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Office Building trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 710 (General Office Building), average rate

tements are needed	
ng)	

Seaport Square PDA NPC - Block F Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person- Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share ²	Shuttle Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour																•								
Office Building ⁴	63	Total		11.030	694	1.13	784		0	0	784	55%	432	19%	148	17%	134	9%	70		6	1.13	118	124
	KSF	In	50%	5.515	347	1.13	392	0%	0	0	392	55%	216	19%	74	17%	67	9%	35	14	3	1.13	59	62
		Out	50%	5.515	347	1.13	392	0%	0	0	392	55%	216	19%	74	17%	67	9%	35	14	3	1.13	59	62
Shopping Center ⁵	58	Total		42.700	2,476	1.78	4,408	25%	1,102	1,102	3,306	27%	892	39%	1,290	34%	1,124		0		0	1.78	632	632
	KSF	In	50%	21.350	1,238	1.78	2,204	25%	551	551	1,653	27%	446	39%	645	34%	562	0%	0	14.00	0	1.78	316	316
		Out	50%	21.350	1,238	1.78	2,204	25%	551	551	1,653	27%	446	39%	645	34%	562	0%	0	14.00	0	1.78	316	316
Total		Total			3,170		5,192		1,102	1,102	4,090		1,324		1,438		1,258		70				750	
		In			1,585		2,596		551	551	2,045		662		719		629		35				375	
		Out			1,585		2,596		551	551	2,045		662		719		629		35				375	
AM Peak Hour																								
Office Building ⁴	63	Total		2.11	133	1.13	151		0	0	151		83		29		26		13		1	1.13	23	24
	KSF	In	97%	2.040	129	1.13	146	0%	0	0	146	55%	80	19%	28	17%	25	9%	13	14	1	1.13	22	23
		Out	3%	0.070	4	1.13	5	0%	0	0	5	55%	3	19%	1	17%	1	9%	0	14	0	1.13	1	1
Shopping Center ⁵	58	Total		0.96	56	1.78	99	25%	18	18	81	27%	22	39%	31	34%	28		0		0	1.78	16	16
	KSF	In	62%	0.595	35	1.78	62	25%	9	9	53	27%	14	39%	21	34%	18	0%	0	5.75	0	1.78	10	10
		Out	38%	0.365	21	1.78	37	25%	9	9	28	27%	8	39%	10	34%	10	0%	0	5.75	0	1.78	6	6
Total		Total			189		250		18	18	232		105		60		54						39	40
		In			164		208		9	9	199		94		49		43						32	33
		Out			25		42		9	9	33		11		11		11						7	7
PM Peak Hour																								
Office Building ⁴	63	Total		2.02	127	1.13	144		0	0	144		79		27		25		13		1	1.13	22	23
	KSF	In	3%	0.070	4	1.13	5	0%	0	0	5	55%	3	19%	1	17%	1	9%	0	14	0	1.13	1	1
		Out	97%	1.950	123	1.13	139	0%	0	0	139	55%	76	19%	26	17%	24	9%	13	14	1	1.13	21	22
Shopping Center ⁵	58	Total		3.71	215	1.78	382	25%	92	92	290	27%	78	39%	113	34%	99		0		0	1.78	55	55
	KSF	In	48%	1.781	103	1.78	183	25%	46	46	137	27%	37	39%	53	34%	47	0%	0	5.75	0	1.78	26	26
		Out	52%	1.929	112	1.78	199	25%	46	46	153	27%	41	39%	60	34%	52	0%	0	5.75	0	1.78	29	29
Total		Total			342		526		92	92	434		157		140		124						77	78
		In			107		188		46	46	142		40		54		48						27	27
		Out			235		338		46	46	292		117		86		76						50	51

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Office Building trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 710 (General Office Building), average rate

tements are needed	
ng)	

Seaport Square PDA NPC - Block G Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ ² Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share	Shuttle ² Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ^{3.}	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour					-		-		-	-			-		-			ш			-			-
Apartment ⁴	581	Total		6.650	3,864	1.13	4,366		0	0	4,366	35%	1,528	39%	1,702	26%	1,136	0%	0		0	1.13	1,006	1,006
	units	In	50%	3.325	1,932	1.13	2,183	0%	0	0	2,183	35%	764	39%	851	26%	568	0%	0	14.00	0	1.13	503	503
		Out	50%	3.325	1,932	1.13	2,183	0%	0	0	2,183	35%	764	39%	851	26%	568	0%	0	14.00	0	1.13	503	503
Shopping Center ⁵	85.8	Total		42.700	3,664	1.78	6,522	25%	1,630	1,630	4,892	27%	1,320	39%	1,908	34%	1,664		0		0	1.78	934	934
	KSF	In	50%	21.350	1,832	1.78	3,261	25%	815	815	2,446	27%	660	39%	954	34%	832	0%	0	14.00	0	1.78	467	467
		Out	50%	21.350	1,832	1.78	3,261	25%	815	815	2,446	27%	660	39%	954	34%	832	0%	0	14.00	0	1.78	467	467
Total		Total			7,528		10,888		1,630	1,630	9,258		2,848		3,610		2,800		0				1,940	
		In			3,764		5,444		815	815	4,629		1,424		1,805		1,400		0				970	
		Out			3,764		5,444		815	815	4,629		1,424		1,805		1,400		0				970	
AM Peak Hour																								
Apartment ⁴	581	Total		0.24	139	1.13	157		0	0	157		55		61		41	0%	0		0	1.13	36	36
	units	In	20%	0.050	29	1.13	33	0%	0	0	33	35%	12	39%	12	26%	9	0%	0	14.00	0	1.13	8	8
		Out	80%	0.190	110	1.13	124	0%	0	0	124	35%	43	39%	49	26%	32	0%	0	14.00	0	1.13	28	28
Shopping Center ⁵	85.8	Total		0.96	82	1.78	146	25%	28	28	118	27%	32	39%	46	34%	40		0		0	1.78	23	23
	KSF	In	62%	0.595	51	1.78	91	25%	14	14	77	27%	21	39%	30	34%	26	0%	0	14.00	0	1.78	15	15
		Out	38%	0.365	31	1.78	55	25%	14	14	41	27%	11	39%	16	34%	14	0%	0	14.00	0	1.78	8	8
Total		Total			221		303		28	28	275		87		107		81						59	59
		In			80		124		14	14	110		33		42		35						23	23
		Out			141		179		14	14	165		54		65		46						36	36
PM Peak Hour														.										
Apartment ⁴	581	Total		0.24	139	1.13	157		0	0	157		55		62		40	0%	0		0	1.13	35	35
	units	In	62%	0.150	87	1.13	98	0%	0	0	98	35%	34	39%	39	26%	25	0%	0	14.00	0	1.13	22	22
r		Out	38%	0.090	52	1.13	59	0%	0	0	59	35%	21	39%	23	26%	15	0%	0	14.00	0	1.13	13	13
Shopping Center ³	85.8	Total		3.71	319	1.78	567	25%	136	136	431	27%	116	39%	169	34%	146		0		0	1.78	82	82
	KSF	In	48%	1.781	153	1.78	272	25%	68	68	204	27%	55	39%	80	34%	69	0%	0	14.00	0	1.78	39	39
		Out	52%	1.929	166	1.78	295	25%	68	68	227	27%	61	39%	89	34%	77	0%	0	14.00	0	1.78	43	43
Total		Total			458		724		136	136	588		171		231		186						117	117
		In			240		370		68	68	302		89		119		94						61	61
		Out			218		354		68	68	286		82		112		92						56	56

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Apartment trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 220 (Apartment), average rate

ements are needed	
ng)	

Seaport Square PDA NPC - Block L3 Trip Generation Assessment

HOWARD STEIN HUDSON 3-Feb-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person- Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ ² Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share	Shuttle ² Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour																								
Apartment ⁴	366	Total		6.650	2,434	1.13	2,750		0	0	2,750	35%	962	39%	1,072	26%	716	0%	0		0	1.13	634	634
	units	In	50%	3.325	1,217	1.13	1,375	0%	0	0	1,375	35%	481	39%	536	26%	358	0%	0	14.00	0	1.13	317	317
		Out	50%	3.325	1,217	1.13	1,375	0%	0	0	1,375	35%	481	39%	536	26%	358	0%	0	14.00	0	1.13	317	317
Shopping Center ⁵	56	Total		42.700	2,392	1.78	4,258	25%	1,064	1,064	3,194	27%	862	39%	1,246	34%	1,086		0		0	1.78	610	610
	KSF	In	50%	21.350	1,196	1.78	2,129	25%	532	532	1,597	27%	431	39%	623	34%	543	0%	0	14.00	0	1.78	305	305
		Out	50%	21.350	1,196	1.78	2,129	25%	532	532	1,597	27%	431	39%	623	34%	543	0%	0	14.00	0	1.78	305	305
Total		Total			4,826		7,008		1,064	1,064	5,944		1,824		2,318		1,802		0				1,244	
		In			2,413		3,504		532	532	2,972		912		1,159		901		0				622	
		Out			2,413		3,504		532	532	2,972		912		1,159		901		0				622	
AM Peak Hour																								
Apartment ⁴	366	Total		0.24	88	1.13	99		0	0	99		35		38		26	0%	0		0	1.13	23	23
	units	In	20%	0.050	18	1.13	20	0%	0	0	20	35%	7	39%	8	26%	5	0%	0	14.00	0	1.13	4	4
		Out	80%	0.190	70	1.13	79	0%	0	0	79	35%	28	39%	30	26%	21	0%	0	14.00	0	1.13	19	19
Shopping Center ⁵	56	Total		0.96	53	1.78	95	25%	18	18	77	27%	21	39%	30	34%	26		0		0	1.78	15	15
	KSF	In	62%	0.595	33	1.78	59	25%	9	9	50	27%	14	39%	19	34%	17	0%	0	14.00	0	1.78	10	10
		Out	38%	0.365	20	1.78	36	25%	9	9	27	27%	7	39%	11	34%	9	0%	0	14.00	0	1.78	5	5
Total		Total			141		194		18	18	176		56		68		52						38	38
		In			51		79		9	9	70		21		27		22						14	14
		Out			90		115		9	9	106		35		41		30						24	24
PM Peak Hour																T		T		<u> </u>				
Apartment⁴	366	Total		0.24	88	1.13	99		0	0	99		35		38		26	0%	0		0	1.13	23	23
	units	In	62%	0.150	55	1.13	62	0%	0	0	62	35%	22	39%	24	26%	16	0%	0	14.00	0	1.13	14	14
5		Out	38%	0.090	33	1.13	37	0%	0	0	37	35%	13	39%	14	26%	10	0%	0	14.00	0	1.13	9	9
Shopping Center ³	56	Total		3.71	208	1.78	370	25%	90	90	280	27%	76	39%	109	34%	95		0		0	1.78	53	53
	KSF	In	48%	1.781	100	1.78	178	25%	45	45	133	27%	36	39%	52	34%	45	0%	0	14.00	0	1.78	25	25
		Out	52%	1.929	108	1.78	192	25%	45	45	147	27%	40	39%	57	34%	50	0%	0	14.00	0	1.78	28	28
Total		Total			296		469		90	90	379		111		147		121						76	76
		In			155		240		45	45	195		58		76		61						39	39
		Out			141		229		45	45	184		53		71		60						37	37

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Apartment trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 220 (Apartment), average rate

Seaport Square PDA NPC - Block L4 Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share	Shuttle ² Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour																								
Office Building ⁴	442.54	Total		11.030	4,882	1.13	5,516		0	0	5,516	55%	3,034	19%	1,048	17%	938	9%	496		36	1.13	830	866
	KSF	In	50%	5.515	2,441	1.13	2,758	0%	0	0	2,758	55%	1,517	19%	524	17%	469	9%	248	14	18	1.13	415	433
5		Out	50%	5.515	2,441	1.13	2,758	0%	0	0	2,758	55%	1,517	19%	524	17%	469	9%	248	14	18	1.13	415	433
Shopping Center ⁵	81	Total		42.700	3,458	1.78	6,156	25%	1,540	1,540	4,616	27%	1,246	39%	1,800	34%	1,570		0		0	1.78	882	882
	KSF	In	50%	21.350	1,729	1.78	3,078	25%	770	770	2,308	27%	623	39%	900	34%	785	0%	0	14.00	0	1.78	441	441
		Out	50%	21.350	1,729	1.78	3,078	25%	770	770	2,308	27%	623	39%	900	34%	785	0%	0	14.00	0	1.78	441	441
Total		Total			8,340		11,672		1,540	1,540	10,132		4,280		2,848		2,508		496				1,712	1,748
		In			4,170		5,836		770	770	5,066		2,140		1,424		1,254		248				856	874
		Out			4,170		5,836		770	770	5,066		2,140		1,424		1,254	ll	248	l			856	874
AM Peak Hour								T						T		0				1				
Office Building ⁺	442.54	Total		2.11	934	1.13	1,055		0	0	1,055		580		201		179		95		7	1.13	158	165
	KSF	In	97%	2.040	903	1.13	1,020	0%	0	0	1,020	55%	561	19%	194	17%	173	9%	92	14	7	1.13	153	160
		Out	3%	0.070	31	1.13	35	0%	0	0	35	55%	19	19%	7	17%	6	9%	3	14	0	1.13	5	5
Shopping Center®	81	Total		0.96	78	1.78	138	25%	26	26	112	27%	30	39%	44	34%	38		0		0	1.78	21	21
	KSF	In O /	62%	0.595	48	1.78	85	25%	13	13	72	27%	19	39%	29	34%	24	0%	0	5.75	0	1.78	13	13
		Out	38%	0.365	30	1.78	53	25%	13	13	40	27%	11	39%	15	34%	14	0%	U	5.75	U	1.78	8	8
Total		Total			1,012		1,193		26	26	1,167		610		245		217						179	186
		In O /			951		1,105		13	13	1,092		580		223		197						166	173
DM Dook Hour		Out			61		88	L	13	13	75	<u> </u>	30				20						13	13
	110.51	T + 1		0.00	001	4.40	4.040	1	<u>^</u>	^	1.010			1	400		470			1		4.40		450
Office Building	442.54	l otal	201	2.02	894	1.13	1,010	00/	0	0	1,010	550/	555	400/	192	470/	1/2	0.01/	91		6	1.13	152	158
	KSF	in Out	3%	0.070	31	1.13	35	0%	0	0	35	55%	19	19%	105	17%	6	9%	3	14	U	1.13	5	5
Shanning Cantor ⁵	01	Out	97%	1.950	863	1.13	975	0%	0	0	975	55%	536	19%	185	17%	166	9%	88	14	6	1.13	147	153
Shopping Center	81	lotal	400/	3.71	300	1.78	534	25%	128	128	406	27%	110	39%	158	34%	138	09/	U	E 7E	0	1.78	78	78 27
	KSF	in Out	48%	1.781	144	1.78	256	25%	64	64	192	27%	52	39%	75	34%	65 72	0%	0	5.75	0	1.78	37	37
Total		Tatal	3∠%	1.929	001	1./0	210	23%	04	109	4 446	2170	30 665	39%	0J 250	34%	13	0%	U	5.75	U	1.70	41	41
Total		i otal			1,194		1,544		128	128	1,410		000 71		300		310						230	230
		Out			1/5		291		04 64	64 64	1 189		594		0∠ 268		239						42 188	42 194
		Oui			1,019		1,200		-04	04	1,109		594		200		239	II					100	194

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Office Building trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 710 (General Office Building), average rate

tements are needed	
ng)	

Seaport Square PDA NPC - Block L5 Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share	Walk/ Bike/ Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share ²	Shuttle ² Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour												•												
Office Building ⁴	610	Total		11.030	6,728	1.13	7,602		0	0	7,602	55%	4,182	19%	1,444	17%	1,292	9%	684		48	1.13	1,144	1,192
	KSF	In	50%	5.515	3,364	1.13	3,801	0%	0	0	3,801	55%	2,091	19%	722	17%	646	9%	342	14	24	1.13	572	596
		Out	50%	5.515	3,364	1.13	3,801	0%	0	0	3,801	55%	2,091	19%	722	17%	646	9%	342	14	24	1.13	572	596
Shopping Center ⁵	112	Total		42.700	4,782	1.78	8,512	25%	2,128	2,128	6,384	27%	1,724	39%	2,490	34%	2,170		0		0	1.78	1,220	1,220
	KSF	In	50%	21.350	2,391	1.78	4,256	25%	1,064	1,064	3,192	27%	862	39%	1,245	34%	1,085	0%	0	14.00	0	1.78	610	610
		Out	50%	21.350	2,391	1.78	4,256	25%	1,064	1,064	3,192	27%	862	39%	1,245	34%	1085	0%	0	14.00	0	1.78	610	610
Total		Total			11,510		16,114		2,128	2,128	13,986		5,906		3,934		3,462		684				2,364	
		In			5,755		8,057		1,064	1,064	6,993		2,953		1,967		1,731		342				1,182	
		Out			5,755		8,057		1,064	1,064	6,993		2,953		1,967		1,731		342				1,182	
AM Peak Hour																								
Office Building ⁴	610	Total		2.11	1,287	1.13	1,455		0	0	1,455		800		277		247		131		9	1.13	219	228
	KSF	In	97%	2.040	1,244	1.13	1,406	0%	0	0	1,406	55%	773	19%	267	17%	239	9%	127	14	9	1.13	212	221
		Out	3%	0.070	43	1.13	49	0%	0	0	49	55%	27	19%	10	17%	8	9%	4	14	0	1.13	7	7
Shopping Center ⁵	112	Total		0.96	108	1.78	192	25%	36	36	156	27%	42	39%	61	34%	53		0		0	1.78	30	30
	KSF	In	62%	0.595	67	1.78	119	25%	18	18	101	27%	27	39%	40	34%	34	0%	0	5.75	0	1.78	19	19
		Out	38%	0.365	41	1.78	73	25%	18	18	55	27%	15	39%	21	34%	19	0%	0	5.75	0	1.78	11	11
Total		Total			1,395		1,647		36	36	1,611		842		338		300						249	258
		In			1,311		1,525		18	18	1,507		800		307		273						231	240
		Out			84		122		18	18	104		42		31		27						18	18
PM Peak Hour																								
Office Building ⁴	610	Total		2.02	1,233	1.13	1,394		0	0	1,394		767		265		237		125		9	1.13	210	219
	KSF	In	3%	0.070	43	1.13	49	0%	0	0	49	55%	27	19%	10	17%	8	9%	4	14	0	1.13	7	7
		Out	97%	1.950	1,190	1.13	1,345	0%	0	0	1,345	55%	740	19%	255	17%	229	9%	121	14	9	1.13	203	212
Shopping Center ⁵	112	Total		3.71	415	1.78	738	25%	178	178	560	27%	152	39%	218	34%	190		0		0	1.78	107	107
	KSF	In	48%	1.781	199	1.78	354	25%	89	89	265	27%	72	39%	103	34%	90	0%	0	5.75	0	1.78	51	51
		Out	52%	1.929	216	1.78	384	25%	89	89	295	27%	80	39%	115	34%	100	0%	0	5.75	0	1.78	56	56
Total		Total			1,648		2,132		178	178	1,954		919		483		427						317	326
		In			242		403		89	89	314		99		113		98						58	58
		Out			1,406		1,729		89	89	1,640		820		370		329						259	268

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Office Building trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 710 (General Office Building), average rate

tements are needed	
ng)	

Seaport Square PDA NPC - Block L6 Trip Generation Assessment

HOWARD STEIN HUDSON

17-Jan-2017

			Directional	Average	Unadjusted	Assumed National Vehicle Occupancy	Unadjusted	Pass-By Person-Trips	Pass-By	Non-Primary	Primary Person	Transit	Transit Person-	Walk/Bike/	Walk/ Bike/	,	Auto Person-		Private Auto	Taxi Perso	Assumed Loc Auto n- Occupancy	al Assumed Local Auto Occupancy	Total Adjusted Private Auto	Total Adjusted Ta	Total Adjusted Auto axi (Private +
Land Use	Size	Category	Split	Trip Rate	Vehicle Trips	Rate ¹	Person-Trips	Share	Person-Trips	Person-Trips	Trips	Share ²	Trips	Other Share	² Other Trips	Auto Share	² Trips	% Taxi ³	Person-Trips	Trips	Rate ⁴	Rate for Taxis ⁵	Trips	Trips	Taxi) Trips
Daily Peak Hour								•						•		<u>.</u>		0							
Hotel ⁶	389	Total		8.170	3,178	1.84	5,848		0	0	5,848	27%	1,578	39%	2,282	34%	1,988	30%	1,392	596	1.84	1.20	756	496	1,252
	rooms	In	50%	4.085	1,589	1.84	2,924	0%	0	0	2,924	27%	789	39%	1,141	34%	994	30%	696	298	1.84	1.20	378	248	626
		Out	50%	4.085	1,589	1.84	2,924	0%	0	0	2,924	27%	789	39%	1,141	34%	994	30%	696	298	1.84	1.20	378	248	626
Shopping Center ⁷	51	Total		42.700	2,178	1.78	3,876	25%	970	970	2,906	27%	784	39%	1,134	34%	988	0%	988	0	1.78	1.20	556	0	556
	KSF	In	50%	21.350	1,089	1.78	1,938	25%	485	485	1,453	27%	392	39%	567	34%	494	0%	494	0	1.78	1.20	278	0	278
		Out	50%	21.350	1,089	1.78	1,938	25%	485	485	1,453	27%	392	39%	567	34%	494	0%	494	0	1.78	1.20	278	0	278
Total		Total			5,356		9,724		970	970	8,754		2,362		3,416		2,976		2,380	596			1,312	496	1,808
		In			2,678		4,862		485	485	4,377		1,181		1,708		1,488		1,190	298			656	248	904
		Out			2,678		4,862		485	485	4,377		1,181		1,708		1,488		1,190	298			656	248	904
AM Peak Hour																									
Hotel ⁶	389	Total		0.53	207	1.84	380		0	0	380		102		149		129	30%	90	39	1.84	1.20	49	32	81
	rooms	In	59%	0.313	122	1.84	224	0%	0	0	224	27%	60	39%	88	34%	76	30%	53	23	1.84	1.20	29	19	48
		Out	41%	0.217	85	1.84	156	0%	0	0	156	27%	42	39%	61	34%	53	30%	37	16	1.84	1.20	20	13	33
Shopping Center ⁷	51	Total		0.96	49	1.78	87	25%	18	18	69		19		26		24	0%	24	0	1.78	1.20	13	0	13
	KSF	In	62%	0.595	30	1.78	53	25%	9	9	44	27%	12	39%	17	34%	15	0%	15	0	1.78	1.20	8	0	8
		Out	38%	0.365	19	1.78	34	25%	9	9	25	27%	7	39%	9	34%	9	0%	9	0	1.78	1.20	5	0	5
Total		Total			256		467		18	18	449		121		175		153		114	39			62	32	94
		In			152		277		9	9	268		72		105		91		68	23			37	19	56
		Out			104		190		9	9	181		49		70		62		46	16			25	13	38
PM Peak Hour																									
Hotel ⁶	389	Total		0.60	233	1.84	429		0	0	429		116		168		145	30%	102	43	1.84	1.20	55	36	91
	rooms	In	51%	0.306	119	1.84	219	0%	0	0	219	27%	59	39%	86	34%	74	30%	52	22	1.84	1.20	28	18	46
		Out	49%	0.294	114	1.84	210	0%	0	0	210	27%	57	39%	82	34%	71	30%	50	21	1.84	1.20	27	18	45
Shopping Center ⁷	51	Total		3.71	189	1.78	336	25%	82	82	254		69		99		86	0%	86	0	1.78	1.20	48	0	48
	KSF	In	48%	1.781	91	1.78	162	25%	41	41	121	27%	33	39%	47	34%	41	0%	41	0	1.78	1.20	23	0	23
		Out	52%	1.929	98	1.78	174	25%	41	41	133	27%	36	39%	52	34%	45	0%	45	0	1.78	1.20	25	0	25
Total		Total			422		765		82	82	683		185		267		231		188	43			103	36	139
		In			210		381		41	41	340		92		133		115		93	22			51	18	69
		Out			212		384		41	41	343		93		134		116		95	21			52	18	70

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Vehicle Trips = 70% Private Auto and 30% Taxi. Taxi trip rate based on CTPS Taxi activity rates for Hotel lane use, as adopted by Central Artery/Tunnel Project

4. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

5. For taxi cabs, 1.2 passengers per cab. (2.2 minus 1 driver equals 1.2)

6. ITE Trip Generation Manual, 9th Edition, LUC 310 (Hotel), average rate

Seaport Square PDA NPC - Block N Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share	Walk/ Bike/	Auto Share ²	Auto Person Trips	Shuttle Share	Shuttle ² Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour																								
Apartment ⁴	350	Total		6.650	2,328	1.13	2,630		0	0	2,630	35%	920	39%	1,026	26%	684	0%	0		0	1.13	606	606
	units	In	50%	3.325	1,164	1.13	1,315	0%	0	0	1,315	35%	460	39%	513	26%	342	0%	0	14.00	0	1.13	303	303
		Out	50%	3.325	1,164	1.13	1,315	0%	0	0	1,315	35%	460	39%	513	26%	342	0%	0	14.00	0	1.13	303	303
Shopping Center ⁵	72	Total		42.700	3,074	1.78	5,472	25%	1,368	1,368	4,104	27%	1,108	39%	1,600	34%	1,396		0		0	1.78	784	784
	KSF	In	50%	21.350	1,537	1.78	2,736	25%	684	684	2,052	27%	554	39%	800	34%	698	0%	0	14.00	0	1.78	392	392
		Out	50%	21.350	1,537	1.78	2,736	25%	684	684	2,052	27%	554	39%	800	34%	698	0%	0	14.00	0	1.78	392	392
Total		Total			5,402		8,102		1,368	1,368	6,734		2,028		2,626		2,080		0				1,390	
		In			2,701		4,051		684	684	3,367		1,014		1,313		1,040		0				695	
		Out			2,701		4,051		684	684	3,367		1,014		1,313		1,040		0				695	
AM Peak Hour																								
Apartment ⁴	350	Total		0.24	85	1.13	96		0	0	96		34		37		25	0%	0		0	1.13	22	22
	units	In	20%	0.050	18	1.13	20	0%	0	0	20	35%	7	39%	8	26%	5	0%	0	14.00	0	1.13	4	4
		Out	80%	0.190	67	1.13	76	0%	0	0	76	35%	27	39%	29	26%	20	0%	0	14.00	0	1.13	18	18
Shopping Center ⁵	72	Total		0.96	69	1.78	123	25%	24	24	99	27%	27	39%	38	34%	34		0		0	1.78	19	19
	KSF	In	62%	0.595	43	1.78	77	25%	12	12	65	27%	18	39%	25	34%	22	0%	0	14.00	0	1.78	12	12
		Out	38%	0.365	26	1.78	46	25%	12	12	34	27%	9	39%	13	34%	12	0%	0	14.00	0	1.78	7	7
Total		Total			154		219		24	24	195		61		75		59						41	41
		In			61		97		12	12	85		25		33		27						16	16
		Out			93		122		12	12	110		36		42		32						25	25
PM Peak Hour																								
Apartment ⁴	350	Total		0.24	85	1.13	96		0	0	96		34		38		25	0%	0		0	1.13	22	22
	units	In	62%	0.150	53	1.13	60	0%	0	0	60	35%	21	39%	24	26%	16	0%	0	14.00	0	1.13	14	14
		Out	38%	0.090	32	1.13	36	0%	0	0	36	35%	13	39%	14	26%	9	0%	0	14.00	0	1.13	8	8
Shopping Center ⁵	72	Total		3.71	267	1.78	475	25%	114	114	361	27%	97	39%	141	34%	123		0		0	1.78	70	70
	KSF	In	48%	1.781	128	1.78	228	25%	57	57	171	27%	46	39%	67	34%	58	0%	0	14.00	0	1.78	33	33
		Out	52%	1.929	139	1.78	247	25%	57	57	190	27%	51	39%	74	34%	65	0%	0	14.00	0	1.78	37	37
Total		Total			352		571		114	114	457		131		179		148						92	92
		In			181		288		57	57	231		67		91		74						47	47
		Out			171		283		57	57	226		64		88		74						45	45

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Apartment trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 220 (Apartment), average rate

ements are needed	
ng)	

Seaport Square PDA NPC - Block P Trip Generation Assessment

HOWARD STEIN HUDSON 17-Jan-2017

Land Use	Size	Category	Directional Split	Average Trip Rate	Unadjusted Vehicle Trips	Assumed National Vehicle Occupancy Rate ¹	Unadjusted Person-Trips	Pass-By Person-Trips Share	Pass-By Person-Trips	Non-Primary Person-Trips	Primary Person Trips	Transit Share ²	Transit Person- Trips	Walk/Bike/ Other Share	Walk/ Bike/ ² Other Trips	Auto Share ²	Auto Person- Trips	Shuttle Share	Shuttle ² Person-Trips	Shuttle Occupancy Rate	Shuttle Trips	Assumed Local Auto Occupancy Rate ³	Total Adjusted Auto Trips	Total Adjusted Auto+Shuttle Trips
Daily Peak Hour																•								
Office Building ⁴	491	Total		11.030	5,416	1.13	6,120		0	0	6,120	55%	3,366	19%	1,164	17%	1,040	9%	550		40	1.13	920	960
	KSF	In	50%	5.515	2,708	1.13	3,060	0%	0	0	3,060	55%	1,683	19%	582	17%	520	9%	275	14	20	1.13	460	480
		Out	50%	5.515	2,708	1.13	3,060	0%	0	0	3,060	55%	1,683	19%	582	17%	520	9%	275	14	20	1.13	460	480
Shopping Center ⁵	75	Total		42.700	3,202	1.78	5,700	25%	1,426	1,426	4,274	27%	1,154	39%	1,666	34%	1,454		0		0	1.78	816	816
	KSF	In	50%	21.350	1,601	1.78	2,850	25%	713	713	2,137	27%	577	39%	833	34%	727	0%	0	14.00	0	1.78	408	408
		Out	50%	21.350	1,601	1.78	2,850	25%	713	713	2,137	27%	577	39%	833	34%	727	0%	0	14.00	0	1.78	408	408
Total		Total			8,618		11,820		1,426	1,426	10,394		4,520		2,830		2,494		550				1,736	
		In			4,309		5,910		713	713	5,197		2,260		1,415		1,247		275				868	
		Out			4,309		5,910		713	713	5,197		2,260		1,415		1,247		275				868	
AM Peak Hour																								
Office Building ⁴	491	Total		2.11	1,036	1.13	1,170		0	0	1,170		644		223		198		105		7	1.13	175	182
	KSF	In	97%	2.040	1,002	1.13	1,132	0%	0	0	1,132	55%	623	19%	215	17%	192	9%	102	14	7	1.13	170	177
		Out	3%	0.070	34	1.13	38	0%	0	0	38	55%	21	19%	8	17%	6	9%	3	14	0	1.13	5	5
Shopping Center ⁵	75	Total		0.96	72	1.78	128	25%	24	24	104	27%	28	39%	41	34%	35		0		0	1.78	20	20
	KSF	In	62%	0.595	45	1.78	80	25%	12	12	68	27%	18	39%	27	34%	23	0%	0	5.75	0	1.78	13	13
		Out	38%	0.365	27	1.78	48	25%	12	12	36	27%	10	39%	14	34%	12	0%	0	5.75	0	1.78	7	7
Total		Total			1,108		1,298		24	24	1,274		672		264		233						195	202
		In			1,047		1,212		12	12	1,200		641		242		215						183	190
		Out			61		86		12	12	74		31		22		18						12	12
PM Peak Hour																								
Office Building ⁴	491	Total		2.02	991	1.13	1,119		0	0	1,119		616		213		190		100		7	1.13	168	175
	KSF	In	3%	0.070	34	1.13	38	0%	0	0	38	55%	21	19%	8	17%	6	9%	3	14	0	1.13	5	5
		Out	97%	1.950	957	1.13	1,081	0%	0	0	1,081	55%	595	19%	205	17%	184	9%	97	14	7	1.13	163	170
Shopping Center ⁵	75	Total		3.71	279	1.78	497	25%	120	120	377	27%	101	39%	148	34%	128		0		0	1.78	72	72
	KSF	In	48%	1.781	134	1.78	239	25%	60	60	179	27%	48	39%	70	34%	61	0%	0	5.75	0	1.78	34	34
		Out	52%	1.929	145	1.78	258	25%	60	60	198	27%	53	39%	78	34%	67	0%	0	5.75	0	1.78	38	38
Total		Total			1,270		1,616		120	120	1,496		717		361		318						240	247
		In			168		277		60	60	217		69		78		67						39	39
		Out			1,102		1,339		60	60	1,279		648		283		251						201	208

1. 2009 National vehicle occupancy rates - 1.13:home to work; 1.84: family/personal business; 1.78: shopping; 2.2 social/recreational

2. Mode shares based on HSH field work and South Boston Waterfront Sustainable Transportation Plan

3. Local vehicle occupancy rates based on 2009 National vehicle occupancy rates

4. Peak hour Office Building trip rates calculated based on HSH field work 11/01/16, daily rates based on ITE LUC 710 (General Office Building), average rate

tements are needed	
ng)	

Synchro 9 Report Lanes, Volumes, Timings

	∕		\rightarrow	1	-	•	1	1	1	>	Ŧ	<			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø3		
Lane Configurations		र्स	1		4		۲	₽			4				
Traffic Volume (vph)	2	4	115	29	5	0	360	1	10	0	0	3			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped Bike Factor		0.97	0.98		0.98			0.96			0.0/5				
FIT FIT Protected		0 984	0.850		0.959		0.950	0.862			0.865				
Satd. Flow (prot)	0	1870	1417	0	1777	0	1719	1567	0	0	1644	0			
Flt Permitted		0.892			0.751		0.950								
Satd. Flow (perm) Bight Turp on Rod	0	1636	1391	0	1368	0 Voc	1719	1567	0 Voc	0	1644	0 Voc			
Satd. Flow (RTOR)			160			162		11	162		541	Tes			
Link Speed (mph)		30			30			30			30				
Link Distance (ft)		278			172			335			275				
Confl Peds (#/hr)	35	0.3	10	10	3.9	35		7.0	31	31	0.3				
Peak Hour Factor	0.72	0.72	0.72	0.71	0.71	0.71	0.95	0.95	0.95	0.38	0.38	0.38			
Heavy Vehicles (%)	0%	0%	14%	3%	0%	0%	5%	0%	0%	0%	0%	0%			
Adj. Flow (vph) Shared Lane Traffic (%)	3	6	160	41	7	0	379	1	11	0	0	8			
Lane Group Flow (vph)	0	9	160	0	48	0	379	12	0	0	8	0			
Turn Type	Perm	NA	pm+ov	Perm	NA		Prot	NA			NA				
Protected Phases	,	4	1		4		1	12		2	2		3		
Detector Phase	4	4	4	4	4		1	12		2	2				
Switch Phase	4	7		4				12		~ 2	2				
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0		8.0		
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0		13.0			13.0	13.0		22.0		
Total Split (%)	20.0%	22.0	44.0	22.0	20.0%		44.0			22.0	20.0%		22.0		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0		3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0			2.0	2.0		1.0		
LOST TIME Adjust (S) Total Lost Time (s)		0.0	0.0		0.0		0.0				0.0				
Lead/Lag	Lag	Lag	Lead	Lag	Lag		Lead			Lag	Lag		Lead		
Lead-Lag Optimize?	, i i i i i i i i i i i i i i i i i i i				Ť										
Recall Mode	None	None	C-Max	None	None		C-Max	100.6		None	None		None		
Actuated g/C Ratio		0.08	96.8		0.08		0.81	0.91			0.07				
v/c Ratio		0.07	0.13		0.42		0.27	0.01			0.01				
Control Delay		48.5	0.5		58.8		1.5	0.2			0.0				
Queue Delay Total Delay		48.5	0.0		0.0		0.8	0.0			0.0				
LOS		40.5 D	0.5 A		50.0 E		2.J	0.2 A			0.0 A				
Approach Delay		3.0			58.8			2.2							
Approach LOS		A	2		E		17	A			0				
Stops (vpn) Fuel Used(gal)		0	3		32		6/	0			0				
CO Emissions (g/hr)		8	19		44		99	2			0				
NOx Emissions (g/hr)		2	4		9		19	0			0				
VUC Emissions (g/hr) Dilemma Vehicles (#)		2	4		10		23	0			0				
Queue Length 50th (ft)		6	0		33		3	0			0				
Queue Length 95th (ft)		18	3		54		m5	m0			0				
Internal Link Dist (ft)		198			92			255			195				
Base Capacity (voh)		252	1264		211		1393	1499			711				
Starvation Cap Reductn		0	0		0		700	0			0				
Spillback Cap Reductn		0	0		0		0	0			0				
Storage Cap Reductn		0	0 12		0 22		0 55	0.01			0.01				
		0.04	0.15		0.23		0.00	0.01			0.01				
Intersection Summary	Other												_		
Cycle Length: 110	Other														
Actuated Cycle Length: 110 Offset: 0 (0%) Referenced to	to phase 1-MP	STI Start	of Green												
Natural Cycle: 70		5 . L, Jian	or oreen												
Control Type: Actuated-Cool	rdinated														
Maximum v/c Ratio: 0.42	0					1.00									
Intersection Signal Delay: 6. Intersection Canacity Utilizat	.o tion 43 5%			lr IC	itersection	LUS: A Service I	4								
Analysis Period (min) 15				I. I.	5 2010101	5011001									
m Volume for 95th percent	tile queue is r	metered b	y upstrear	m signal.											
Solits and Phases A. Mort	thern Avenue	& Diar 1	Roulevard	1											
	INCH AVENUE	oxinci4	Donicial						ŧ					11	*
Ø1 (R)								¥	ľØ2					. Л.Б Ø3	0 4

	٦	-	\mathbf{r}	⋤	4	←	*	•	Ť	1	1	ŧ	-
ane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	205	4 1 2	00	3	14	*	21	74	40	25	21	4 25	101
-uture Volume (vph)	208	619	99	3	14	555	31	74	49	25	31	35	101
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		125	12	125	12	0	0	11	0	0		100
Storage Lanes	0		0		1		0	0		0	0		0
Laper Length (tt) Lane Util, Factor	0.95	0.95	0.95	0.95	25	0.95	0.95	25	1.00	1.00	25	1.00	1.00
Ped Bike Factor	0.70	0.96	0.70	0.70	1.00	0.97	0.70	1.00	0.93	1.00	1.00	0.93	0.92
Frt Fit Protected		0.984			0.950	0.992			0.977			0 977	0.850
Satd. Flow (prot)	0	2777	0	0	1624	2909	0	0	1305	0	0	1389	1255
Flt Permitted	<i>c</i>	0.528	^	^	0.226	2000	0	0	0.812	0	^	0.834	1450
salu. Flow (perm) Right Turn on Red	U	1483	Yes	0	386	2909	Yes	U	1052	Yes	0	1104	1152 Yes
Satd. Flow (RTOR)		19				12			9				109
Link Speed (mph)		30				30			30			30	
Travel Time (s)		23.4				7.0			11.6			339	
Confl. Peds. (#/hr)	130		69		69		130	46		157	157		46
Confl. Bikes (#/hr)	0.06	0.06	29	0.50	0.07	0.07	8	0.90	0.90	5	0.02	0.02	2
Heavy Vehicles (%)	6%	7%	0.90	0.50	0.97	6%	38%	7%	2%	0.89	35%	0.93	12%
Parking (#/hr)							0		0	0			
Adj. Flow (vph) Shared Lane Traffic (%)	217	645	103	6	14	572	32	83	55	28	33	38	109
Lane Group Flow (vph)	0	965	0	0	20	604	0	0	166	0	0	71	109
furn Type	Perm	NA		Perm	D.P+P	NA		Perm	NA		Perm	NA	Perm
Protected Phases Permitted Phases	1	1		14	4	14		3	3		3	3	2
Detector Phase	1	1		14	4	14		3	3		3	3	3
Switch Phase	10.0	10.0			0.0			0.0	0.0		0.0	0.0	0.0
Vinimum miliai (s) Vinimum Split (s)	23.0	23.0			8.0 15.0			8.0 29.0	8.0 29.0		8.0 29.0	8.0 29.0	29.0
Fotal Split (s)	66.0	66.0			15.0			29.0	29.0		29.0	29.0	29.0
Fotal Split (%)	60.0%	60.0%			13.6%			26.4%	26.4%		26.4%	26.4%	26.4%
All-Red Time (s)	3.0	3.0			3.0			3.0	3.0		3.0	3.0	3.0
Lost Time Adjust (s)		-2.0			-2.0				-2.0			-2.0	-2.0
Lotal Lost Time (s)		4.0			4.0			ead	4.0		Lead	4.0	4.0
Lead-Lag Optimize?					Ldy			Ledu	read		Leau	rega	read
Recall Mode	C-Max	C-Max			None			Max	Max		Max	Max	Max
Act Effct Green (s) Actuated g/C Ratio		62.0 0.56			73.0	77.0			25.0			25.0 0.23	25.0
//c Ratio		3.44dl			0.05	0.30			0.67			0.28	0.32
Control Delay		89.7			7.1	10.0			41.3			36.7	9.8
Total Delay		0.0			0.0	10.0			41.3			0.0	0.0
_0S		F			A	A			D			D	A
Approach Delay		89.7				9.9			41.3			20.4	
Approach LOS Stops (vph)		828			9	A 270			146			57	35
Fuel Used(gal)		29			0	7			3			1	1
CO Emissions (g/hr)		2022			14	495			212			69 12	46
OC Emissions (g/hr)		469			3	115			41			16	11
Dilemma Vehicles (#)		0			0	0			0			0	0
Queue Length 50th (ft)		~425 m#461			8 m15	128			52 m#158			45 91	14
Internal Link Dist (ft)		949			1113	228			431			259	57
Turn Bay Length (ft)					125	2020			244			252	100
Base Capacity (vph) Starvation Cap Reductn		844 0			3/9	2039			246			250	346
Spillback Cap Reductn		0			0	0			0			0	0
Storage Cap Reductn		0			0	0			0			0	0
Reduced V/C Ratio		1.14			0.05	0.30			0.67			0.28	0.32
ntersection Summary Area Type:	CBD												
Cycle Length: 110	000												
Actuated Cycle Length: 110	lda alta 🗧												
JIISet: /1 (65%), Referenced Natural Cycle: 130	to phase 1:	EBWB, Sta	art of Gre	en									
Control Type: Actuated-Coord	dinated												
Maximum v/c Ratio: 1.14	4			,	torcostin	000							
mersection Signal Delay: 53. ntersection Canacity Utilization	.4 on 76.6%			In IC	itersection	LUS: D Service D)						
Analysis Period (min) 15					5 20101 01	50, 100 D							
 Volume exceeds capacity 	, queue is the	neoretically	/ infinite.										
# 95th percentile volume ex	ceeds cana	ycies. city, aueur	e mav be	longer.									
Queue shown is maximum	n after two c	ycles.	, 20										
N Volume for 95th percentil	le queue is r	netered by	upstream	n signal.									
a Delacio Lett Lane. Reco	we with I th	ouyi idfiê	us a ieit li	ui IC.									
Splits and Phases: 7: Sleep	per Street &	Seaport B	oulevard										
Ø1 (R)													
66 s													

	≤	-	\mathbf{r}	F	4	+	1	1	
Lane Group	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR	Ø2
Lane Configurations		≜ †≽			۲	11	۲Y		
Traffic Volume (vph)	1	461	153	14	72	467	111	46	
Ideal Flow (vphpl)	1900	40 I 1900	1900	14	1900	467	1900	40	
Lane Width (ft)	12	11	11	12	12	11	12	12	
Storage Length (ft)	0		0		100		0	100	
Taper Length (ff)	25		U		25		25	1	
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	0.95	0.97	0.95	
Ped Bike Factor		0.99					0.057		
FIT Fit Protected		0.963			0.950		0.956		
Satd. Flow (prot)	0	2794	0	0	1523	2935	3042	0	
Flt Permitted		0.876			0.348		0.966		
Satd. Flow (perm) Right Turn on Ped	0	2448	0	0	558	2935	3042	0 Voc	
Satd. Flow (RTOR)		51	103				47	163	
Link Speed (mph)		30				30	30		
Link Distance (ft)		655				254	912		
Confl. Bikes (#/hr)		14.9	20			5.8	20.7		
Peak Hour Factor	0.89	0.89	0.89	0.90	0.90	0.90	0.96	0.96	
Heavy Vehicles (%)	0%	8%	5%	0%	8%	7%	1%	0%	
Auj. Flow (vpn) Shared Lane Traffic (%)	1	518	172	16	80	519	116	48	
Lane Group Flow (vph)	0	691	0	0	96	519	164	0	
Turn Type	Perm	NA		custom	D.P+P	NA	Prot		
Protected Phases	1	1		4	4	14	3		2
Detector Phase	1	1		4	4	14	3		
Switch Phase				· ·			Ū		
Minimum Initial (s)	10.0	10.0		8.0	8.0		8.0		8.0
Total Split (s)	18.0	18.0 51.0		15.0	15.0 15.0		15.0		29.0 29.0
Total Split (%)	46.4%	46.4%		13.6%	13.6%		13.6%		26%
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		4.0
All-Red Time (s)	3.0	3.0		3.0	3.0		3.0		0.0
Total Lost Time (s)		4.0			5.0		5.0		
Lead/Lag	Lead	Lead		Lag	Lag		Lead		Lag
Lead-Lag Optimize?	C Mar	C May		Max	May		Max		Nore
Act Effct Green (s)	C-IVIAX	C-Max 70.2		Max	Max 79.2	85.2	10 0		NOUG
Actuated g/C Ratio		0.64			0.72	0.77	0.09		
v/c Ratio		0.44			0.20	0.23	0.51		
Control Delay Queue Delay		4.9			6.4	5.2	42.6		
Total Delay		4.9			6.4	5.2	42.6		
LOS		А			А	А	D		
Approach Delay		4.9				5.4	42.6		
Stops (vph)		A 164			23	135	193		
Fuel Used(gal)		6			1	3	4		
CO Emissions (g/hr)		429			41	218	248		
NUX Emissions (g/hr)		83 QQ			8 Q	42	48		
Dilemma Vehicles (#)		0			0	0	0		
Queue Length 50th (ft)		2			9	40	32		
Queue Length 95th (ft)		m77			42	102	74		
Turn Bay Length (ft)		5/5			100	1/4	832		
Base Capacity (vph)		1581			489	2273	319		
Starvation Cap Reductn		0			0	0	0		
Spillback Cap Reductn		0			0	0	0		
Reduced v/c Ratio		0.44			0.20	0.23	0.51		
Intersection Summary									
Area Type:	CBD								
Cycle Length: 110									
Actuated Cycle Length: 110	to phase 1	EBWD C+	art of Cre	on					
Natural Cycle: 90	no pridse T	.LDWD, SI		.011					
Control Type: Actuated-Coor	dinated								
Maximum v/c Ratio: 0.51						1.00.1			
Intersection Signal Delay: 9.3 Intersection Canacity Hitilizati	on 51 5%			lr Ic	Thersection	LUS: A	4		
Analysis Period (min) 15					2.5 200010				
m Volume for 95th percenti	le queue is	metered by	upstream	m signal.					
Solits and Phases 8. Rost	on Wharf R	nad (WSR)	& Sean	ort Boulev:	ard				
1									
• ▼•Ø1(R)									

1 (K)

2006233.28 :: Seaport Square PDA NPC HSH

	_5	٠	-	\rightarrow	<	←	•	▲	T.	1	1	Ŧ	-
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		٦	††			≜ ⊅		1	1	1	1	4	
Traffic Volume (vph)	9	31	481	0	0	370	109	115	231	37	85	0	59
Ideal Flow (vphpl)	9 1900	31 1900	481	1900	1900	370	1900	1900	231	37 1900	85 1900	1900	59 1900
Lane Width (ft)	12	12	11	11	11	11	12	11	12	11	12	12	12
Storage Length (ft)		150		0	0		0	0		125	0		0
Storage Lanes		1		0	0		0	1		1	1		0
Lane Util, Factor	0.95	25	0.95	1.00	25	0.95	0.95	25	1 00	1 00	25	0.95	1 00
Ped Bike Factor	0.73	0.89	0.70	1.00	1.00	0.95	0.70	0.93	1.00	0.87	0.95	0.95	1.00
Frt		5.07				0.966				0.850	2.72	0.871	
Flt Protected		0.950						0.950			0.950	0.993	
Satd. Flow (prot)	0	1398	2737	0	0	2656	0	1570	1676	1405	1354	1143	0
Fit Permitted	0	0.370	2727	0	0	2654	0	0.950	1674	1000	0.950	0.993	0
Satu. Flow (perm) Right Turn on Red	U	487	2/3/	Yes	U	2000	Yes	1400	10/0	1220 Yes	1242	1130	Yes
Satd. Flow (RTOR)				.05		38	. 55			119		119	105
Link Speed (mph)			30			30			30			30	
Link Distance (ft)			263			376			812			335	
Travel Time (s)	50	107	6.0			8.5	107	50	18.5	74	74	7.6	50
Confl. Rikes (#/hr)	50	127					24	50		/4	/4		50
Peak Hour Factor	0.02	0.92	0.92	0.92	0.94	0.94	20	0.82	0.82	0.82	0.81	0.81	0.81
Heavy Vehicles (%)	0.92	21%	9%	0.92	0.94	9%	7%	0.62	2%	0.62	14%	0.01	13%
Parking (#/hr)	0,0	2170	0	0	070	,,,,	. /0	370	270	070	. 470	070	.070
Adj. Flow (vph)	10	34	523	0	0	394	116	140	282	45	105	0	73
Shared Lane Traffic (%)											11%		
Lane Group Flow (vph)	0	44	523	0	0	510	0	140	282	45	93	85	0
Turn Type	D.Pm	D.P+P	NA			NA		Split	NA	Perm	Split	NA	
Protected Phases	1	7	17			1		6	6	4	5	5	
Permitted Phases	1	7	17			1		6	6	6	5	5	
Switch Phase	1	1	17			1		0	0	0	5	5	
Minimum Initial (s)	10.0	8.0				10.0		10.0	10.0	10.0	8.0	8.0	
Minimum Split (s)	26.0	13.0				26.0		25.0	25.0	25.0	25.0	25.0	
Total Split (s)	40.0	15.0				40.0		27.0	27.0	27.0	28.0	28.0	
Total Split (%)	36.4%	13.6%				36.4%		24.5%	24.5%	24.5%	25.5%	25.5%	
Yellow Time (s)	3.0	3.0				3.0		3.0	3.0	3.0	3.0	3.0	
All-Red Lime (s)	2.0	2.0				2.0		2.0	2.0	2.0	2.0	2.0	
LUSI TIME AUJUST (S) Total Lost Time (s)		0.0				-2.0		-2.0	0.0	-2.0	0.0	0.0	
Lead/Lag		U.C De J				3.0		Lead	l ead	J.u Lead	5.0	0.0	
Lead-Lag Optimize?		Lug						Louu	2000	Louu			
Recall Mode	C-Max	None			(C-Max		None	None	None	None	None	
Act Effct Green (s)		54.7	61.7			44.1		25.0	23.0	25.0	12.3	12.3	
Actuated g/C Ratio		0.50	0.56			0.40		0.23	0.21	0.23	0.11	0.11	
v/c Ratio		0.13	0.34			0.47		0.39	0.81	0.12	0.62	0.36	
Control Delay		12.8	11.7			22.4		43.2	60.6	6.4	/3.2	15.5	
Quede Delay Total Delay		12.0	0.0			0.2		0.0	60.6	0.0	0.0	15.5	
1 OS		12.0 R	- 1.7 B			22.0 (.		43.2 D	00.6 F	0.4 A	73.2 F	15.5 R	
Approach Delav		D	11.8			22.6		U	50.2	А	L	45.6	
Approach LOS			B			С			D			D	
Stops (vph)		15	160			327		110	231	9	72	29	
Fuel Used(gal)		0	4			5		2	6	0	2	1	
CO Emissions (g/hr)		24	277			377		164	391	23	120	39	
NOx Emissions (g/hr)		5	54			73		32	76	5	23	8	
VUC Emissions (g/hr)		6	64			87		38	91	5	28	9	
Diremma venicles (#)		14	04			100		102	215	0	40	0	
Queue Length SUth (II)		14 m14	84			109		102	215	m10	00 113	26	
Internal Link Dist (ff)			183			296		140	732	iiiiu	113	255	
Turn Bay Length (ft)		150	100			270			1.52	125		200	
Base Capacity (vph)		346	1534			1086		377	372	383	283	333	
Starvation Cap Reductn		0	0			144		0	0	0	0	0	
Spillback Cap Reductn		0	0			0		0	0	0	0	0	
Storage Cap Reductn		0	0			0		0	0	0	0	0	
Reduced v/c Ratio		0.13	0.34			0.54		0.37	0.76	0.12	0.33	0.26	
Intersection Summary													
Area Type:	CBD												
Cycle Length: 110													
Actuated Cycle Length: 110	phone 1 F		t of C										
Unset: 0 (0%), Referenced to Natural Cyclo: 00	phase 1:E	SWB, Star	t of Green										
Natural Cycle: 90 Control Type: Actuated Coord	dinated												
Maximum v/c Ratio: 0.81	unidieu												
Intersection Signal Delay: 28.	.9			In	itersection L	OS: C							
Intersection Capacity Utilization	on 71.2%			IC	CU Level of S	Service C							
Analysis Period (min) 15													
m Volume for 95th percentil	le queue is	metered by	y upstream	ı signal.									
Splits and Phases: 9: East	Service Ro	ad & Seap	ort Boulev	ard			.						
Ø1 (R)							4	Ø5					
	-	\mathbf{r}	∢	←	1	1							
--------------------------------------	----------------------	--------------	---------------	---------------	---------------	-----------------------							
ane Group	EBT	EBR	WBL	WBT	NBL	NBR							
ane Configurations	† Ъ	15		41	ኘካ	101							
ramic Volume (vph)	538	65	46	195	284	124							
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900							
ane Width (ft)	12	11	12	13	11	12							
Storage Length (II) Storage Lanes		0	0		125	125							
Taper Length (ft)			25		25								
ane Util. Factor	0.95	0.95	0.95	0.95	0.97	1.00							
red Bike Factor	1.00					0.850							
It Protected	0.704			0.991	0.950	0.000							
Satd. Flow (prot)	2889	0	0	2484	2901	1358							
Fit Permitted	2000	0	0	0.711	0.950	1250							
Right Turn on Red	2009	No	0	1/02	2901	1356 No							
Satd. Flow (RTOR)													
ink Speed (mph)	30			30	30								
Travel Time (s)	8.9			13.4	11.3								
Confl. Bikes (#/hr)		23											
Peak Hour Factor	0.92	0.92	0.72	0.72	0.84	0.84							
Parking (#/hr)	11%	5%	24%	28%	5%	1%							
Adj. Flow (vph)	585	71	64	271	338	148							
Shared Lane Traffic (%)	/	~	0	225	220	140							
Lane Group Flow (vpn) Furn Type	656 NA	U	0 Perm	335 NA	338 Prot	148 Prot							
Protected Phases	1		- GHH	1	3	3							
Permitted Phases			1		^	^							
Switch Phase	1		1	1	3	3							
Ainimum Initial (s)	10.0		10.0	10.0	8.0	8.0							
Minimum Split (s)	18.0		18.0	18.0	15.0	15.0							
rotal Split (S) Fotal Split (%)	49.0 44.5%		49.0 44.5%	49.0 44.5%	36.0 32.7%	36.0 32.7%							
fellow Time (s)	3.0		3.0	3.0	3.0	3.0							
All-Red Time (s)	3.0		3.0	3.0	3.0	3.0							
LOST LIME Adjust (s)	-2.0			-2.0	0.0	0.0							
ead/Lag	Lead		Lead	Lead	0.0	0.0							
ead-Lag Optimize?			·	·									
Recall Mode	C-Max		C-Max	C-Max	Max 30.0	Max 30.0							
Actuated g/C Ratio	0.41			0.41	0.27	0.27							
/c Ratio	0.56			0.46	0.43	0.40							
Control Delay	22.6			26.2	24.6	26.0							
Fotal Delay	0.3			26.2	24.6	26.0							
.0S	C			C	C	C							
Approach Delay	22.9			26.2	25.1								
Approach LUS Stops (vph)	360			172	220	96							
Fuel Used(gal)	7			3	4	2							
CO Emissions (g/hr)	463			234	262	117							
VOX Emissions (g/hr)	90			46	51	23							
Dilemma Vehicles (#)	0			0	0	0							
Queue Length 50th (ft)	171			88	88	76							
Queue Length 95th (ft)	112			98 511	121	126							
Furn Bay Length (ft)	312			211	418	125							
Base Capacity (vph)	1181			729	791	370							
Starvation Cap Reductn	127			0	0	0							
Storage Cap Reductn	0			0	0	0							
Reduced v/c Ratio	0.62			0.46	0.43	0.40							
ntersection Summary													
Area Type:	CBD												
Cycle Length: 110													
Actuated Cycle Length: 110) od to phase 1.1		tart of Car	ion i									
Vatural Cycle; 60	eu to priase 1:t	_DVVB, SI	ian ul Gfê	cli									
Control Type: Actuated-Co	ordinated												
Maximum v/c Ratio: 0.56						1.00.0							
ntersection Signal Delay: 2	24.4 ation 47.8%			In	tersection	LOS: C f Service /							
Analysis Period (min) 15	au011 47.070			IC	O LEVELO	JEIVICE							
splits and Phases: 10: B	Street & Seap	ort Boule	vard										
🕈 Ø1 (R)													
au e													

	٦		\mathbf{r}	4	←	•	1	Ť	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2
Lane Configurations		ፋጉ			ፋጉ		۴.		1		4		
Traffic Volume (vph)	21	402	168	40	106	26	141	0	15	34	15	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Peu Bike Factor		0.96			0.98		0.94	0.57	0.850		0.88		
Flt Protected		0.998			0.988		0.950	5.000	0.000		0.974		
Satd. Flow (prot)	0	2851	0	0	2506	0	1626	0	1615	0	1322	0	
Satd. Flow (perm)	0	2683	0	0	0.769	0	1532	0	1615	0	1214	0	
Right Turn on Red	5		Yes			Yes		-	Yes			Yes	
Satd. Flow (RTOR)		74			25			164	109		12		
Link Speed (mpn) Link Distance (ft)		30			296			30			30 515		
Travel Time (s)		8.5			6.7			7.6			11.7		
Confl. Peds. (#/hr)	29		173	173		29	32		31	31		32	
Peak Hour Factor	0.93	0.93	0.93	0.89	0.89	0.89	0.95	0.95	0.95	0.89	0.89	0.89	
Heavy Vehicles (%)	26%	17%	13%	0%	49%	50%	11%	0%	0%	24%	67%	7%	
Adj. Flow (vph)	23	432	181	45	119	29	148	0	16	38	17	17	
Shared Lane Traffic (%)	0	626	0	0	102	0	1/12	2	10%	0	72	0	
Turn Type	Perm	NA	U	Perm	NA	U	Prot	2	Prot	Split	NA	U	
Protected Phases		1			1		7		7	. 8	8		2
Permitted Phases	1	1		1	1		7		7	0	0		
Switch Phase	1	I		1	I		/		1	8	ŏ		
Minimum Initial (s)	16.0	16.0		16.0	16.0		6.0		6.0	6.0	6.0		4.0
Minimum Split (s)	21.0	21.0		21.0	21.0		11.0		11.0	11.0	11.0		21.0
Total Split (S) Total Split (%)	48.0	48.0%		48.0%	48.0%		20.0%		20.0%	11.0%	11.0%		21.0 21%
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0		3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0		2.0	2.0	2.0		0.0
Lost Time Adjust (s)		0.0			0.0		0.0		0.0		0.0		
Lead/Lag	Lead	5.0 Lead		Lead	Lead		Lead		Lead	Lao	Lag		Lao
Lead-Lag Optimize?													
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	0.0	None 12.2	None	None		None
Actuated g/C Ratio		01.6			01.6		0.13	0.0	0.13		0.10		
v/c Ratio		0.38			0.16		0.69	0.01	0.05		0.50		
Control Delay		10.2			8.8		56.6	0.0	0.3		47.3		
Cuede Delay Total Delay		0.0			0.0		0.0	0.0	0.0		0.0		
LOS		B			A		E	A	A		D		
Approach Delay		10.2			8.8			51.1			47.3		
Approach LOS Stops (unb)		B 257			A 64		130	D	0		D		
Fuel Used(gal)		257			04		3	0	0		1		
CO Emissions (g/hr)		305			74		190	0	2		80		
NOx Emissions (g/hr)		59			14		37	0	0		16		
Dilemma Vehicles (#)		/1			0		44	0	0		19		
Queue Length 50th (ft)		86			22		91	0	0		37		
Queue Length 95th (ft)		154			47		148	0	0		79		
Internal Link Dist (ft) Turn Bay Length (ft)		292			216			254			435		
Base Capacity (vph)		1681			1198		258	164	348		143		
Starvation Cap Reductn		0			0		0	0	0		0		
Spillback Cap Reductn		0			0		0	0	0		0		
Reduced v/c Ratio		0.38			0.16		0.57	0.01	0.04		0.50		
Intersection Summary		2.00					2.07		2.07		2.00		
Area Type:	Other												
Cycle Length: 100													
Actuated Cycle Length: 100													
Unset: 19 (19%), Reference Natural Cycle: 45	d to phase 1	:EBWB, St	art of Gre	en									
Control Type: Actuated-Cool	rdinated												
Maximum v/c Ratio: 0.69													
Intersection Signal Delay: 18 Intersection Canacity Utilized	3.8 tion 55 5%			In	tersection	LOS: B	2						
Analysis Period (min) 15	1011 33.5%			IC	C LEVEL OI	Service	2						
Splits and Phases: 12: D S	Street & Sea	port Boule	vard										
🕶 Ø1 (R)											t ø2		
48 s										2	1 s		

	٩	-	\rightarrow	1	+	•	▲	Ť	1	1	ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2
Lane Configurations		4 †	1	۳	4Î	-		ę	1		4		
Traffic Volume (vph)	4	323	126	217	409	7	142	11	88	17	6	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	11	11	11	11	12	12	16	12	12	16	12	:
Storage Length (ft)	100		100	0		0	0		100	0		0	
Storage Lanes	25		1	25		0	25		1	25		0	
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor			0.96		1.00								
Frt Fit Drotostod		0.000	0.850	0.050	0.997			0.054	0.850		0.947		
Satd. Flow (prot)	0	2990	1364	1570	1616	0	0	1775	1425	0	1550	0	
Flt Permitted		0.750	1001	0.517	1010		Ū	0.956	1120	Ū	0.978	Ū	
Satd. Flow (perm)	0	2245	1307	855	1616	0	0	1775	1425	0	1550	0	
Sate Flow (RTOR)			NO		1	Yes			179		17	Yes	
Link Speed (mph)		30			30			30	177		30		
Link Distance (ft)		191			478			213			710		
Travel Time (s)		4.3	14		10.9	0		4.8	2		16.1		
Peak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.97	0.97	0.97	0.88	0.88	0.88	
Heavy Vehicles (%)	0%	5%	3%	0%	2%	0%	4%	9%	2%	0%	0%	40%	
Adj. Flow (vph)	4	333	130	236	445	8	146	11	91	19	7	17	
Shared Lane Traffic (%)	0	227	120	226	452	0	0	157	01	0	12	0	
Turn Type	Perm	NA	Perm	D.P+P	433 NA	0	Split	NA	Over	Split	43 NA	0	
Protected Phases		1		5	15		3	3	5	4	4		2
Permitted Phases	1		1	1					-				
Detector Phase Switch Phase	1	1	1	5	15		3	3	5	4	4		
Minimum Initial (s)	10.0	10.0	10.0	6.0			8.0	8.0	6.0	6.0	6.0		8.0
Minimum Split (s)	19.0	19.0	19.0	14.0			14.0	14.0	14.0	12.0	12.0		24.0
Total Split (s)	33.0	33.0	33.0	24.0			17.0	17.0	24.0	12.0	12.0		24.0
Total Split (%) Vellow Time (s)	30.0%	30.0%	30.0%	21.8%			15.5%	15.5%	21.8%	10.9%	10.9%		22% 4 0
All-Red Time (s)	4.0	4.0	4.0	4.0			2.0	2.0	4.0	2.0	2.0		0.0
Lost Time Adjust (s)		0.0	0.0	0.0				-1.0	0.0		-1.0		
Total Lost Time (s)	المعما	7.0	7.0	7.0			المعط	4.0	7.0	1	4.0		
Lead/Lag Lead-Lag Optimize?	Lead	Lead	Lead				Lead	Lead		Lag	Lag		Lay
Recall Mode	C-Max	C-Max	C-Max	None			Max	Max	None	Max	Max		None
Act Effct Green (s)		30.8	30.8	47.8	54.8			13.0	17.0		8.0		
Actuated g/C Ratio		0.28	0.28	0.43	0.50			0.12	0.15		0.07		
Control Delay		37.3	36.8	34.1	36.8			69.7	1.6		40.8		
Queue Delay		0.0	0.0	0.0	1.8			0.0	0.0		0.0		
Total Delay		37.3	36.8	34.1	38.6			69.7	1.6		40.8		
Approach Delay		37.1	D	C	37.1			44 7	A		40.8		
Approach LOS		D			D			D			40.0 D		
Stops (vph)		242	88	202	347			137	0		26		
Fuel Used(gal)		201	112	240	7			221	0		1		
NOx Emissions (g/hr)		59	22	47	90			43	2		47		
VOC Emissions (g/hr)		70	26	56	107			51	3		11		
Dilemma Vehicles (#)		0	0	0	0			0	0		0		
Queue Length 50th (ft)		100	6/ 109	249	302			#211	0		18		
Internal Link Dist (ft)		111	107	247	398			133	0		630		
Turn Bay Length (ft)			100						100				
Base Capacity (vph)		628	365	481	805			209	371		128		
Spillback Cap Reductn		0	0	0	201			0	0		0		
Storage Cap Reductn		0	0	0	0			0	0		0		
Reduced v/c Ratio		0.54	0.36	0.49	0.75			0.75	0.25		0.34		
Intersection Summary													
Area Type:	CBD												
Cycle Length: 110 Actuated Cycle Length: 110	า												
Offset: 20 (18%). Reference	ed to phase 1:	EBWB. St	art of Gre	een									
Natural Cycle: 85													
Control Type: Actuated-Con	ordinated												
Maximum v/c Ratio: 0.75	38.5			In	tersection	105·D							
Intersection Capacity Utiliza	ation 65.5%			IC	CU Level o	f Service	0						
Analysis Period (min) 15													
# 95th percentile volume	exceeds capa	city, queu	e may be	longer.									
Queue shown is maximu	uni artef two C	yuies.											
Splits and Phases: 15: A	Street/Thoms	on St & C	ongress S	Street									
						-					•	1	

12 s

2

	۶	-	\rightarrow	F	1	-	•	1	Ť	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	27	4	140	17	100	† 1>	100	1	110	54	27	4	1
Future Volume (vph)	37	215	149	1/	123	496 496	120	89	113	54 54	37	57	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	16	11	12	12	11	11
Storage Length (ft)	0		0		150		0	0		0	0		125
Taper Length (ff)	25		1		25		U	25		U	25		
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99	0.77		0.83	0.93		0.91	0.98			0.98	0.051
FIT Fit Protected		0 003	0.850		0.050	0.971		0.950	0.952			0 021	0.850
Satd. Flow (prot)	0	1602	1454	0	1624	2654	0	1841	1462	0	0	1510	1405
Flt Permitted	5	0.845	. 107	5	0.542	2.001	Ŭ	0.950		Ŭ	Ŭ	0.981	
Satd. Flow (perm)	0	1348	1114	0	767	2654	0	1674	1462	0	0	1487	1405
Sate Flow (RTOP)			Yes			21	Yes		20	Yes			Yes
Link Speed (mph)		30	100			30			30			30	07
Link Distance (ft)		478				521			204			912	
Travel Time (s)	102	10.9	40	24	40	11.8	102	6.4	4.6	24	24	20.7	6.0
Confl. Bikes (#/hr)	103		9	30	09		103	04		30	30		04
Peak Hour Factor	0.90	0.90	0.90	0.89	0.89	0.89	0.89	0.94	0.94	0.94	0.88	0.88	0.88
Heavy Vehicles (%)	0%	7%	0%	0%	0%	5%	8%	0%	7%	2%	11%	5%	0%
Parking (#/hr) Adi Elow (vpb)	41	220	166	10	120	557	135	05	120	57	12	45	30
Shared Lane Traffic (%)	41	234	100	19	130	337	130	90	120	57	42	00	30
Lane Group Flow (vph)	0	280	166	0	157	692	0	95	177	0	0	107	38
Turn Type	Perm	NA	Perm	Perm	Perm	NA		Split	NA		Split	NA	Prot
Protected Phases Permitted Phases	1	1	1	1	1	1		2	2		3	3	3
Detector Phase	1	1	1	1	1	1		2	2		3	3	3
Switch Phase													
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0		8.0	8.0		8.0	8.0	8.0
iviinimum Split (s) Total Split (s)	29.0	29.0 47.0	29.0 47.0	29.0 47.0	29.0 47.0	29.0		30.0 30.0	30.0 30.0		33.0 33.0	33.0 33.0	33.0 33.0
Total Split (%)	42.7%	42.7%	42.7%	42.7%	42.7%	42.7%		27.3%	27.3%		30.0%	30.0%	30.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		9.0	9.0	9.0
Total Lost Time (s)		-1.0	-1.0		-1.0	5.0		-1.0	-1.0			-1.0	-1.0
Lead/Lag			2.5					Lead	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	C 14-	C M	C M	C 14	C Mari	C M		Marra	Nerra		Marra	Nerra	Nerra
Act Effct Green (s)	C-Max	C-Max	C-Max	C-Max	C-Max 58.3	C-Max		17 3	None 17.3		None	None 13.4	None 13.4
Actuated g/C Ratio		0.53	0.53		0.53	0.53		0.16	0.16			0.12	0.12
v/c Ratio		0.39	0.25		0.39	0.49		0.33	0.72			0.58	0.15
Control Delay		12.6	3.7		15.1	12.3		42.5	54.5			62.0	3.5
Total Delay		12.6	0.0		0.0 15.1	12.3		42.7	0.0 54 5			62.0	0.0
LOS		B	A		B	В		D	D			E	A
Approach Delay		9.3				12.8			50.4			46.7	
Approach LOS Stops (uph)		A	50		50	B		75	D			D 02	
Fuel Used(gal)		2	50		59 1	409		15	3			2	4
CO Emissions (g/hr)		175	66		93	440		93	200			162	20
NOx Emissions (g/hr)		34	13		18	86		18	39			31	4
VUC Emissions (g/hr) Dilemma Vehicles (#)		40	15		21	102		21	46			37	5
Queue Length 50th (ft)		27	0		41	95		60	107			71	0
Queue Length 95th (ft)		288	142		91	157		102	170			104	6
Internal Link Dist (ft)		398			150	441			124			832	105
Base Capacity (vnh)		714	668		406	1421		418	347			302	352
Starvation Cap Reductn		0	0		0	0		0	0			0	0
Spillback Cap Reductn		0	0		0	3		69	0			0	12
Storage Cap Reductn		0 20	0.25		0	0 40		0	0 5 1			0.25	0 11
Reudueu wu Kallo		0.39	0.25		0.39	0.49		0.27	0.51			0.35	0.11
Intersection Summary	CPD												
Cycle Length: 110	CDD												
Actuated Cycle Length: 110													
Offset: 48 (44%), Reference	d to phase 1	EBWB, St	tart of Gre	een									
Natural Cycle: 95 Control Type: Actuated Case	rdinated												
Maximum v/c Ratio: 0.72	ullididu												
Intersection Signal Delay: 20	0.7			Ir	ntersection	LOS: C							
Intersection Capacity Utilizat	tion 89.6%			10	CU Level c	t Service E							
maiysis Period (MIN) 15													
Splits and Phases: 16: Bo	oston Wharf F	Road (WSF	R) & Cong	gress Stre	et								
(R)										12			
47.0									20.0	16			

	≯	->	+	•	1	1	1	•	•	/
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	NBR	NEL2	NEL	NER
Lane Configurations	٦	† †	≜ †⊅				1		۲Y	
Traffic Volume (vph)	20	273	447	35	124	252	52	168	202	146
Huture Volume (vph)	1000	273	447	35 1000	124	252	52 1000	168	202	146
ane Width (ff)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175	12	15	50	0	12	0	12	0	0
Storage Lanes	1			0	0		1		2	0
Taper Length (ft)	25				25				25	
ane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.97	0.95
Ped Bike Factor	0.96		0.99			0.98	0.850		0.92	
It Protected	0.950		0.707			0.984	0.030		0.965	
Satd. Flow (prot)	1624	3094	3133	0	0	3176	1398	0	2983	0
It Permitted	0.376					0.984			0.965	
Satd. Flow (perm)	614	3094	3133	0	0	3108	1398	0	2788	0
Satd Flow (RTOR)			7	res			00			
_ink Speed (mph)		30	30			30	,,		30	
ink Distance (ft)		521	509			178			200	
Travel Time (s)		11.8	11.6			4.0			4.5	
Confl. Peds. (#/hr)	82			82	43		12	43		12
Confl. Bikes (#/hr)	0.00	0.00	0.07	12	0.01	0.01	0.01	0.00	0.00	0.00
Peak Hour Factor Heavy Vehicles (%)	0.89	0.89	0.87	0.87	0.91	0.91	0.91	0.90	0.90	4%
Adj. Flow (vph)	22	307	514	40	136	277	57	187	224	162
Shared Lane Traffic (%)										
ane Group Flow (vph)	22	307	554	0	0	413	57	0	573	0
Turn Type	Perm	NA	NA		Split	NA	Prot	Perm	Prot	
Permitted Phases	1	1	1		2	2	2	2	3	
Detector Phase	1	1	1		2	2	2	3	3	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	32.0	32.0	32.0		30.0	30.0	30.0	33.0	33.0	
I OTAL SPIIT (S) Total Split (%)	34.0	34.0	34.0		30.0	30.0	30.0	46.0	46.0	
Yellow Time (s)	30.770	30.770	3.0		3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	4.0	4.0	4.0		3.0	3.0	3.0	3.0	3.0	
ost Time Adjust (s)	-2.0	-2.0	-2.0			-2.0	-2.0		-2.0	
Fotal Lost Time (s)	5.0	5.0	5.0			4.0	4.0		4.0	
_ead/Lag					Lead	Lead	Lead	Lag	Lag	
Lead-Lag Optimize?	C-Max	C-Max	C-Max		None	None	None	None	None	
Act Effct Green (s)	46.9	46.9	46.9		None	20.6	20.6	NOTIC	29.5	
Actuated g/C Ratio	0.43	0.43	0.43			0.19	0.19		0.27	
v/c Ratio	0.08	0.23	0.41			0.70	0.17		0.77	
Control Delay	12.2	11.3	19.5			48.0	2.5		44.0	
Queue Delay Total Dolay	0.0	0.0	0.0			0.0	0.0		0.0	
	IZ.Z	11.3 R	19.5 R			46.0 D	2.5		44.0 D	
Approach Delay	D	11.3	19.5			42.4	~		44.0	
Approach LOS		В	В			D			D	
Stops (vph)	6	85	249			340	2		459	
Fuel Used(gal)	0	2	5			6	0		8	
NOx Emissions (g/nr)	11	154	364			424	8		557 108	
VOC Emissions (g/hr)		36	84			98	2		129	
Dilemma Vehicles (#)	0	0	0			0	0		0	
Queue Length 50th (ft)	5	37	113			144	0		192	
Queue Length 95th (ft)	m14	54	144			188	9		234	
Internal Link Dist (ft)	175	441	429			98			120	
rum Bay Length (ft) Base Canacity (unb)	1/5	1220	13/0			750	406		1064	
Starvation Can Reducte	201	1320	1340			/50	406		1004	
Spillback Cap Reductn	0	0	0			0	0		0	
Storage Cap Reductn	0	0	0			0	0		0	
Reduced v/c Ratio	0.08	0.23	0.41			0.55	0.14		0.54	
ntersection Summary										
Area Type:	CBD									
Cycle Length: 110										
Actuated Cycle Length: 110) ad to phase 1.	EB/MD C	Start of Cro	an						
JIISEL: 58 (53%), REFERENC Jatural Cycle: 95	eu to phase 1:	EBWB, S	start of Gre	ell						
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 0.77										
ntersection Signal Delay: 3	1.0			In	tersection	LOS: C				
ntersection Capacity Utiliza	ation 61.9%			IC	U Level o	t Service I	В			
vidiysis Period (Min) 15	ntile queue ic i	meterod h	hy unstroop	lennia e						
a volume for som percer	ione queue IS I	neteleu L	oy upsuedli	i siyildi.						
Splits and Phases: 17: C	ongress Stree	t & East S	Service Ro	ad						
10 au (0)						▲				

	٦		\mathbf{r}	F	4	-	×	1	t	۲	5	Ŧ	-
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 ↑	1		۲	4î Þ		۲	1	1		tt.	1
Traffic Volume (vph) Future Volume (vph)	303 303	53 53	116 116	1	260 260	212 212	79 79	235	232	272 272	10	43	27 27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	16	14	12	12	11	11
Storage Length (II) Storage Lanes	0		200		250		0	1		1	0		125
Taper Length (ft)	25				25			25			25		
Lane Util. Factor	0.95	0.95	1.00	0.95	0.91	0.91	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.71	0.850		0.75	0.972				0.850		0.70	0.98
Flt Protected		0.959			0.950	0.985		0.950				0.991	
Satd. Flow (prot) Flt Permitted	0	2978	1398	0	1382	2620	0	1770	1754	1346	0	3112	1232
Satd. Flow (perm)	0	2709	1398	0	1291	2567	0	1770	1754	1346	0	2615	1210
Right Turn on Red			No				Yes			Yes			Yes
Satd. Flow (RTOR)		30				22			30	280		30	109
Link Distance (ft)		509				995			220			498	
Travel Time (s)		11.6				22.6	4.0.1		5.0			11.3	
Confl. Peds. (#/hr)	126		37		37		126				45		2
Peak Hour Factor	0.94	0.94	0.94	0.92	0.94	0.94	0.94	0.97	0.97	0.97	0.75	0.75	0.75
Heavy Vehicles (%)	3%	14%	4%	0%	7%	9%	14%	4%	4%	8%	0%	0%	14%
Adj. Flow (vph) Shared Lane Traffic (%)	322	56	123	1	277	226	84	242	239	280	13	57	36
Lane Group Flow (vph)	0	378	123	0	50% 139	449	0	242	239	280	0	70	36
Turn Type	Split	NA	Prot	Split	Split	NA	Ŭ	Prot	NA	Prot	Perm	NA	custom
Protected Phases	2	2	2	1	1	1		3	34	34		4	4
Permitted Phases Detector Phase	2	2	2	1	1	1		3	3.4	3.4	4	4	2
Switch Phase	2	2	2						3 4	5 4	T	-	-
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0	8.0
Minimum Split (s) Total Split (s)	19.0	19.0	19.0	31.0	31.0	31.0		16.0 28.0			19.0	19.0	19.0
Total Split (%)	28.2%	28.2%	28.2%	29.1%	29.1%	29.1%		25.5%			17.3%	17.3%	17.3%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0	3.0
All-Red Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0	4.0
Total Lost Time (s)		-2.0	-2.0		-2.0	-2.0		-2.0				-2.0	-2.0
Lead/Lag	Lead	Lead	Lead					Lag					
Lead-Lag Optimize?		M	NA	C 14	C 14	C 14		M			Mer	Nerr	NI
Act Effct Green (s)	KEIVI	26.0	26.0	C-IVIAX	30.4	30.4		23.0	38.6	38.6	NONe	10.6	36.6
Actuated g/C Ratio		0.24	0.24		0.28	0.28		0.21	0.35	0.35		0.10	0.33
v/c Ratio		0.87dl	0.37		0.36	0.61		0.65	0.39	0.43		0.28	0.08
Queue Delay		46.6	46.6 0.0		22.4	23.7		49.3	28.9	5.1		/1.4	5.2
Total Delay		46.6	46.6		22.4	23.7		49.3	28.9	5.1		71.4	5.2
LOS		D	D		С	C		D	С	А		E	Α
Approach Delay Approach LOS		46.6 D				23.4			26.6			48.9 D	
Stops (vph)		289	91		66	300		213	170	25		52	10
Fuel Used(gal)		6	2		2	7		4	3	1		1	0
CU Emissions (g/hr)		446	144		138	487		275	189	62		87	13
VOC Emissions (g/hr)		103	20		32	113		54	44	14		20	3
Dilemma Vehicles (#)		0	0		0	0		0	0	0		0	0
Queue Length 50th (ft)		121	69		41	62		158	127	0		27	4
Internal Link Dist (ff)		429	122		80	915		244	190	54		44 418	m 16
Turn Bay Length (ft)		127	200		250	/10			. 40			110	125
Base Capacity (vph)		703	330		381	740		370	669	687		332	512
Starvation Cap Reductn		0	0		0	0		0	0	0		0	0
Storage Cap Reductin		0	0		0	0		0	0	0		0	0
Reduced v/c Ratio		0.54	0.37		0.36	0.61		0.65	0.36	0.41		0.21	0.07
Intersection Summary													
Area Type: C	CBD												
Cycle Length: 110 Actuated Cycle Length: 110													
Offset: 100 (91%), Referenced	l to phase '	1:WBTL, S	start of Gr	een									
Natural Cycle: 85													
Control Type: Actuated-Coordin	inated												
Intersection Signal Delay: 32.0)			Ir	tersection	LOS: C							
Intersection Capacity Utilization	n 78.4%			IC	CU Level o	f Service D)						
Analysis Period (min) 15	augur li	motor-d'	(under	n olan -l									
dl Defacto Left Lane. Recod	e quede is r le with 1 th	ough lane	y upstrear as a left l	n signal. ane.									
		- ign iano											
Splits and Phases: 18: B Str	reet & Cong	gress Stre	et										
Ø1 (R)					4	Ø2					_	_	1

Synchro 9 Report Lanes, Volumes, Timings

	_	∕	→	\rightarrow	1	-	•	₹I	▲	Ť	1	اها	×	Ŧ	-		
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR		
Lane Configurations			4t>	1		ፋኈ			ሻሻ	4				4î»			
Traffic Volume (vph)	9	73	239	258	63	79	19	2	314	96	22	2	19	131	38		
Future Volume (Vpn)	1900	/3	239	258	63 1900	1900	1900	1900	314	96	1900	1900	1900	131	38		
Lane Width (ft)	12	12	12	13	12	13	12	12	11	12	12	12	12	14	12		
Storage Length (ft)		0		150	0		0		0		0		0		0		
Storage Lanes		0		1	0		0		2		0		0		0		
Laper Length (ft)	0.05	25	0.01	0.01	25	0.95	0.05	1.00	25	1.00	1.00	0.95	25	0.95	0.05		
Ped Bike Factor	0.75	0.75	0.93	0.71	0.75	0.93	0.75	1.00	0.56	0.98	1.00	0.75	0.75	0.93	0.75		
Frt			0.989	0.850		0.983				0.972				0.970			
Fit Protected	0	0	0.988	1014	0	0.981	0	0	0.950	1400	0	0	0	0.995	0		
Fill Permitted	0	0	2850	1314	0	2859	U	0	2902	1489	0	0	U	2975	0		
Satd. Flow (perm)	0	0	2722	1314	0	2674	0	0	1638	1489	0	0	0	2931	0		
Right Turn on Red				No			Yes				Yes				Yes		
Satd. Flow (RTOR)			20			11				10				24			
Link Distance (ft)			995			319				317				334			
Travel Time (s)			22.6			7.3				7.2				7.6			
Confl. Peds. (#/hr)	56	26		90	90		26	90	56		57	26	57		56		
Contil. Bikes (#/nr) Peak Hour Factor	0.97	0.97	0.97	0.97	0.89	0.89	0.89	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93		
Heavy Vehicles (%)	0%	0%	6%	4%	2%	23%	0%	0%	5%	9%	9%	0%	0%	11%	0%		
Parking (#/hr)											0						
Adj. Flow (vph)	9	75	246	266	71	89	21	2	341	104	24	2	20	141	41		
Lane Group Flow (voh)	0	0	357	239	0	181	0	0	343	128	0	0	0	204	0		
Turn Type	Perm	Split	NA	Prot	Split	NA	0	Split	Split	NA	0	Split	Split	NA	0		
Protected Phases		1	1	1	4	4		2	2	2		3	3	3			
Permitted Phases	1	1	1	1	4	Α		2	2	2		2	2	2			
Switch Phase	1	1		1	4	4		2	2	2		3	3	3			
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0		8.0	8.0	8.0		8.0	8.0	8.0			
Minimum Split (s)	22.0	22.0	22.0	22.0	17.0	17.0		27.0	27.0	27.0		18.0	18.0	18.0			
Total Split (%)	35.5%	35.5%	35.5%	35.5%	17.3%	17.3%		27.3%	27.3%	27.3%		22.0	22.0	22.0			
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		4.0	4.0	4.0		3.0	3.0	3.0			
All-Red Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0		5.0	5.0	5.0			
Total Lost Time Adjust (s)			-2.0	-2.0		-2.0			-2.0	-2.0				-2.0			
Lead/Lag								Lead	Lead	Lead		Lag	Lag	Lag			
Lead-Lag Optimize?	C 14-11	C Maria	C 14-11	C 14-11	Nezz	News		Mari		M		Mari		Mari			
Act Effct Green (s)	C-IMAX	C-IVIAX	33.9	33.9	None	12.1		INIAX	23.0	23.0		IVIAX	IVIAX	16.0			
Actuated g/C Ratio			0.31	0.31		0.11			0.21	0.21				0.15			
v/c Ratio			0.41	0.59		0.56			0.57	0.40				0.45			
Oueue Delay			31.5	38.9		50.5 0.0			27.5	22.3				41.3			
Total Delay			31.5	38.9		50.5			27.5	22.3				41.3			
LOS			C	D		D			С	C				D			
Approach LOS			34.4 C			50.5 D				20.1 C				41.3 D			
Stops (vph)			250	188		141			282	111				151			
Fuel Used(gal)			6	5		3			4	1				3			
NOx Emissions (g/hr)			439	64		39			207	20				205			
VOC Emissions (g/hr)			102	76		46			67	23				47			
Dilemma Vehicles (#)			100	0		0			0	0				0			
Queue Length 95th (ft)			149	254		96			158	127				99			
Internal Link Dist (ft)			915			239				237				254			
Turn Bay Length (ft)			070	150		2/7			604	210				450			
Starvation Cap Reductn			0/9	405		0			000	0				400			
Spillback Cap Reductn			0	0		0			0	0				0			
Storage Cap Reductn			0	0		0			0	0				0			
Reduced WC Kallo			0.41	0.39		0.52			0.57	0.40				0.45			
Area Type:	CBD																
Cycle Length: 110	500																
Actuated Cycle Length: 110																	
Uffset: 37 (34%), Referenced Natural Cycle: 85	to phase 1:	EBIL, Sta	rt of Gree	n													
Control Type: Actuated-Coor	dinated																
Maximum v/c Ratio: 0.59	-																
Intersection Signal Delay: 34 Intersection Canacity Litilizati	./ ion 66 7%			In	tersection	LUS: C											
Analysis Period (min) 15	00.770					Jernee C											
Splits and Phases: 19: D S	Street & Con	gress Stre	et				* *							k		 4	
● ● Ø1 (R)							₩ 2	02						1	Ø3	€ Ø4	

	٦		\mathbf{r}	4	+	•	•	Ť	1	5	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2
Lane Configurations	-02	1	_0.1		4			11			11		
Traffic Volume (vph)	0	42	0	0	32	0	0	434	0	0	454	0	
Future Volume (vph)	1000	42	1000	0	32	0	1000	434	1000	1000	454	1000	
Lane Width (ft)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00	
Ped Bike Factor													
Frt Fit Protected													
Satd, Flow (prot)	0	912	0	0	912	0	0	4508	0	0	3109	0	
Flt Permitted		712	0	- 0	712	0	0		0	0	0.07	0	
Satd. Flow (perm)	0	912	0	0	912	0	0	4508	0	0	3109	0	
Right Turn on Red			Yes			Yes			Yes			Yes	
Jink Speed (mph)		30			30			30			30		
Link Distance (ft)		368			292			293			317		
Travel Time (s)		8.4			6.6			6.7			7.2		
Confl. Peds. (#/hr)									85				
Contl. Bikes (#/hr)	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	39	0.04	0.04	0.04	
Heavy Vehicles (%)	0.95	100%	0.95	0.89	100%	0.89	0.92	0.92	0.92	0.96	0.90	0.90	
Parking (#/hr)	070	10070	070	070	10070	070	070	170	0	070	J /0	070	
Adj. Flow (vph)	0	44	0	0	36	0	0	472	0	0	473	0	
Shared Lane Traffic (%)													
Lane Group Flow (vph)	0	44	0	0	36	0	0	472	0	0	473	0	
Turn Type Distantiant Disease		NA			NA			NA			NA 1.2		2
Protected Phases		3		2	3			1			12		2
Detector Phase		3		3	3			1			12		
Switch Phase													
Minimum Initial (s)		8.0		8.0	8.0			20.0					4.0
Minimum Split (s)		15.0		15.0	15.0			27.0					10.0
Total Split (S) Total Split (%)		33.0		33.0	33.0			66.0					11.0
Yellow Time (s)		30.0%		30.0%	30.0%			4.0					4.0
All-Red Time (s)		3.0		3.0	3.0			1.0					1.0
Lost Time Adjust (s)		-1.0			-1.0			-1.0					
Total Lost Time (s)		5.0			5.0			4.0					
Lead/Lag								Lead					Lag
Lead-Lag Optimize?		None		None	None			C-Max					Max
Act Effct Green (s)		11.7		None	11.7			81.1			92.9		IVIGA
Actuated g/C Ratio		0.11			0.11			0.74			0.84		
v/c Ratio		0.46			0.38			0.14			0.18		
Control Delay		60.5			55.7			6.2			3.4		
Queue Delay		0.0			0.0			0.0			0.3		
LOS		0U.5			55.7 F			0.Z			3.1 A		
Approach Delav		60.5			55.7			6.2			3.7		
Approach LOS		E			E			A			A		
Stops (vph)		39			30			164			167		
Fuel Used(gal)		1			1			2			2		
CU Emissions (g/hr)		60			42			171			165		
VOC Emissions (g/nr)		12			8 10			33			32		
Dilemma Vehicles (#)		0			0			40			0		
Queue Length 50th (ft)		30			24			31			43		
Queue Length 95th (ft)		64			55			83			92		
Internal Link Dist (ft)		288			212			213			237		
Turn Bay Length (ft)		111			222			2224			2624		
Base Capacity (Vph) Stanuation Cap Reducts		232			232			3324			2626		
Snillback Can Reductin		0			0			0			1035		
Storage Cap Reductn		0			0			0			0		
Reduced v/c Ratio		0.19			0.16			0.14			0.43		
Intersection Summarv													
Area Type: C	CBD												
Cycle Length: 110													
Actuated Cycle Length: 110													
Offset: 71 (65%), Referenced t	to phase 1:	NBSB, St	art of Gre	en									
Natural Cycle: 55 Control Type: Actuated Coordi	inatod												
Maximum v/c Ratio: 0.46	mated												
Intersection Signal Delay: 9.1				Ir	ntersection	LOS: A							
Intersection Capacity Utilization	n 30.8%			10	CU Level o	f Service A	1						
Analysis Period (min) 15													
Callin and Dhay on C.C.		-14											
Splits and Phases: 20: D Str	reet & Tran	sitway											
■ 1 Ø1 (R)													

	٦	\mathbf{r}	1	Ť	ŧ	-				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø2			
Lane Configurations			1	††	≜ †⊅					
Traffic Volume (vph)	0	0	202	434	325	129				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Lane Width (ft)	12	12	13	12	13	12				
Storage Length (ft)	0	0	200			0				
Taper Length (ff)	25	U	25			0				
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95				
Ped Bike Factor			0.94		0.97					
FIL Protected			0.950		0.958					
Satd. Flow (prot)	0	0	1584	3036	2869	0				
Flt Permitted			0.950							
Sata. Flow (perm) Right Turn on Red	0	Yes	1496	3036	2869	Ves				
Satd. Flow (RTOR)		105			60	105				
Link Speed (mph)	30			30	30					
Link Distance (ft)	346			297	293					
Confl. Peds. (#/hr)	1.7		62	0.0	0.7	62				
Confl. Bikes (#/hr)						4				
Peak Hour Factor	0.25	0.25	0.93	0.93	0.96	0.96				
Adj. Flow (vph)	0%	0%	217	467	339	134				
Shared Lane Traffic (%)	-	-								
Lane Group Flow (vph)	0	0	217	467	473	0				
Protected Phases			Prot 3	NA 1.3	NA 1		2			
Permitted Phases			0				-			
Detector Phase			3	13	1					
Switch Phase Minimum Initial (s)			8.0		15.0		8.0			
Minimum Split (s)			15.0		23.0		28.0			
Total Split (s)			37.0		45.0		28.0			
Total Split (%) Vellow Time (s)			33.6%		40.9%		25%			
All-Red Time (s)			2.0		2.0		0.0			
Lost Time Adjust (s)			-1.0		-1.0					
Total Lost Time (s)			5.0		5.0		L an			
Lead-Lag Optimize?					Leau		Lay			
Recall Mode			Max		C-Max		None			
Act Effct Green (s)			32.0	103.4	62.4					
v/c Ratio			0.29	0.94	0.57					
Control Delay			40.2	1.0	9.1					
Queue Delay			1.6	0.0	0.3					
LOS			41.6 D	1.0 A	9.4 A					
Approach Delay				14.0	9.4					
Approach LOS				B	A					
Stops (vpn) Euel Used(gal)			146	19	198					
CO Emissions (g/hr)			205	84	208					
NOx Emissions (g/hr)			40	16	40					
VUC EMISSIONS (g/hr) Dilemma Vehicles (#)			4/	19	48					
Queue Length 50th (ft)			112	0	41					
Queue Length 95th (ft)	A		200	38	91					
memai Link Dist (tt) Turn Bay Length (tt)	266		200	217	213					
Base Capacity (vph)			460	2854	1653					
Starvation Cap Reductn			117	341	605					
Spillback Cap Reductn Storage Cap Reductn			0	0	0					
Reduced v/c Ratio			0.63	0.19	0.45					
Intersection Summarv										
Area Type: C	BD									
Cycle Length: 110										
Actuated Cycle Length: 110 Offset: 56 (51%) Referenced to	n nhasa 1.1	JRSR St	art of Grov	'n						
Natural Cycle: 70	o priase 11	1000, 3la	art or Gree							
Control Type: Actuated-Coordin	nated									
Maximum v/c Ratio: 0.47				le.	torsoction					
Intersection Signal Delay: 12.1 Intersection Capacity Utilization	1 36.6%			Ir I(itersection CU Level o	f Service A				
Analysis Period (min) 15										
Splits and Dhasses 21, D.C.	oot 8. I 00 I	ame								
	ປປເα I-7U I	латтр						ž.	* †	
Ø1 (R)								₹Б Ø2	² N Ø3	
10.5								20.3	57 S	

	٦	-+	\mathbf{r}	1	-	•	1	Ť	۲	1	Ŧ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	104	† }		1	1	100	100	†	25	100	4î»	0/
Future Volume (vph)	124	475	55 55	29	354 354	408	122	104	25 25	183	56 56	86 86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft) Storage Length (ft)	11 155	13	12	12	16	16	12 150	16	12	11 200	13	12
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25	0.05	0.05	25	1.00	1.00	25	0.05	0.05	25	0.01	0.05
Ped Bike Factor	0.98	0.95	0.95	1.00	1.00	0.93	0.97	0.95	0.95	0.91	0.91	0.95
Frt		0.984				0.850		0.971			0.940	
Fit Protected Satd. Flow (prot)	0.950	2027	0	0.950	1454	1504	0.950	2752	0	0.950	0.984	0
Flt Permitted	0.340	2931	U	0.118	1020	1084	0.950	2152	U	0.950	0.984	U
Satd. Flow (perm)	544	2937	0	196	1656	1471	1560	2752	0	1301	2578	0
Right Furn on Red Satd, Flow (RTOR)		14	Yes			No		23	Yes		89	Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		635			580			659			297	
Confl. Peds. (#/hr)	33	14.4	31	31	13.2	33	25	15.0	37	37	6.8	25
Confl. Bikes (#/hr)			9			15			32			2
Peak Hour Factor	0.97	0.97	0.97	0.96	0.96	0.96	0.95	0.95	0.95	0.97	0.97	0.97 4%
Parking (#/hr)	170	1270	9% 0	370	1770	470	170	2170	20%	4 70	30%	470
Adj. Flow (vph)	128	490	57	30	369	425	128	109	26	189	58	89
Shared Lane Traffic (%) Lane Group Flow (vph)	128	547	0	30	360	425	128	125	0	39% 115	221	0
Turn Type	D.P+P	NA	U	Perm	NA	pm+ov	Split	NA	0	Split	NA	0
Protected Phases	4	14		1	1	2	3	3		2	2	
Detector Phase	4	14		1	1	2	3	3		2	2	
Switch Phase						-	Ŭ	Ū		-	-	
Minimum Initial (s)	6.0			8.0	8.0	8.0	8.0	8.0		8.0	8.0	
Total Split (s)	15.0			40.0	40.0	28.0 28.0	27.0	27.0		28.0 28.0	28.0	
Total Split (%)	13.6%			36.4%	36.4%	25.5%	24.5%	24.5%		25.5%	25.5%	
Yellow Time (s) All-Red Time (s)	4.0			4.0	4.0	3.0	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	7.0			7.0	7.0	6.0	6.0	6.0		6.0	6.0	
Leau/Lag Lead-Lag Optimize?						Lead	Lag	Lag		Lead	Lead	
Recall Mode	Max			C-Max	C-Max	Ped	Max	Max		Ped	Ped	
Act Effct Green (s)	41.9	48.9		33.9	33.9	56.0	21.0	21.0		21.1	21.1	
v/c Ratio	0.38	0.44		0.31	0.31	0.51	0.19	0.19		0.19	0.19	
Control Delay	25.7	19.3		53.2	35.3	9.7	44.0	32.6		16.7	7.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
LOS	25.7 C	19.3 B		53.2 D	35.3 D	9.7 A	44.0 D	32.0 C		10.7 B	7.2 A	
Approach Delay		20.5			22.7			38.1			10.4	
Approach LOS Stops (vph)	62	C 317		18	C 247	120	106	D 86		82	8 93	
Fuel Used(gal)	2	6		1	6	3	2	2		1	1	
CO Emissions (g/hr)	112	452		38	385	232	161	139		76	92	
NUX Emissions (g/hr)	22	88 105		9	75 89	45 54	31	27		15 18	18 21	
Dilemma Vehicles (#)	0	0		0	0	0	0	0		0	0	
Queue Length 50th (ft)	28	64		11 m21	136	75	80	35		49	0	
Internal Link Dist (ft)	83	555		inz i	206	25	140	579		47	217	
Turn Bay Length (ft)	155						150			200		
Base Capacity (vph) Stanuation Cap Reducto	280	1313		60	509	782	306	543		274	596	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced V/c Ratio	0.46	0.42		0.50	0.72	0.54	0.42	0.25		0.42	0.37	
Intersection Summary	CBD											
Cycle Length: 110	CDD											
Actuated Cycle Length: 110												
Offset: 30 (27%), Referenced	d to phase 1:	EBWB, St	art of Gre	en								
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.72						100.0						
Intersection Signal Delay: 22	.u ion 82 5%			In	tersection	LUS: C	-					
Analysis Period (min) 15	01.02.070				J LOVEI (. Joi vice I	-					
m Volume for 95th percenti	ile queue is r	metered by	upstrear	n signal.								
Splits and Phases: 22: D S	Street & Sum	mer Stree	t									
Ø1 (R)							1	02				

	-+	\mathbf{r}	1	-	▲	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1		4	Y	
Traffic Volume (veh/h)	1	7	160	2	12	276
Future Volume (Veh/h)	1	7	160	2	12	276
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.67	0.67	0.90	0.90	0.92	0.92
Hourly flow rate (vph)	1	10	178	2	13	300
Pedestrians	183			115	137	
Lane Width (ft)	11.0			11.0	11.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	14			9	10	
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			148		679	253
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			148		679	253
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			86		95	53
cM capacity (veh/h)			1284		279	642
Direction, Lane #	EB 1	EB 2	WB 1	NB 1		
Volume Total	1	10	180	313		
Volume Left	0	0	178	13		
Volume Right	0	10	0	300		
cSH	1700	1700	1284	609		
Volume to Capacity	0.00	0.01	0.14	0.51		
Queue Length 95th (ft)	0	0	12	74		
Control Delay (s)	0.0	0.0	8.2	17.0		
Lane LOS			Α	С		
Approach Delay (s)	0.0		8.2	17.0		
Approach LOS				С		
Intersection Summary						
Average Delay			13.5			_
Intersection Capacity Utilizatio	n		49.1%	IC	U Level of	f Service
Analysis Period (min)			15			
((((())))))))))))))))))))))))))))))))))			10			

	≤	≯	-	←	•	1	1
Movement	FRU	FRI	FRT	WRT	WRD	SBI	SBD
Lane Configurations	LDU	LDL		1	WDI	JDL M	JDI
Traffic Volume (uch/h)	1	170	•	100	40	T	22
	1	179	97	120	40	0	33
Future Volume (Veh/h)	1	1/9	9/	128	40	6	33
Sign Control			Free	Free		Stop	
Grade			0%	0%		0%	
Peak Hour Factor	0.87	0.87	0.87	0.88	0.88	0.89	0.89
Hourly flow rate (vph)	0	206	111	145	45	7	37
Pedestrians						412	
Lane Width (ft)						11.0	
Walking Speed (ft/s)						4.0	
Percent Blockage						31	
Right turn flare (veh)							
Median type			None	None			
Median storage veh)							
Unstream signal (ft)				1145			
nX platoon unblocked	0.00			1145			
vC conflicting volume	0.00	602				1102	580
vC1, conflicting volume	U	002				1102	000
vC1, stage 1 continuo							
vcz, stage z coni voi	0	(00				4400	500
VCU, UNDIOCKED VOI	0	602				1102	580
tC, single (s)	0.0	4.1				6.4	6.4
tC, 2 stage (s)							
tF (s)	0.0	2.2				3.5	3.5
p0 queue free %	0	69				94	89
cM capacity (veh/h)	0	662				111	329
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	317	190	44				
Volume Left	206	0	7				
Volume Right	200	45	37				
cSH	662	1700	251				
Volumo to Canacity	0.21	0.11	0.10				
Ouque Length 95th (ft)	0.51	0.11	0.10				
Captrol Dolou (a)	- 33	0.0	22.4				
Control Delay (S)	9.9	0.0	22.4				
Lane LOS	A		С				
Approach Delay (s)	9.9	0.0	22.4				
Approach LOS			С				
Intersection Summary							
Average Delay			7.5				
Intersection Capacity Utilization			43.4%	IC	U Level of	f Service	
Analysis Period (min)			15				

	≯	-	←	•	1	~
Movement	FBI	FBT	WBT	WBR	SBI	SBR
Lane Configurations		4	1.		M	
Traffic Volume (veh/h)	13	90	133	44	14	35
Future Volume (Veh/h)	13	90	133	44	14	35
Sign Control	15	Eree	Free		Ston	55
Crado		0%	0%		00/	
Book Hour Eactor	0.00	0.00	0.00	0.00	0.02	0.02
	0.00	0.00	0.00	0.00	0.02	0.62
Houriy now rate (vph)	15	102	151	50	17	43
Pedestrians					291	
Lane Width (ft)					11.0	
Walking Speed (ft/s)					4.0	
Percent Blockage					22	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			843			
pX, platoon unblocked						
vC, conflicting volume	492				599	467
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu_unblocked vol	492				599	467
tC. single (s)	4.1				6.5	6.2
tC 2 stane (s)					0.0	0.2
tE (s)	2.2				3.6	3.3
n0 queue free %	08				05	01
cM capacity (yoh/h)	0/1				240	462
civi capacity (verini)	041				340	402
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	117	201	60			
Volume Left	15	0	17			
Volume Right	0	50	43			
cSH	841	1700	419			
Volume to Capacity	0.02	0.12	0.14			
Queue Length 95th (ft)	1	0	12			
Control Delay (s)	1.4	0.0	15.0			
Lane LOS	А		С			
Approach Delay (s)	1.4	0.0	15.0			
Approach LOS		0.0	C.			
Intersection Summany						
Augusta Dalau			2.0	_	_	_
Average Delay			2.8	10		
intersection Capacity Utilization			21.4%	IC	U Level of	Service
Analysis Period (min)			15			

	⋬	٦		-	•	1	~
Movement	FRU	FRI	FRT	WBT	WBR	SBI	SBR
Lane Configurations	200	LDL	4	1.01	mon	M	OBIC
Traffic Volume (vol/h)	1	22	01	166	150	20	10
Fishing Vislams (Veh/h)	1	22	01	100	150	20	10
Future Volume (Ven/n)	1	22	81	166	158	28	10
Sign Control			Free	Free		Stop	
Grade			0%	0%		0%	
Peak Hour Factor	0.87	0.87	0.87	0.97	0.97	0.79	0.79
Hourly flow rate (vph)	0	25	93	171	163	35	13
Pedestrians						192	
Lane Width (ft)						12.0	
Walking Speed (ft/s)						4.0	
Percent Blockage						16	
Right turn flare (veh)							
Median type			None	None			
Median storage veh)			Hone	None			
Unstroom signal (ft)				640			
opsirean signal (II)	0.00			040			
ph, platoon unblocked	0.00	52/				500	
vc, conflicting volume	0	526				586	444
vC1, stage 1 cont vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	0	526				588	444
tC, single (s)	0.0	4.1				6.8	6.2
tC, 2 stage (s)							
tF (s)	0.0	2.2				3.9	3.3
p0 queue free %	0	97				90	97
cM capacity (veh/h)	0	883				339	519
Direction Lane #	FR 1	WR 1	SR 1				
Volume Total	118	334	48				
Volume Left	25	0	35				
Volumo Dight	2.5	162	12				
	002	103	274				
Values to Conneity	003	1/00	3/4				
Volume to Capacity	0.03	0.20	U.13				
Queue Length 95th (It)	2	0					
Control Delay (s)	2.2	0.0	16.0				
Lane LOS	A		С				
Approach Delay (s)	2.2	0.0	16.0				
Approach LOS			С				
Intersection Summary							
Average Delay			2.0				
Intersection Capacity Utilization			34.2%	IC	U Level of	Service	
Analysis Period (min)			15				
			.5				

	≤	≯	-	⊾	←	•	1	-
Movement	FRU	FRI	FRT	WRIT	WRT	WRD	SBI	SRD
Lane Configurations	LDU	LDL		WDO	1	WDIX	M	JUK
Traffic Volume (veh/h)	1	1	107	12	218	37	1	5
Future Volume (Veh/h)	1	1	107	13	210	27	1	5
Future Volume (Ven/n)	1	1	107	13	318	37	Char	5
Sign Control			Free		Free		Stop	
Grade			0%		0%		0%	
Peak Hour Factor	0.88	0.88	0.88	0.96	0.96	0.96	0.50	0.50
Hourly flow rate (vph)	0	1	122	0	331	39	2	10
Pedestrians			61		45		134	
Lane Width (ft)			12.0		12.0		12.0	
Walking Speed (ft/s)			4.0		4.0		4.0	
Percent Blockage			5		4		11	
Right turn flare (veh)								
Median type			None		None			
Median storage veh)			NUTIC		NOTIC			
Unstroam signal (ft)					270			
Dystream signar (II)	0.00			0.00	2/0			
pA, platoon unblocked	0.00	507		0.00			154	E 4/
vc, conflicting volume	0	504		0			004	546
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	0	504		0			654	546
tC, single (s)	0.0	4.1		0.0			6.4	6.2
tC, 2 stage (s)								
tF (s)	0.0	2.2		0.0			3.5	3.3
p0 queue free %	0	100		0			99	98
cM capacity (veh/h)	0	951		0			371	457
Direction Lane #	FR 1	WR 1	SR 1	0			271	.07
Volumo Total	100	270	10					
volume total	123	3/0	12					
volume Left	1	0	2					
Volume Right	0	39	10					
cSH	951	1700	440					
Volume to Capacity	0.00	0.22	0.03					
Queue Length 95th (ft)	0	0	2					
Control Delay (s)	0.1	0.0	13.4					
Lane LOS	А		В					
Approach Delay (s)	0.1	0.0	13.4					
Approach LOS	5.1	0.0	B					
Intersection Summany			5					
Intersection Summary	_		0.0		_	_		
Average Delay			0.3					
Intersection Capacity Utilization			45.4%	IC	U Level of	Service		
Analysis Period (min)			15					

	≤_		\mathbf{r}	F	1	-	1	1
Movement	FBU	FBT	FBR	WBU	WBI	WBT	NBI	NBR
Lane Configurations		≜ 1⊾				41		
Traffic Volume (veh/h)	2	590	70	1	22	239	0	0
Future Volume (Veh/h)	2	590	70	1	22	239	0	0
Sign Control	2	Eree	70		~~~~	Eree	Ston	0
Grade		0%				0%	0%	
Peak Hour Factor	0.94	0.94	0.94	0.91	0.91	0.91	0.92	0.92
Hourly flow rate (vpb)	0.74	628	7/	0.71	24	263	0.72	0.72
Podestrians	0	020	74	0	24	205	1/13	0
I ano Width (ft)							0.0	
Walking Spood (ff/s)							4.0	
Percent Blockage							4.0	
Pight turn flare (voh)							0	
Modian type		Nono				Nono		
Median storage yeb)		NOTE				NULLE		
Unstroom signal (#)		E01				272		
opsiledili sigildi (it)	0.00	391		0.00	0.00	372	0.00	0.00
pA, platoon unblocked	0.00			0.00	0.00		0.00	0.00
vC1, confincting volume	0			0	040		900	494
VC1, stage 1 conti vol								
VC2, Stage 2 COTI VOI	0			0	E 40		700	100
VCu, unblocked voi	0			0	540		/02	139
IC, single (s)	0.0			0.0	4.4		0.8	0.9
IC, Z stage (s)	0.0			0.0	0.0		0.5	0.0
tF (S)	0.0			0.0	2.3		3.5	3.3
pu queue free %	0			0	97		100	100
cM capacity (veh/h)	0			0	829		320	/80
Direction, Lane #	EB 1	EB 2	WB 1	WB 2				
Volume Total	419	283	112	175				
Volume Left	0	0	24	0				
Volume Right	0	74	0	0				
cSH	1700	1700	829	1700				
Volume to Capacity	0.25	0.17	0.03	0.10				
Queue Length 95th (ft)	0	0	2	0				
Control Delay (s)	0.0	0.0	2.3	0.0				
Lane LOS			A					
Approach Delay (s)	0.0		0.9					
Approach LOS								
Intersection Summarv								
Average Delay			0.3					
Intersection Capacity Utilization			27.7%	10	CU Level o	of Service		
Analysis Period (min)			15					
			.5					

	≯	-+	\mathbf{r}	1	-	•	▲	1 T	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Traffic Volume (veh/h)	45	366	0	11	340	137	2	0	2	95	0	37
Future Volume (Veh/h)	45	366	0	11	340	137	2	0	2	95	0	37
Sign Control		Free	-		Free		_	Stop	-		Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.97	0.97	0.97	0.98	0.98	0.98	1.00	1.00	1.00	0.94	0.94	0.94
Hourly flow rate (vph)	46	377	0	11	347	140	2	0	2	101	0	39
Pedestrians											738	
Lane Width (ft)											12.0	
Walking Speed (ft/s)											4.0	
Percent Blockage											61	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		789			496							
pX, platoon unblocked	0.85			0.87			0.91	0.91	0.87	0.91	0.91	0.85
vC, conflicting volume	1225			377			947	1716	377	1648	1646	1155
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1176			216			584	1428	216	1353	1351	1093
tC, single (s)	4.2			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	76			99			98	100	100	0	100	55
cM capacity (veh/h)	189			1195			89	36	725	19	40	86
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	423	498	4	140								
Volume Left	46	11	2	101								
Volume Right	0	140	2	39								
cSH	189	1195	159	24								
Volume to Capacity	0.24	0.01	0.03	5.81								
Queue Length 95th (ft)	23	1	2	Err								
Control Delay (s)	11.6	0.3	28.2	Err								
Lane LOS	В	A	D	F								
Approach Delay (s)	11.6	0.3	28.2	Err								
Approach LOS			D	F								
Intersection Summary												
Average Delay			1319.3									
Intersection Capacity Utilization			60.5%	IC	CU Level o	f Service			В			
Analysis Period (min)			15									

	≁	-+	F	-	•	1	-
Movement	FBI	FBT	WBU	WBT	WBR	SBI	SBR
Lane Configurations	LUL	4		1	mon	V	OBIC
Traffic Volume (veh/h)	38	425	3	466	97	25	22
Future Volume (Veh/h)	38	425	3	466	97	25	22
Sign Control	50	Free	J	Free	71	Ston	22
Crado		0%		0%		0%	
Dook Hour Easter	0.07	0.07	0.02	0.02	0.02	0.00	0.00
House flow rate (uph)	0.97	420	0.92	0.92	105	0.90	0.90
Houriy now rate (vpn)	39	430	0	507	105	20	24
Pedesinans						485	
Lane width (it)						12.0	
waiking Speed (tt/s)						4.0	
Percent Blockage						40	
Right turn flare (veh)							
Median type		None		None			
Median storage veh)							
Upstream signal (ft)		1094		191			
pX, platoon unblocked	0.81		0.00			0.81	0.81
vC, conflicting volume	1097		0			1560	1044
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1000		0			1568	935
tC, single (s)	4.2		0.0			6.4	6.2
tC, 2 stage (s)							
tF (s)	2.3		0.0			3.5	3.3
p0 queue free %	88		0			45	84
cM capacity (veh/h)	316		0			51	153
Direction. Lane #	EB 1	WB 1	SB 1				
Volume Total	477	612	52				
Volume Left	39	0	28				
Volume Right	0	105	20				
rSH	316	1700	74				
Volume to Canacity	0.12	0.36	0.71				
Queue Length 95th (ft)	10	0.00	82				
Control Delay (s)	12	0.0	120.3				
Long LOS	4.Z	0.0	129.3				
Latte LUS	A	0.0	120.2				
Approach Delay (S)	4.Z	0.0	129.3				
Approach LUS			F				
Intersection Summary							
Average Delay			7.7				
Intersection Capacity Utilization			59.8%	IC	U Level of	Service	
Analysis Period (min)			15				

	≯	-	\mathbf{r}	1	+	•	▲	Ť	1	1	Ŧ	-				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø3			
Lane Configurations		र्भ	1		4		٦	4Î			4					
Traffic Volume (vph)	0	5	299	4	6	0	188	0	24	0	0	0				
Ideal Flow (vphpl)	1900	5 1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Ped Bike Factor			0.98		0.99			0.91								
Frt Flt Protected			0.850		0.980		0.950	0.850								
Satd. Flow (prot)	0	1900	1615	0	1862	0	1787	1463	0	0	1900	0				
Flt Permitted	0	1000	1500	0	0.867	-	0.950		0	0		0				
Satd. Flow (perm) Diabt Turn on Red	U	1900	1588 Ves	U	1637	0 Ves	1/8/	1463	0 Ves	0	1900	U Vos				
Satd. Flow (RTOR)			311			105		1007	103			165				
Link Speed (mph)		30			30			30			30					
Link Distance (tt) Travel Time (s)		2/8			143			338			266					
Confl. Peds. (#/hr)	93	0.0	8	8	0.0	93		1.1	84	84	0.0					
Peak Hour Factor	0.96	0.96	0.96	0.50	0.50	0.50	0.87	0.87	0.87	0.25	0.25	0.25				
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%				
Shared Lane Traffic (%)	0	J	311	0	12	0	210	0	20	0	0	0				
Lane Group Flow (vph)	0	5	311	0	20	0	216	28	0	0	0	0				
Turn Type Protected Phases		NA	pm+ov	Perm	NA		Prot 1	NA 1.2			2		3			
Permitted Phases	4	4	4	4	4			12		2	2		3			
Detector Phase	4	4	1	4	4		1	12		2	2					
Switch Phase	0.0	0.0	0.0	0.0	0.0		0.0			2.0	9.0		2.0			
Minimum Initial (S) Minimum Split (S)	13.0	13.0	13.0	13.0	13.0		8.0 13.0			13.0	8.0		22.0			
Total Split (s)	22.0	22.0	44.0	22.0	22.0		44.0			22.0	22.0		22.0			
Total Split (%)	20.0%	20.0%	40.0%	20.0%	20.0%		40.0%			20.0%	20.0%		20%			
Yellow Time (s) All-Red Time (s)	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0		3.0			
Lost Time Adjust (s)	2.12	0.0	0.0	2.0	0.0		0.0			2.0	0.0		1.0			
Total Lost Time (s)	1	5.0	5.0	1	5.0		5.0				5.0		1			
Lead/Lag Lead-Lag Ontimize?	Lay	Lag	Leau	Lay	Lag		Lead			Lag	Lag		Leao			
Recall Mode	None	None	C-Max	None	None		C-Max			None	None		None			
Act Effct Green (s)		8.0	96.2		8.0		91.4	99.2								
Actuated g/C Ratio		0.07	0.87		0.07		0.83	0.90								
Control Delay		50.2	0.5		51.4		1.0	0.0								
Queue Delay		0.0	0.0		0.0		0.2	0.0								
Total Delay		50.2 D	0.5 A		51.4 D		1.2 A	0.0 A								
Approach Delay		1.3			51.4			1.1								
Approach LOS		A	7		D		0	A								
Stops (vph) Fuel Used(gal)		0	1		0		8	0								
CO Emissions (g/hr)		7	50		12		40	4								
NOx Emissions (g/hr)		1	10		2		8	1								
VOC Emissions (g/nr) Dilemma Vehicles (#)		2	12		3		9	0								
Queue Length 50th (ft)		4	0		14		6	0								
Queue Length 95th (ft)		16	12		21		12	m0			10/					
Internal Link Dist (II) Turn Ray Length (ft)		198			63			258			186					
Base Capacity (vph)		293	1450		252		1485	1440								
Starvation Cap Reductn		0	0		0		705	0								
Spillback Cap Reductn Storage Cap Reductn		0	0		0		0	0								
Reduced v/c Ratio		0.02	0.21		0.08		0.28	0.02								
Intersection Summary																
Area Type:	Other															
Cycle Length: 110 Actuated Cycle Length: 110																
Offset: 0 (0%), Referenced to	phase 1:NE	3TL, Start	of Green													
Natural Cycle: 65	· .															
Control Type: Actuated-Coord	dinated															
Intersection Signal Delay: 2.9				In	ntersection	LOS: A										
Intersection Capacity Utilization	on 34.4%			IC	CU Level of	Service /	Ą									
Analysis Period (min) 15 Molume for 95th percentil	o queue is i	motored h	unstrear	m cional												
III Volume to voltriperconta	e queue is .	licici cu a	/ upsucc	ll signai.												
Splits and Phases: 6: North	nern Avenue	e & Pier 4	Boulevard]				14								
🔊 🔊 Ø1 (R)								. I ₽	Ø2					A 03	Ø4	

	≯	-+	\mathbf{r}	F	1	←	•	1	t	1	1	ŧ	1
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ፋጉ			٦.	≜ ‡≽			4			ų	1
Traffic Volume (vph)	51	681 681	94 04	2	39	610	44	146	1	59 50	22	44	264
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	12	12	12	12	12	11	12	12	11	11
Storage Length (tt) Storage Lanes	0		125		125		0	0		0	0		100
Taper Length (ft)	25		Ū		25		0	25		0	25		5
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Peu Bike Factor Frt		0.94				0.97			0.81				0.81
Flt Protected		0.997			0.950				0.966			0.984	
Satd. Flow (prot)	0	2836	0	0	1624	3056	0	0	1265	0	0	1627	1405
Satd. Flow (perm)	0	1573	0	0	386	3056	0	0	862	0	0	1436	1136
Right Turn on Red	5		Yes	Ŭ	500		Yes	Ŭ		Yes	Ŭ		Yes
Satd. Flow (RTOR)		17				12			20			20	142
Link Distance (ft)		1029				308			346			339	
Travel Time (s)	446	23.4	474	07	174	7.0	110		7.9	07	07	7.7	
Conil. Peas. (#/hr) Confl. Bikes (#/hr)	118		30	87	1/1		118	55		87	87		55
Peak Hour Factor	0.97	0.97	0.97	0.91	0.91	0.91	0.91	0.83	0.83	0.83	0.96	0.96	0.96
Heavy Vehicles (%)	2%	2%	0%	0%	0%	2%	3%	0%	0%	0%	0%	0%	0%
Parking (#/hr) Adi, Flow (vph)	52	702	97	2	43	670	0 48	176	0	0 71	23	46	275
Shared Lane Traffic (%)		702	71	2	40	070	40	170		71	23	40	213
Lane Group Flow (vph)	0	852	0	0	45	718	0	0	248	0	0	69	275
Turn Type Protected Phases	Perm	NA 1		custom	D.P+P	NA 1.4		Perm	NA 3		Perm	NA 2	Perm
Permitted Phases	1	1		4	4	14		3	3		3	5	3
Detector Phase	1	1		4	4	14		3	3		3	3	3
Switch Phase	0.0	0.0		4.0	4.0			0.0	0.0		0.0	0.0	0.0
Minimum Split (s)	27.0	27.0		4.0	4.0			8.0	8.0 18.0		8.0	8.0	8.0
Total Split (s)	54.0	54.0		15.0	15.0			41.0	41.0		41.0	41.0	41.0
Total Split (%)	49.1%	49.1%		13.6%	13.6%			37.3%	37.3%		37.3%	37.3%	37.3%
reliow time (s) All-Red Time (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0	3.0
Lost Time Adjust (s)	5.0	-2.0		5.0	-2.0			0.0	-2.0		0.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0				4.0			4.0	4.0
Lead/Lag													
Recall Mode	C-Max	C-Max		None	None			Max	Мах		Max	Мах	Max
Act Effct Green (s)		50.0			61.0	65.0			37.0			37.0	37.0
Actuated g/C Ratio		0.45			0.55	0.59			0.34			0.34	0.34
Control Delay		102.5			0.13	0.40			0.82 57.2			24.2	0.58 17.2
Queue Delay		0.0			0.0	0.0			0.0			0.0	0.0
Total Delay		102.5			14.5	14.7			57.2			24.2	17.2
LUS Approach Delay		F 102.5			В	B			57.2			18 A	В
Approach LOS		102.5 F				в			57.2 E			10.0 B	
Stops (vph)		425			18	263			165			43	109
Fuel Used(gal)		26			1	8 501			327			52	155
NOx Emissions (g/hr)		357			57	113			64			52	30
VOC Emissions (g/hr)		425			9	135			76			12	36
Dilemma Vehicles (#)		0			0	0			157			0	0
Queue Length 50th (it)		~242 m#228			41	196			157 m#244			33 62	142
Internal Link Dist (ft)		949				228			266			259	
Turn Bay Length (ft)		704			125	1010			202			402	100
Base Capacity (Vpn) Starvation Cap Reducto		/24			337	1810			303			483	4/6
Spillback Cap Reductn		0			0	0			0			0	0
Storage Cap Reductn		0			0	0			0			0	0
Reduced v/c Ratio		1.18			0.13	0.40			0.82			0.14	0.58
Intersection Summary	000										_	_	
Area Type: (Cycle Length: 110	CBD												
Actuated Cycle Length: 110													
Offset: 99 (90%), Referenced	to phase 1:	EBWB, St	art of Gre	en									
Natural Cycle: 100 Control Type: Actuated Coord	hinated												
Maximum v/c Ratio: 1.18	midteu												
Intersection Signal Delay: 54.0	0			In	tersection	LOS: D							
Intersection Capacity Utilizatio	on 78.8%			IC	U Level of	f Service D)						
 Analysis Period (min) 15 Volume exceeds capacity. 	. queue is t	neoretically	/ infinite										
Queue shown is maximum	after two c	ycles.											
# 95th percentile volume exc	ceeds capa	city, queue	e may be	longer.									
 Queue snown is maximum Volume for 95th percentile 	e queue is r	ycies. metered by	/ upstream	m signal									
rolanie isi your percentilit	- 94040131		aporrodi	orginal.									
Splits and Phases: 7: Sleep	oer Street &	Seaport B	oulevard								1 14		
₩Ø1 (R)											¶¶ø3		
54 s											41 s		

an Group EBD EDT EDT EDT VES VESU VEST VEST AD ADD VEST VEST AD ADD VEST VEST AD ADD VEST VEST AD ADD VEST AD AD ADD VEST AD		≤	-	\rightarrow	F	4	←	•	1	
anc Carbon 2. 4 4 24 22 135 552 93 67 dute Volume (ph) 2 484 224 22 135 552 93 67 dute Volume (ph) 12 11 11 12 12 12 11 21 20 11 12 12 12 anc Waln (ph) 12 11 11 12 12 12 11 12 anc Waln (ph) 12 11 11 12 12 12 11 12 appel Langh (ph) 25 0 25 25 25 appel Langh (ph) 25 0 25 0.55 0.55 0.55 0.57 0.57 0.57 0.57 dt 6 20 55 0.55 0.55 0.55 0.57 0.57 0.57 dt 6 20 55 0.55 0.55 0.55 0.55 0.57 0.57 dt 7 0 0.5	Lane Group	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR	Ø2
and: volume (pm) the	Lane Configurations	-	≜ t≽			٦	tt.	٦Y		
likal Flow (rph) i 1900 i 190 i 1900 i 190	Future Volume (vph)	2	484	224	22	135	552 552	93 93	67	
aff vord 110 v m 1 = 10 = 11 = 11 = 12 = 12 = 11 = 12 = 12	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	
trange Langh (0) 25 27 28 29 0 0 5 0 95 0 95 0 97 0 97 0 95 0 97 0 95 0 97 0 97	Storage Length (ft)	0	11	0	12	100	11	0	100	
and the final of the set of the	Storage Lanes	0		0		1		2	1	
ed Base Fachar 0.66 0.89 0.72 IP referciend 0.953 0.973 IP referciend 0.224 0.024 0.972 IP referciend 0.224 0.972 1 IP referciend 0.224 19 0.972 IP referciend 0.924 19 29 IP referciend 0.925 24 912 IP referciend 0.96 0.97 70 IP referciend 0.96 0.97 0.91 0.93 IP referciend 0.96 0.97 0.91 0.93 IP referciend 0.96 0.97 0.91 0.93 IP referciend 0.98 0.91 0.91 0.93 IP referciend 0.98 0.91 0.91 0.91 IP referciend 0.92 2.92 2.91	Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	0.95	25	0.95	
non-sected 0.33 0.950 0.9272 Li Rew (rol) 0.257 0.0164 9272 Li Rew (rol) 0.257 0.0164 9272 Li Rew (rol) 0.217 0.0164 9272 Li Rew (rol) 1.22 1.2 0.0149 304 2161 0 Li Rew (rol) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Li Stato (forth) 30<	Ped Bike Factor		0.86			0.89		0.72		
add Flow (prof) 0 252° 0 0 1624 3049 259 0 add Flow (prof) 0 2127 0 0 0 419 2049 2161 0 972 0 add Flow (prof) 0 2127 0 0 0 419 2049 2161 0 972 0 add Flow (prof) 79 252 84 262 79 84 For Plots (prof) 79 22 84 262 79 84 and Flows (Prof) 79 28 28 08 09 09 09 09 09 09 09 09 09 09 09 09 09	Fit Protected		0.755			0.950		0.937		
air Flexing 0 <th0< th=""> <th1< th=""> <th1< td=""><td>Satd. Flow (prot)</td><td>0</td><td>2529</td><td>0</td><td>0</td><td>1624</td><td>3049</td><td>2599</td><td>0</td><td></td></th1<></th1<></th0<>	Satd. Flow (prot)	0	2529	0	0	1624	3049	2599	0	
tigh Tum no Reid vers vers vers vers vers vers vers vers	Satd. Flow (perm)	0	2127	0	0	419	3049	2161	0	
na Security (var) 100 100 100 100 100 100 100 100 100 10	Right Turn on Red		70	Yes				72	Yes	
nk Distance (II) nk Distance (III) 655 254 912 cand I Pack (Mr) 77 262 34 262 79 84 cand I Pack (Mr) 056 0.90 0.90 0.91 0.91 0.93 0.93 cak Hoar Fatar 0.66 0.90 0.92 2.8 0.90 1.8 0.93 di Floor (nt) 0.2 2.90 2.33 2.4 1.4 607 100 72 di Floor (nt) 2 5.00 2.33 2.4 1.4 607 100 72 607 107 72 0 um Type Nemmer Mail 0.91 72 407 72 0 1 1 4 1 3 2 1 1 1 4 1 3 2 1 1 1 4 1 3 2 1 1 1 1 1 1 4 1 3 1 1 1 1 1 <td>Link Speed (mph)</td> <td></td> <td>30</td> <td></td> <td></td> <td></td> <td>30</td> <td>30</td> <td></td> <td></td>	Link Speed (mph)		30				30	30		
Control 130 C2 84 200 79 84 Control Desk Desk <td< td=""><td>Link Distance (ft)</td><td></td><td>655</td><td></td><td></td><td></td><td>254</td><td>912</td><td></td><td></td></td<>	Link Distance (ft)		655				254	912		
onff Bios (Mn) 22 easely Lor factor 0.66 0.96 0.91 0.91 0.93 0.93 easely Lor factor 0.86 0.96 0.96 0.97 0.93 0.93 hared Lam Fatter (St) 0.93 0.93 0.93 0.93 0.93 ama Char Fatter (St) 0 0.72 0 0.72 ama Char Fatter (St) 0 0.73 0 0 172 607 100 0 ama Char Fatter (St) 1 4 1 4 3 2 ama Char Fatter (St) 1 4 4 1 3 2 ama Char Fatter (St) 1.0 1.0 8.0 8.0 8.0 ama Statter (St) 1.0 1.0 8.0 8.0 8.0 and Statter (St) 3.0 3.0 3.0 3.0 3.0 3.0 and Statter (St) 3.0 3.0 3.0 3.0 3.0 0.0 and Statter (St) 3.0 3.0 3.0 3.0 0.0 0.0 and Statter (Confl. Peds. (#/hr)	79	14.9	262	84	262	0.0	20.7	84	
ce in roa acad.	Confl. Bikes (#/hr)	0.0/	0.04	22	0.01	0.01	0.01	0.02	0.02	
di, Flow (rph) 2 504 23 24 148 607 100 72 ane Group Flow (rph) 0 739 0 0 0 172 607 172 0 unit Type Perm NA custom DP-P NA Prot Totoctof Phases 1 4 1 elector Phases 1 4 1 elector Phases 1 4 1 elector Phase 1 1 4 4 14 3 elector Phase 1 1 4 4 1 elector Phase 1 1 4 4 1 elector Phase 1 2 20 220 200 240 elow Time (s) 130 30 30 30 30 130 130 100 0 elow Time (s) 3558 5558 2000 2008 18.2% 268 elow Time (s) 30 30 30 30 30 30 30 30 40 Hore (s) 100 elector (s) 100 elector (s) 100 100 elector (s) 100 100 elector (s) 100 100 elector (s)	Heavy Vehicles (%)	0.96	2%	2%	0.91	0.91	3%	1%	0.95	
and share s	Adj. Flow (vph)	2	504	233	24	148	607	100	72	
um Type Perm NA custom DP+P NA Prot ermited Phases 1 4 4 14 3 ermited Phases 1 1 4 4 14 3 witch Phase 1 1 4 4 14 3 witch Phase 1 1 4 4 4 1 Hinnum Initial (5) 10 0 10 0 80 8.0 8.0 8.0 8.0 Hinnum Spit (s) 180 180 150 150 29.0 cut a Spit (s) 39.0 92.0 22.0 22.0 22.0 29.0 cut a Spit (s) 39.0 30 3.0 3.0 3.0 4.0 HiRed Time (s) 3.0 3.0 3.0 3.0 3.0 4.0 HiRed Time (s) 3.0 3.0 3.0 3.0 3.0 4.0 HiRed Time (s) 4.0 5.0 5.0 cut a Spit (s) - 4.0 5.0 5.0 HiRed Time (s) 4.0 5.0 5.0 cut a Spit (s) - 5.0	Lane Group Flow (vph)	0	739	0	0	172	607	172	0	
value.der 1 4 1 3 2 relation Transcis 1 1 4 1 3 2 relation Transcis 1 1 4 1 3 2 relation Transcis 1 1 4 1 4 3 relation Transcis 1 4 1 4 3 4 relation Transcis 1 4 1 4 3 4 relation Transcis 1 4 1 4 3 4 relation Transcis 30 30 30 30 20	Turn Type	Perm	NA		custom	D.P+P	NA	Prot		2
1 1 4 4 1 3 Infinum Trial (s) 100 100 8.0 8.0 8.0 8.0 Infinum Trial (s) 18.0 18.0 15.0 15.0 15.0 20.0 29.0 tail Split (s) 35.0 30.0 30.0 30.0 30.0 4.0 Heat Time (s) 3.0 3.0 3.0 3.0 3.0 0.0 add Los Time (s) 3.0 3.0 3.0 3.0 0.0 0.0 add Los Time (s) 4.0 5.0 5.0 5.0 5.0 5.0 add Los Time (s) 4.0 5.0 5.0 5.0 5.0 5.0 add Los Time (s) 4.0 5.0 5.0 5.0 5.0 5.0 add Los Time (s) 5.4 4.04 14.4 14.0 5.0 5.0 add Los Time (s) 3.3 14.0 5.1 4.0.4 5.0 5.0 tuee Debay 13.3 7.1	Permitted Phases	1	I		4	4	14	3		2
Numerical constraints	Detector Phase	1	1		4	4	14	3		
Minimum Split (s) 18.0 18.0 15.0 15.0 29.0 ordal Split (s) 39.0 39.0 22.0 22.0 22.0 22.0 ordal Split (s) 35.5% 35.5% 20.0% 10.2% 22.6% elew Time (s) 3.0 3.0 3.0 3.0 0.0 0.0 otal Legit Time (s) 3.0 3.0 3.0 3.0 0.0 0.0 otal Legit Time (s) 4.0 Lead Lag Lead Lag Lag call Alode C.Max Max Max Max None Col Col citific Green (s) 5.2.4 6.64 7.4.4 Max None Col C	Minimum Initial (s)	10.0	10.0		8.0	8.0		8.0		8.0
Strue Job Job Zuo Zuo <thzuo< th=""> <thzuo< td="" tr<=""><td>Minimum Split (s)</td><td>18.0</td><td>18.0</td><td></td><td>15.0</td><td>15.0</td><td></td><td>15.0</td><td></td><td>29.0</td></thzuo<></thzuo<>	Minimum Split (s)	18.0	18.0		15.0	15.0		15.0		29.0
ellew Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 4.0 est Time (s) 4.0 5.0 5.0 ead Lag Time (s) 4.0 5.0 5.0 ead Lag (pinize? ead Lag (Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Cag (Lag Lead Lag Cag (Lag (Lag (Lag (Lag (Lag (Lag (Lag (L	Total Split (%)	35.5%	35.5%		20.0%	20.0%		18.2%		29.0
aread mile (s) 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0	Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		4.0
otal Los Time (s) 4.0 5.0 5.0 ead-Lag Optimize? ead-Lag Optimize? ead-Lag Optimize? Eacal Mode C-Max C-Max Max Max Max Max Max None ct Effct Green (s) 52.4 68.4 74.4 15.0 the Ratio 0.48 0.62 0.68 0.14 is ratio 0.70 0.39 0.29 0.41 ontrol Delay 13.3 14.0 5.1 40.4 usue Delay 0.0 0.0 0.0 0.0 otal Delay 13.3 14.0 5.1 40.4 Usue Delay 13.3 14.0 5.1 40.4 Usue Delay 13.3 7.1 40.4 Dyroach Delay 13.3 7.1 40.4 Dyroach Delay 13.3 7.1 40.4 Dyroach Delay 13.3 7.1 40.4 Doroc 0.0 0.0 0.0 O Emissions (ghr) 658 101 251 208 O Emissions (ghr) 128 20 49 40 O C Emissions (ghr) 153 22.3 58 48 Heimmar Vehicles (f) 0 0 0 0 0 C Emissions (ghr) 105 446 2061 416 tarvation Cap Reductin 0 0 0 0 D 0 0 0 educed vic Ratio 0.70 0.39 0.29 0.41 Hersection 100 0 educed vic Ratio 0.70 0.39 0.29 0.41 Hersection 100 Ease Capacity (ph) 1050 446 2061 416 tarvation Cap Reductin 0 0 0 0 educed vic Ratio 0.70 0.39 0.29 0.41 Hersection 100 Ease Capacity (ph) 1050 446 2061 416 tarvation Cap Reductin 0 0 0 educed vic Ratio 0.70 0.39 0.29 0.41 Hersection Summary Hersection Signal Delay 13.2 Intersection LOS: B Hersection Coro Hersection Coro Hersection Signal Delay 13.2 Intersection LOS: B Hersection Coro Hersection Signal Delay 13.2	Lost Time Adjust (s)	3.0	-2.0		3.0	-1.0		-1.0		0.0
Lead Lag Q information Lead Lag	Total Lost Time (s)	Lood	4.0		Log	5.0		5.0		Lag
Iteral IM dei C. Max C. Max Max Max Max None Iter Crene (s) 5.24 6.84 7.44 15.0 chaded g/C Ratio 0.70 0.39 0.29 0.41 chaded g/C Ratio 0.70 0.0 0.0 0.0 chaded g/C Ratio 0.70 0.0 0.0 0.0 chaded g/C Ratio 0.0 0.0 0.0 0.0 cheenend Vehicles (h) 0.0 0.0	Lead-Lag Optimize?	Lead	Lead		Lag	Lag		Lead		Lag
Li Li Li Clefell (s) 2.2.4 06.4 74.4 15.0 Cutaled gC Relation 0.48 0.6.2 0.66 0.14 (F Ralio 0.70 0.39 0.29 0.41 Directed pC Relation 0.70 0.00 0.0 otal Delay 0.0 0.0 0.0 otal Delay 13.3 14.0 5.1 40.4 DS B B A D pproach LOS B A D pproach LOS B A D pproach LOS B A D Do Consistent (ghr) 658 101 251 208 Oz Emissions (ghr) 658 101 251 208 Oz Emissions (ghr) 153 2.23 58 48 Wenne Length 95h (ft) m140 86 66 74 Ueue Length 95h (ft) m140 86 66 74 UEU Length 95h (ft) m140 86 74 UEU Length 95h (ft) m140 86 UEU Length 95h (ft) m140 86 UEU Length 95h (ft) M120 70 UEU Length 95h (ft) M1200 70 UEU	Recall Mode	C-Max	C-Max		Max	Max	74.4	Max		None
ic Raio 0.70 0.39 0.29 0.41 control Delay 13.3 14.0 5.1 40.4 usue Delay 0.0 0.0 0.0 0.0 otal Delay 13.3 14.0 5.1 40.4 otal Delay 13.3 14.0 5.1 40.4 oproach Delay 13.3 7.1 40.4 porach Delay 13.3 7.1 40.4 oproach Delay 13.3 7.1 40.4 oproach Delay 394 65 144 94 oel Edisons (g/n) 658 101 251 208 Ox Emissions (g/n) 128 20 49 40 OC Emissions (g/n) 153 23 58 48 ilemma Vehicles (#) 0 0 0 0 usue Length Sthift(f) 57 174 832 144 usue Length Sthift(f) 150 446 2061 116 terrader More Mother 0 0 0 0 0 usue Length Sthift(f) 0	Act Effect Green (s) Actuated g/C Ratio		52.4 0.48			0.62	/4.4 0.68	0.14		
Ontro Delay 13.3 14.0 5.1 40.4 Delay 13.3 14.0 5.1 40.4 OS B B A D pproach Delay 13.3 7.1 40.4 pproach DOS B A D tops (vph) 394 65 144 94 uel Used(pal) 9 1 4 3 O Emissions (ghr) 658 101 251 208 Ox Emissions (ghr) 153 23 58 48 ueue Length Sth (ft) 153 23 58 48 ueue Length Sth (ft) m140 86 66 74 terman Vehib(s(P) 100 0 0 0 0 ueue Length Sth (ft) m140 86 66 74 144 tarvalion Cap Reductn 0 0 0 0 0 </td <td>v/c Ratio</td> <td></td> <td>0.70</td> <td></td> <td></td> <td>0.39</td> <td>0.29</td> <td>0.41</td> <td></td> <td></td>	v/c Ratio		0.70			0.39	0.29	0.41		
otal Delay 13.3 14.0 5.1 40.4 OS B B A D pproach Delay 13.3 7.1 40.4 pproach Delay 13.3 7.1 40.4 pproach DCS B A D tops (vph) 394 65 144 94 uel Used(gal) 9 1 4 3 O Emissions (ghr) 658 101 251 208 OX Emissions (ghr) 128 20 49 40 OC Emissions (ghr) 153 23 58 48 lueau Length Sth (ft) 52 7 12 36 ueue Length Sth (ft) 55 174 832 ueue Length Sth (ft) 575 174 832 um Bay Length (ft) 100 sec Capacity (vph) 1050 446 2061 416 tarvation Cap Reductn 0 0 0 0 educed vic Rato 0.70 0.39 0.29 0.41 dersection Summary rea Type: CBD yde Length: 110 frist: 20 (18%). Referenced to phase 1:EBWB, Start of Green atural Cycle: 90 rothor Type: Actuated-Coordinated laximum vic Ratio: 0.70 tersection Signal Delay. 13.2 Intersection LOS: B tersection Capacity Utilization 60.9% ICU Level of Service B talysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal.	Queue Delay		0.0			0.0	0.0	40.4		
US B B A D pproach Delay 13.3 7.1 40.4 pproach LOS B A D tops (vph) 394 65 144 94 uel Used(gal) 9 1 4 3 O Emissions (ghr) 128 20 49 40 OC Emissions (ghr) 153 23 58 48 ilemma Vehicles (#) 0 0 0 0 Do Emissions (ghr) 152 7 12 36 ueue Length 95th (ft) 575 174 82 82 ueue Length 95th (ft) 575 174 82 82 ueue Length 95th (ft) 1050 446 206.1 416 tarvation Cap Reductn 0 0 0 0 of targe Cap Reductn 0 0 0 0	Total Delay		13.3			14.0	5.1	40.4		
B A D tops (vph) 394 65 144 94 uel Used(gal) 9 1 4 3 0 Emissions (ghr) 658 101 251 208 OX Emissions (ghr) 128 20 49 40 OC Emissions (ghr) 153 23 58 48 ilemma Vehicles (#) 0 0 0 0 ueue Length 50h (ft) 52 7 12 36 ueue Length 95th (tt) m140 86 66 74 ueue Length 95th (tt) m140 86 66 74 ueue Length 95th (tt) m140 86 66 74 ueue Length 95th (tt) m140 82 20 146 arvation Cap Reductn 0 0 0 0 of cap Reductn 0 0 0 0 ueder vic Ratio 0.70 0.39 0.29 0.41 Uestresclon Summary teseclon Sumary<	Approach Delay		В 13.3			В	7.1	40.4		
tops (ph) 394 65 144 94 tops (ph) 594 9 1 4 3 O Emissions (ghr) 658 101 251 208 OC Emissions (ghr) 128 20 49 40 OC Emissions (ghr) 153 23 58 48 ilemma Vehicles (#) 0 0 0 0 0 tueue Length 50th (th) 52 7 12 36 tueue Length 59th (th) m140 86 66 74 termal Link Dist (th) 575 174 832 urn Bay Length (th) 100 ase Capacity (ph) 1050 446 2061 4116 tarvation Cap Reductn 0 0 0 0 pillback Cap Reductn 0 0 0 0 reduced v/c Ratio 0.70 0.39 0.29 0.41 terreseCtion Summary rea Type: CBD yole Length: 110 Cluated Cycle Length: 110 ffset: 20 (18%), Referenced to phase 1:EBWB, Start of Green tarvard Cycle: 90 ontrol Type: Actuated-Coordinated laximum v/c Ratio 0.70 tersection Capacity Utilization 60.9% ICU Level of Service B ralysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal. pills and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Approach LOS		В			15	A	D		
O.E. Emissions (g/hr) 658 101 251 208 OX.E. Emissions (g/hr) 128 20 49 40 00 0 00	Stops (vpn) Fuel Used(gal)		394			65 1	144	94		
DX Emissions (gmt) 128 20 49 40 OCE Emissions (gmt) 153 23 58 48 illemma Vehicles (#) 0 0 0 0 tueue Length 50th (th) 52 7 12 36 tueue Length 59th (th) 101 86 66 74 urm Bay Length (th) 575 174 832 urm Bay Length (th) 100 38 Capacity (yph) 1050 asc Capacity (yph) 1050 446 2061 416 tarvation Cap Reductn 0 0 0 0 pillback Cap Reductn 0 0 0 0 orage Cap Reductn 0 0 0 0 tersection Summary	CO Emissions (g/hr)		658			101	251	208		
illemma Vehicles (#) 0 0 0 0 tucue Length 50th (th) 52 7 12 36 tucue Length 50th (th) 52 7 12 36 tucue Length 50th (th) 575 174 832 urm Bay Length (th) 100 assoc Capacity (typh) 1050 446 2061 4116 tarvation Cap Reductn 0 0 0 0 0 0 0 pillback Cap Reductn 0 10 146 145 145 145 145 145 145 145 145 145 145 145	VOC Emissions (g/hr)		128			20	49	40		
Ductue Length Soft (ft) 52 7 12 36 tereal Link Dist (ft) 575 174 832 urn Bay Length (ft) 100 38 32 asc Capacity (vph) 1050 446 2061 416 tarvation Cap Reductn 0 0 0 0 pillback Cap Reductn 0 0 0 0 read Link Dist (ft) 0.70 0.39 0.29 0.41	Dilemma Vehicles (#)		0			0	0	0		
Itema Link Dist (tt) 575 174 832 um Bay Length (tt) 100 382 ass Capacity (vph) 1050 446 2061 416 tarvation Cap Reducth 0 0 0 0 0 pillback Cap Reducth 0 0 0 0 0 0 rotage Cap Reducth 0 0 0 0 0 0 0 rotage Cap Reducth 0 <td>Queue Length 95th (ft)</td> <td></td> <td>52 m140</td> <td></td> <td></td> <td>86</td> <td>66</td> <td>30 74</td> <td></td> <td></td>	Queue Length 95th (ft)		52 m140			86	66	30 74		
Unit Bay Lengin (U) 100 Unit Bay Lengin (U) 100 atarvation Cap Reductn 0 0 0 pillback Cap Reductn 0 0 0 orage Cap Reductn 0 0 0 rear Type: CBD yole Length: 110 Cluated Cycle Length: 110 ffset: 20 (18%), Referenced to phase 1:EBWB, Start of Green atural Cycle: 90 ontrol Type: Actuated-Coordinated laximum vic Ratio: 0.70 tersection Capacity Utilization 60.9% ICU Level of Service B nalysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal. pills and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Internal Link Dist (ft)		575			100	174	832		
tarvation Cap Reductn 0 0 0 0 pillback Cap Reductn 0 0 0 0 rotage Cap Reductn 0 0.39 0.29 0.41 ttersection Summary	Base Capacity (vph)		1050			446	2061	416		
pillback Cap Reductin 0 0 0 0 torage Cap Reductin 0 0.39 0.29 0.41 tersection Summary	Starvation Cap Reductn		0			0	0	0		
teduced v/c Ratio 0.70 0.39 0.29 0.41 tersection Summary Tea Type: CBD yole Length: 10 ctuated Cycle Length: 110 ffset: 20 (18%), Referenced to phase 1:EBWB, Start of Green atural Cycle: 90 ontrol Type: Actuated-Coordinated taximum v/c Ratio. 0.70 tersection Signal Delay: 13.2 Intersection LOS: B tersection Capacity Utilization 60.9% ICU Level of Service B natysis Period (min) 15 volume for 95th percentile queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Spillback Cap Reductn Storage Cap Reductn		0			0	0	0		
tersection Summary Tera Type: CBD Vigle Length: 110 Ctuated Cycle Length: 110 Ctuated Cycle Length: 110 Ctuated Cycle Length: 110 Strard Cycle: 9 O ontrol Type: Actuated-Coordinated Taximum vic Ratio: 0.70 Intersection Capacity Utilization 60.9% ICU Level of Service B nalysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal. Jilis and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Reduced v/c Ratio		0.70			0.39	0.29	0.41		
rea Type: CBD rea Type: CBD rype: CBD rype: Actuated Cycle Length: 110 rifset: 20 (18%), Referenced to phase 1:EBWB, Start of Green atural Cycle: 90 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.70 tersection Signal Delay: 13.2 Intersection LOS: B tersection Capacity Utilization 60.9% ICU Level of Service B nalysis Period (min) 15 V olume for 95th percentile queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Intersection Summary	000								
	Area Type: Cvcle Length: 110	CBD								
Inset: 20 (18%), Referenced to phase 1:EBWS, Start of Green Jatural Cycle: 90 ontrol Type: Actuated-Coordinated Jaximum vic Ratio. 0.70 Itersection Signal Delay: 13.2 Intersection LOS: B Itersection Capacity Utilization 60.9% ICU Level of Service B nalysis Period (min) 15 I Volume for 95th percentile queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Actuated Cycle Length: 110									
iontrol Type: Actuated-Coordinated taximum vic Ratio: 0.70 ttersection Capacity Utilization 60.9% ICU Level of Service B nalysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Natural Cycle: 90	ed to phase T	ERMR' 21	tart of Gre	en					
taxmum vic Ratio: 0. /0 tersection Signal Delay: 13.2 Intersection LOS: B tersection Capacity Utilization 60.9% ICU Level of Service B natysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Control Type: Actuated-Coc	ordinated								
tersection Capacity Utilization 60.9% ICU Level of Service B alysis Period (min) 15 Volume for 95th percentile queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Maximum v/c Ratio: 0.70 Intersection Signal Delay: 1	3.2			Ir	ntersection	LOS: B			
narysis veriod (min) 15 1 Volume for 95th percentille queue is metered by upstream signal. plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Intersection Capacity Utiliza	ition 60.9%			IC	CU Level of	f Service	3		
plits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Analysis Period (min) 15 m Volume for 95th percen	tile queue is	metered h	v upstrea	m signal					
pilis and Pnases: 8: Boston Whart Road (WSR) & Seaport Boulevard			1 4	,						
	Splits and Phases: 8: Bos	sion whart R	uad (WSR)) & Seapo	JIL BOUIEVS	10		1.1		

29 s

	≤	٦	-	\mathbf{r}	∢	←	•	1	† 1	1	1	Ŧ	1
∟ane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		٦	† †			≜ î≽		٦	1	1	٦	4	
Fraffic Volume (vph)	15	37	521	0	0	534	123	60	52	104	203	0	100
Ideal Flow (vphpl)	1900	37 1900	1900	1900	1900	1900	1900	1900	52 1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11	12	11	12	11	12	12	12
Storage Length (ft) Storage Lanes		150		0	0		0	0		125	0		0
Taper Length (ft)		25		U	25		U	25			25		U
Lane Util. Factor	0.95	1.00	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor Frt		0.93				0.96		0.95		0.94	0.95	0.94	
Flt Protected		0.950				0.772		0.950		0.000	0.950	0.984	
Satd. Flow (prot)	0	1624	2925	0	0	2874	0	1570	1710	1391	1513	1351	0
Satd. Flow (perm)	0	483	2925	0	0	2874	0	1497	1710	1307	1444	1331	0
Right Turn on Red				Yes	-		Yes			Yes			Yes
Satd. Flow (RTOR)			30			27			30	119		119	
Link Distance (ft)			263			376			812			338	
Travel Time (s)	05	400	6.0	100	100	8.5	100	05	18.5	0.0	0.0	7.7	05
Confl. Peas. (#/nr) Confl. Bikes (#/hr)	35	132		180	180		33	35		30	30		35
Peak Hour Factor	0.91	0.91	0.91	0.91	0.98	0.98	0.98	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehicles (%)	0%	0%	2%	0%	0%	2%	0%	0%	0%	1%	2%	0%	1%
Parking (#/nr) Adj. Flow (vph)	16	41	573	0	0	545	126	63	55	109	216	0	106
Shared Lane Traffic (%)	10		0.0	U	U	0.0	.20		55		23%	Ū	
Lane Group Flow (vph)	0	57	573	0	0	671	0	63	55	109	166	156	0
Protected Phases	D.Pm	U.P+P 7	NA 17			NA 1		Split 6	NA 6	Perm	Split 5	NA 5	
Permitted Phases	1	1						5	U	6	5	5	
Detector Phase	1	7	17			1		6	6	6	5	5	
Switch Phase Minimum Initial (s)	10.0	8.0				10.0		10.0	10.0	10.0	8.0	8.0	
Minimum Split (s)	26.0	13.0				26.0		25.0	25.0	25.0	25.0	25.0	
Total Split (s) Total Split (%)	40.0	15.0				40.0		27.0	27.0	27.0	28.0	28.0	
Yellow Time (s)	30.4%	3.0%				30.4%		24.3%	24.5%	24.3%	20.0%	20.0%	
All-Red Time (s)	2.0	2.0				2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0				-2.0		-2.0	0.0	-2.0	0.0	0.0	
Lead/Lag		Lag				3.0		Lead	Lead	Lead	5.0	0.U	
Lead-Lag Optimize?	0.11												
Recall Mode Act Effct Green (s)	C-Max	None 63.0	70.0			C-Max 50.7		None 12 7	None 10.7	None 12 7	None 16.4	None 16.4	
Actuated g/C Ratio		0.57	0.64			0.46		0.12	0.10	0.12	0.15	0.15	
v/c Ratio		0.13	0.31			0.50		0.35	0.33	0.43	0.74	0.52	
Queue Delay		23.2	22.4			33.6 0.5		53.2	56.0 0.0	18.6	65.1 3.5	20.5	
Total Delay		23.2	22.4			34.1		53.2	56.0	18.6	68.7	21.4	
LOS Approach Dolou		С	C 22.5			C		D	E 27.2	В	E	C	
Approach LOS			22.5 C			34.1 C			37.3 D			45.7 D	
Stops (vph)		38	366			433		46	40	60	147	43	
Fuel Used(gal)		1	6			9		1	1	1	220	1	
NOx Emissions (g/hr)		40	454 88			120		90	80	197	230 45	17	
VOC Emissions (g/hr)		11	105			143		21	19	22	53	20	
Dilemma Vehicles (#)		20	0			177		21	0	0	121	0	
Queue Length 95th (ft)		30 m49	207			218		51	29 55	4	121	97	
Internal Link Dist (ft)			183			296			732			258	
Turn Bay Length (ft) Base Canacity (uph)		150	1847			1330		212	313	125	216	276	
Starvation Cap Reductn		420	047			296		34Z 0	342	3/6	310	370	
Spillback Cap Reductn		0	1			0		0	0	7	82	75	
Storage Cap Reductn		0 12	0 21			0		0 10	0 16	0 20	0 71	0 52	
		0.15	0.31			0.04		0.10	0.10	0.29	0.71	0.32	
Area Type: (CBD												
Cycle Length: 110													
Actuated Cycle Length: 110			-4.0										
Uffset: 0 (0%), Referenced to p Natural Cycle: 90	pnase 1:El	BWB, Start	of Green										
Control Type: Actuated-Coordi	inated												
Maximum v/c Ratio: 0.74													
Intersection Signal Delay: 32.6	n 57 7%			Int	ersection	LOS: C f Service P							
Analysis Period (min) 15	n J1.170			i	O LEVELUI	JENICE E							
m Volume for 95th percentile	e queue is	metered by	/ upstream	n signal.									
Solits and Phases Or Fact S	Service Ro	ad & Sean	ort Boulev	ard									
opino ana Fraoco. 7. Edol o	SCI VICE RU	uu a ocdµ	ort DOURV	aru				<u> </u>					
40 s							28	¹ Ø5					

	-	\mathbf{r}	€	-	₹Ĩ	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBU	NBL	NBR	Ø2
Lane Configurations	≜ †⊅			4₽		ካካ	1	
Traffic Volume (vph)	658	170	78	442	2	215	118	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	11	12	13	12	11	12	
Storage Length (ft)		0	0			125	125	
Taper Length (ft)		U	25			25	U	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.97	1.00	
Ped Bike Factor	0.96			0.99		0.47	0.050	
FIL FIT Protected	0.969			0 003		0.950	0.850	
Satd. Flow (prot)	2948	0	0	3059	0	3046	1439	
Flt Permitted				0.641		0.950		
Satd. Flow (perm) Right Turn on Rod	2948	0	0	1960	0	1437	1439 No	
Satd. Flow (RTOR)		NU					NU	
Link Speed (mph)	30			30		30		
Link Distance (ft)	392			533		498		
Confl Peds (#/hr)	8.9	275	275	12.1	275	40	63	
Confl. Bikes (#/hr)		12	270		270	10	00	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.97	0.97	0.97	
Heavy Vehicles (%)	3%	0%	1%	4%	0%	0%	1%	
Adi. Flow (vph)	685	177	81	460	2	222	122	
Shared Lane Traffic (%)								
Lane Group Flow (vph)	862	0	0	541	0	224	122	
Protected Phases	NA 1		Perm	NA 1	Perm	P101 3	Prot	2
Permitted Phases			1		3	5	5	2
Detector Phase	1		1	1	3	3	3	
Switch Phase Minimum Initial (s)	10.0		10.0	10.0	8.0	8.0	8.0	8.0
Minimum Split (s)	18.0		18.0	18.0	15.0	15.0	15.0	25.0
Total Split (s)	52.0		52.0	52.0	33.0	33.0	33.0	25.0
Total Split (%)	47.3%		47.3%	47.3%	30.0%	30.0%	30.0%	23%
All-Red Time (s)	3.0		3.0	3.0	3.0	3.0	3.0	4.0
Lost Time Adjust (s)	-2.0			-2.0		0.0	0.0	
Total Lost Time (s)	4.0			4.0		6.0	6.0	
Lead/Lag	Lead		Lead	Lead				Lag
Recall Mode	C-Max		C-Max	C-Max	Max	Max	Max	Ped
Act Effct Green (s)	48.0			48.0		27.0	27.0	
Actuated g/C Ratio	0.44			0.44		0.25	0.25	
Control Delay	37.9			28.3		0.64	45.8	
Queue Delay	3.7			0.0		0.0	0.0	
Total Delay	41.5			28.3		55.3	45.8	
LUS Annroach Delay	D			28 3		51 Q	D	
Approach LOS	41.5 D			20.3 C		51.7 D		
Stops (vph)	730			395		212	106	
Fuel Used(gal)	13			8 E 21		211	2	
NOx Emissions (g/nr)	905			103		61	29	
VOC Emissions (g/hr)	210			123		72	35	
Dilemma Vehicles (#)	0			0		0	0	
Queue Length 50th (ft)	280			153		85	79	
Internal Link Dist (ft)	312			453		418	1.34	
Turn Bay Length (ft)						125	125	
Base Capacity (vph)	1286			855		352	353	
Starvation Cap Reductn	326			0		0	0	
Storage Cap Reductn	0			0		0	0	
Reduced v/c Ratio	0.90			0.63		0.64	0.35	
Intersection Summary								
Area Type: (CBD							
Cycle Length: 110								
Offset: 32 (29%) Referenced	to phase 1-I	BWR SI	art of Gre	en				
Natural Cycle: 75	to pridoc 1.1	, 31	an or ore					
Control Type: Actuated-Coord	linated							
Maximum v/c Ratio: 0.67	5			In	torsection			
Intersection Capacity Utilization	on 62.6%			10	U Level o	f Service I	3	
Analysis Period (min) 15								
Solits and Discost 10- D C+	traat & Soon	ort Roule	vard					
	ански осар	S. C DOUIC	aru					

25 :

index conduction into into into into into into into into		٩	-	\rightarrow	1	-	 	▲	Ť	1	1	Ŧ	<					
ung of regular of a set of a	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2				
The control of the	Lane Configurations	00	4 1 }	070	10	ፋቡ	00	10	0	1			00					
Note of the constraint o	Future Volume (vph)	22	307	270	40	398	22	142	0	21	14	25	29					
mar and performed in a performance in a performanc	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900					
reprint 0.04 0.09 0.09 0.00	Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00					
ni mekoni 10 2000 10	Ped Bike Factor		0.94			0.99		0.96		0.050		0.91						
Scale 0 2034 0 0 0.000	FIL FIL Protected		0.932			0.993		0.950		0.850		0.943						
Hit Max May Lange 100 0 0.04 0 0.04 0	Satd. Flow (prot)	0	3084	0	0	3434	0	1787	0	1615	0	1680	0					
a da lo per mon lo pe	Flt Permitted		0.928			0.859		0.950				0.990						
Sing Marging M	Satd. Flow (perm)	0	2864	0	0	2949	0	1708	0	1615	0	1609	0					
Single Serie (set of the Set of t	Sate Flow (RTOR)		265	Yes		7	res			109		28	res					
Link Link (n) 37 32 34 Link Link (n) 3 10 10 37 37 50 Core Link (n) 3 10 10 37 37 10	Link Speed (mph)		30			30			30	107		30						
Table 1 for 0 / 1 = 0 B 3 T B 3 T B 3 T B 3 T B 3 T B 3 T B 3 T B 3 T D 3 <thd 3<="" th=""> D 3 <thd 3<="" th=""> <th< td=""><td>Link Distance (ft)</td><td></td><td>376</td><td></td><td></td><td>325</td><td></td><td></td><td>372</td><td></td><td></td><td>366</td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thd></thd>	Link Distance (ft)		376			325			372			366						
Over Base Park for Au Ta Ta Ta Ta Hard Variation Park for Park	Travel Time (s)	50	8.5	101	101	7.4	50	22	8.5	41	41	8.3	22					
Note: Note: Sectors 0.95 <th< td=""><td>Confl. Bikes (#/hr)</td><td>JZ</td><td></td><td>16</td><td>101</td><td></td><td>31</td><td>23</td><td></td><td>41</td><td>41</td><td></td><td>23</td><td></td><td></td><td></td><td></td><td></td></th<>	Confl. Bikes (#/hr)	JZ		16	101		31	23		41	41		23					
<pre> tesky the (ng) (ng) (ng) (ng) (ng) (ng) (ng) (ng)</pre>	Peak Hour Factor	0.95	0.95	0.95	0.97	0.97	0.97	0.95	0.95	0.95	0.94	0.94	0.94					
M i ne (np) (N) 20 20 20 20 0 0 0 0 40 0 10 22 0 73 0 0 10 10 10 10 10 10 10 10 10 10 10 10	Heavy Vehicles (%)	0%	4%	0%	0%	4%	0%	1%	0%	0%	0%	0%	0%					
na Care Care Por Vento The Transmission Vento The	Adj. Flow (vph) Sharod Lano Traffic (%)	23	323	284	41	410	23	149	0	22	15	27	31					
Turn Type NA Pent NA Pent NA Pent NA Netcle Please 1 1 7 7 8 2 Netcle Please 1 1 7 7 8 2 Name Set Plane 1 1 7 7 8 2 Name Set Plane 1 1 7 7 8 2 Name Set Plane 20 210 210 210 210 Name Set Plane 490% 490% 490% 100 100 210 Name Set Plane 490% 490% 490% 100 100 210 Name Set Plane 490% 490% 100 100 20 20 20 Name Name Set Plane 490% 100 100 20 20 20 20 Name Name Set Plane 100 100 100 100 100 100 Name Name Set Plane 100 100 100 100 100 Name Name Set Plane Name Name Name Name Name Name Name Name	Lane Group Flow (vph)	0	630	0	0	474	0	149	0	22	0	73	0					
Nucced Phases 1 1 7 7 8 8 2 Sate 7 house 1 1 1 7 7 8 8	Turn Type	Perm	NA	-	Perm	NA	-	Prot	-	Prot	Split	NA	-					
Vertice 1<	Protected Phases		1			1		7		7	8	8		2				
Sada hrise in i i i i i i i i i i i i i i i i i i	Permitted Phases	1	1		1	1		7		7	0	0						
Minumus 1984 (s) 16.0 16.0 16.0 6.0 6.0 6.0 4.0 Minumus 2984 (s) 47.0 47.0 47.0 17.0 17.0 27.0 Tail Spit (s) 47.00 47.0 47.0 47.0 17.0 17.0 27.0 Tail Spit (s) 47.00 47.00 47.00 47.00 17.0 17.0 27.0 Minumus 1000 (s) 2.0	Switch Phase	- 1	1		1	1		/		/	0	0						
Minum Spit (b) 210 210 210 210 210 110 110 110 110 110	Minimum Initial (s)	16.0	16.0		16.0	16.0		6.0		6.0	6.0	6.0		4.0				
circle yit	Minimum Split (s)	21.0	21.0		21.0	21.0		11.0		11.0	11.0	11.0		21.0				
Value Value <t< td=""><td>Total Split (S) Total Split (%)</td><td>49.0</td><td>49.0</td><td></td><td>49.0</td><td>49.0</td><td></td><td>10.0%</td><td></td><td>19.0</td><td>11.0%</td><td>11.0%</td><td></td><td>21.0</td><td></td><td></td><td></td><td></td></t<>	Total Split (S) Total Split (%)	49.0	49.0		49.0	49.0		10.0%		19.0	11.0%	11.0%		21.0				
Alk Bod Time (a) 2.0 2.0 2.0 2.0 2.0 0 Time (b) 5.0 5.0 5.0 5.0 5.0 5.0 Time (b) C. Max C. Max C. Max Max None None None Actuated (c) Fanto 0.67 0.67 0.13 0.13 0.08	Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0		3.0				
Los The Adjus (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	All-Red Time (s)	2.0	2.0		2.0	2.0		2.0		2.0	2.0	2.0		0.0				
Used Log Log <thlog< th=""> Log <thlog< th=""></thlog<></thlog<>	Lost Time Adjust (s)		0.0			0.0		0.0		0.0		0.0						
LingdLag Color Color <thcolor< th=""> Color Color</thcolor<>	Lead/Lag	Lead	0.c		Lead	5.0 Lead		5.0		0.c	Lan	5.0 Lan		Lan				
Real II (Sole () C-Max C-Max None None None Recal II (Sole () 6.67 0.67 0.67 0.13 0.13 0.08 Actal del [C Carelo 0.67 0.67 0.67 0.67 0.67 0.67 Control Delay 5.3 0.22 5.2 0.5 3.87 Control Delay 5.3 0.2 4.8 3.87 Stappose Into Sole 0.4 0.40 3.7 1.1 Control Delay 3.3 3 0 1.1 Stappose Into Sole 1.31 0 1.3 0.2 Control Delay 3.3 3 0 1.3 Stappose Into Sole 1.31 0 0.3 0.0 Control Delay 3.8 3 0 1.3 Dela Hall Ball 1.31 0 1.3 0.3 Dela Hall Ball 1.30 0.3 1.3 1.3 Dela Hall Ball 1.30 1.3 1.3 1.3 <td>Lead-Lag Optimize?</td> <td>Loud</td> <td>LCGG</td> <td></td> <td>Loud</td> <td>Loud</td> <td></td> <td>Loud</td> <td></td> <td>LCGG</td> <td>Lug</td> <td>Lug</td> <td></td> <td>Lug</td> <td></td> <td></td> <td></td> <td></td>	Lead-Lag Optimize?	Loud	LCGG		Loud	Loud		Loud		LCGG	Lug	Lug		Lug				
Atclefic Green (s) 66.7 66.7 12.6 12.6 7.8 Actled of Creen (s) 0.67 0.67 0.67 0.13 0.08 wic Ratin 0.32 0.24 0.66 0.07 0.64 Control Delay 5.3 8.2 552 0.5 38.7 Control Delay 5.3 8.2 552 0.5 38.7 Control Delay 5.3 8.2 2.52 0.5 38.7 Control Delay 5.3 8.2 2.48.2 38.7 Control Delay 5.3 0.2 48.2 38.7 Control Delay 5.3 0.2 48.2 38.7 Sequence Control Polay 5.3 0.1 1.3 0.1 Delay 0.5 13.1 0.1 1.3 0.1 Delay Control Delay 2.4 2.5 1.9 1.3 0.1 Delay Control Delay Control Delay 2.4 2.5 2.9 0.2 2.8 Delay Control De	Recall Mode	C-Max	C-Max		C-Max	C-Max		None		None	None	None		None				
And and gic Yangio (a Railo 0, 02 (b Railo	Act Effct Green (s)		66.7			66.7		12.6		12.6		7.8						
Control Delay S.3 B.2 S.5.2 O.5 S.87 Oracle Delay S.3 B.2 S.5.2 O.5 S.87 O.5 A A E A D.0	v/c Ratio		0.67			0.67		0.13		0.13		0.08						
Oute Oute <thoute< th=""> Oute Oute <!--</td--><td>Control Delay</td><td></td><td>5.3</td><td></td><td></td><td>8.2</td><td></td><td>55.2</td><td></td><td>0.5</td><td></td><td>38.7</td><td></td><td></td><td></td><td></td><td></td><td></td></thoute<>	Control Delay		5.3			8.2		55.2		0.5		38.7						
Total Delay 5.3 8.2 552 0.5 8.7 Approach Delay 5.3 8.2 48.2 8.7 Approach Delay 5.3 8.2 48.2 8.7 Approach Delay 5.3 8.2 48.2 8.7 Approach Delay 1.4 8.8 Note Emissions (after) 1.4 6 100 1.31 0 4.3 Final Delay 1.3 3 0 1 C2 Emissions (after) 2.24 205 1191 4 68 NOE Emissions (after) 2.24 4.205 1191 4 68 NOE Emissions (after) 5.2 4.7 44 1 1.6 Diamana Venticis (after) 0 0 0 0 0 0 Dauce Length 950 (1) 44 38 92 0 28 Dauce Length 950 (1) 246 148 0 70 Dauce Length 950 (1) 246 148 70 0 Dauce Length 950 (1) 240 0.5 0 Dauce Length 950 (1) 240 0.0 0 Dauce Length 950 (1) 240 0.5 0 Dauce Length 950 (1) 240 0.5 0 Data Dauce Length 950 (1) 240 0.5 0 Data Data Data Data Data Data Data Data	Queue Delay		0.0			0.0		0.0		0.0		0.0						
Color n <td>Total Delay</td> <td></td> <td>5.3</td> <td></td> <td></td> <td>8.2</td> <td></td> <td>55.2</td> <td></td> <td>0.5</td> <td></td> <td>38.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total Delay		5.3			8.2		55.2		0.5		38.7						
Approach A A D D Approach 146 180 131 0 43 Stops (rph) 146 180 131 0 1 OC Emissions (ghr) 224 205 191 4 68 NOX Emissions (ghr) 224 205 191 4 68 NOX Emissions (ghr) 52 47 44 1 16 Different Venices (P 0 0 0 0 0 Duree Length Sth (th) 44 58 92 0 28 Duree Length Sth (th) 296 245 292 286 Time Bay Length (th) 199 1970 266 332 157 Storadio Cap Reduch 0 0 0 0 0 Storage Cap Reduch 0 0 0 0 0 Storage Cap Reduch 0 0 0 0 0 Area Type: Capted Ty 100 Cafee angt	Approach Delav		5.3			8.2		L	48.2	A		38.7						
Stops (ph) 146 180 131 0 43 C0 Emissions (gh) 24 205 191 4 68 NOS Emissions (gh) 24 205 191 4 68 NOS Emissions (gh) 44 40 37 1 13 Ouce Length S0h (f) 52 47 44 1 66 Ouce Length S0h (f) 92 46 48 0 70 Duce Length S0h (f) 92 106 148 0 70 Internal Link Dist (f) 926 245 292 286 Standato Cap Reductin 0 0 0 0 30 Standato Cap Reductin 0 0 0 0 30 30 Standato Cap Reductin 0 0 0 0 30	Approach LOS		А			А			D			D						
140 Used(a) 3 3 3 0 1 C Emissions (ghr) 224 205 191 4 68 NOx Emissions (ghr) 52 47 44 1 16 Dilema Vehicles (e) 0 0 0 0 0 Ouceu Lengh Noth (f) 44 58 92 0 28 Ouceu Lengh Noth (f) 92 106 148 0 70 Immal Link Dit (f) 292 266 332 157 Stanzion Cap Reducin 0 0 0 0 0 Stanzion Cap Reducin 0 0 0 0 0 Stanzion Cap Reducin 0 0 0 0 0 Stanzion Cap Reducin 0 0 0 0 0 0 Stanzion Cap Reducin 0	Stops (vph)		146			180		131		0		43						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fuel Used(gal)		224			205		3 191		0		68						
VOC Emissions (phr) 52 47 44 1 16 Diema Vehicks (#) 0 0 0 0 0 Dueue Length 50h (ft) 44 58 92 0 28 Dueue Length 50h (ft) 92 106 148 0 70 Itemaral Link DS (ft) 296 282 286 282 286 Turn Bay Length (ft) 99 1970 266 332 157 Starvation Cap Reductin 0 0 0 0 0 Splitback Cap Reductin 0 0 0 0 0 Reduced v(e Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary Intersection Summary Intersection LOS: 8 Intersection LOS: 8 Intersection LOS: 8 Autuald Cycle Length: 100 Cordenated ICU Level of Service B ICU Level of Service B ICU Level of Service B Analysis Period (min) 15 Service B Intersection LOS: 8 Intersection LOS: 8 <t< td=""><td>NOx Emissions (g/hr)</td><td></td><td>44</td><td></td><td></td><td>40</td><td></td><td>37</td><td></td><td>1</td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	NOx Emissions (g/hr)		44			40		37		1		13						
Dilema Vehicles (4) 0 0 0 0 0 0 0 Ouceue Length 95h (ft) 44 58 92 0 28 Ouceue Length 95h (ft) 92 106 148 0 70 Internal Link Olst (ft) 296 245 292 286 Turn Bay Length (ft)	VOC Emissions (g/hr)		52			47		44		1		16						
Outleue Length Stoth (1) 44 38 92 0 28 Internal Link Dist (11) 92 106 148 0 70 Internal Link Dist (11) 296 245 292 286 Turn Bay Length (10) 1 8 0 70 Base Capacity (1,11) 1999 1970 266 332 157 Starvation Cap Reductin 0 0 0 0 0 Starvation Cap Reductin 0 0 0 0 0 Starvation Cap Reductin 0 0 0 0 0 Reduced vic Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection LOS: 8 Actuated Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Intersection LOS: 8 Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Split Sand Phases: 12: D Street & Northern Avenue Yar Yar Yar Split Sand Phases: 12: D Street & Northern Avenue Yar <t< td=""><td>Dilemma Vehicles (#)</td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td>0</td><td></td><td>0</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dilemma Vehicles (#)		0			0		0		0		0						
Internal Link Dist (ft) 296 245 292 286 Turn Bay Length (ft) 1999 1970 266 332 157 Starvation Cap Reductin 0 0 0 0 0 Starvation Cap Reductin 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 Reduced v/: Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary Area Type: Other Cycle Length: 100 Charled Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum V: Ratio: 0.66 Intersection LOS: B Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: 12: 12: 12: 12: 12: 12: 12: 12: 12:	Queue Length Soln (II)		44 92			58		92		0		28						
Turn Bay Length (ft) Base Capacity (typh) 1999 1970 266 332 157 Stavation Cap Reductn 0 0 0 0 0 SplitBack Cap Reductn 0 0 0 0 0 SplitBack Cap Reductn 0 0 0 0 0 Reduced vic Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary	Internal Link Dist (ft)		296			245			292	-		286						
Base Capacity (vph) 1999 1999 206 332 157 Sinvation Cap Reductin 0 0 0 0 0 Spillback Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 Reduced v Cap Reductin 0 0.32 0.24 0.56 0.07 0.46 Intersection Summary Area Type: Other Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 65 Control Type: Actuated Coordinated Maximum v: Ratio: 0.66 Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phase Street Ph	Turn Bay Length (ft)																	
Silian Cap Reductin 0 0 0 0 0 0 Reduced v/c Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary Acrea Type: Other Cycle Length: 100 Actuated Cycle Length: 100 Offse: 47 (47%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 65 Control Type: Actualed-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue	Base Capacity (vph) Stanuation Can Reducte		1999			1970		266		332		157						
Storage Cap Reductin 0 0 0 0 0 Reduced v/c Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary	Spillback Cap Reductn		0			0		0		0		0						
Reduced v/c Ratio 0.32 0.24 0.56 0.07 0.46 Intersection Summary Other	Storage Cap Reductn		0			0		0		0		0						
Intersection Summary Area Type: Other Other Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Actuated Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Actuated Cycle: 6 Control Type: Actuated Coordinated Maximum vic: Ratio: 0.66 Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Age Age Age Age Age Age Age A	Reduced v/c Ratio		0.32			0.24		0.56		0.07		0.46						
Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 65 Control Type: Actuated Coordinated Maximum vic Ratio: 0.66 Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phase Street Splits and Splits Avenue Splits Avenue Street Splits Avenue Splits Avenu	Intersection Summary																	
Cycle Length: 100 Actualed Cycle Length: 100 Offset: 47 (47%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 65 Control Type: Actualed-Coordinated Maximum v/c Ratio: 0.66 Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue $\frac{1}{2}g_{01}(R)$ 21.5	Area Type:	Other																
Natural Cycle: 47 (1%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.66 Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 12: D Street & Northern Avenue Splits and Phases: 13: D Street & Northern Avenue Splits and Phases: 13: D Street & Northern Avenue Splits and Phases: 13: D Street & Northern Avenue Splits and Phase Street P	Cycle Length: 100 Actuated Cycle Length: 100																	
Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.66 Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Capacity Ultization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue ⇒ 07 07 08 45 01 01 01 01 01 01 01 01 01 01 01 01 01	Offset: 47 (47%), Referenced	to phase 1:	EBWB, St	art of Gre	en													
Control Type: Actuated-Coordinated Maximum vic Ratio: 0.66 Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phase Street & Northern Ave	Natural Cycle: 65																	
Maximum Vic Ratio: U.o6 Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Capacity Utilization 60.7% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue Splits and Phase & Northern Avenue Split	Control Type: Actuated-Coord	dinated																
$\frac{1}{3} \frac{1}{9} \frac{1}{21} \frac{1}{9} 1$	Intersection Signal Delay: 12	5			In	tersection	I OS' B											
Analysis Period (min) 15 Splits and Phases: 12: D Street & Northern Avenue ↓ ★ g1 (R) ↓ ↓ g2 ↓ g2	Intersection Capacity Utilization	on 60.7%			IC	U Level of	Service I	В										
Splits and Phases: 12: D Street & Northern Avenue $f = \frac{1}{2} g_1$ g_2 g_3 g_4 g_4 g_5 g_4 g_5 g_5 g_6 g_1 g_2 g_2 g_1 g_2 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_1 g_2 g_3 g_1 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_1 g_2 g_3 g_1 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_3 g_1 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_2 g_1 g_2	Analysis Period (min) 15																	
	Solits and Dhasas 12- D.C.	traat & Nort	horn Avon															
	opins and Filases: 12: D S	u cei & NUTI	nem Aven	uđ								1.1					N]
	49 s											7 FØ2			19 s		♦ *Ø8	

2006233.28 :: Seaport Square PDA NPC HSH

index definition image definition		•	-	\rightarrow	1	-	•	1	Ť	1	×	ŧ	-	
Line Configuration A V	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	R Ø2
Nume 1 8 1 <th1< th=""> 1 1 1</th1<>	Lane Configurations	1	41	100	124	}	10	100	4	151	15		7	
Non-No-No-No-No-No-No-No-No-No-No-No-No-No-	Future Volume (vph)	1	396	132	124	306	10	128	8	151	15	5	7	1
The second secon	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Single Left I <th< td=""><td>Lane Width (ft) Storage Length (ft)</td><td>12</td><td>11</td><td>10</td><td>11</td><td>11</td><td>12</td><td>12</td><td>16</td><td>12</td><td>12</td><td>16</td><td>12</td><td></td></th<>	Lane Width (ft) Storage Length (ft)	12	11	10	11	11	12	12	16	12	12	16	12	
Image: Large from the state of t	Storage Lanes	1		1	1		0	0		1	0		0)
Bit All Lange Ore 10 Other 10 <thother 10<="" th=""></thother>	Taper Length (ft)	25	0.05	1.00	25	1.00	1.00	25	1.00	1.00	25	1.00	1.00	
n n l m m m m m m m m m m m m m m m m m	Ped Bike Factor	0.95	1.00	0.80	0.93	0.99	1.00	1.00	0.52	1.00	1.00	0.76	1.00	J
no m moni	Frt			0.850	0.050	0.995			0.055	0.850		0.966		
Bit Restand Op S24 Op S24 <thop s24<="" th=""> <thop s24<="" th=""> <thop< td=""><td>Fit Protected Satd. Flow (prot)</td><td>0</td><td>3110</td><td>1252</td><td>0.950</td><td>1621</td><td>0</td><td>0</td><td>0.955</td><td>1454</td><td>0</td><td>0.973</td><td>0</td><td>)</td></thop<></thop></thop>	Fit Protected Satd. Flow (prot)	0	3110	1252	0.950	1621	0	0	0.955	1454	0	0.973	0)
Sand La performa Sand La perf	Flt Permitted		0.814		0.458				0.955			0.973		
Same Price (V10) No P No No Line Stanz (N) 113 493 213 400 Line Stanz (N) 113 493 213 400 Coll Rub, (N) 113 493 213 400 Coll Rub, (N) 113 493 113 110 110 110 Coll Rub, (N) 113 493 1100	Satd. Flow (perm) Right Turn on Red	0	2531	1005 No	707	1621	0 Ves	0	959	1454 Ves	0	1384	0 Ves	
List Special lands ¹ All Note All Note Coll Pack Long 100 <td>Satd. Flow (RTOR)</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>105</td> <td></td> <td></td> <td>179</td> <td></td> <td>9</td> <td>105</td> <td></td>	Satd. Flow (RTOR)					2	105			179		9	105	
Tanka Tanka (a) 10 <th10< th=""> 10 10</th10<>	Link Speed (mph)		30			30			30			30		
Cond Ond No No <th< td=""><td>Travel Time (s)</td><td></td><td>4.3</td><td></td><td></td><td>10.9</td><td></td><td></td><td>4.8</td><td></td><td></td><td>10.2</td><td></td><td></td></th<>	Travel Time (s)		4.3			10.9			4.8			10.2		
All set of the field of the fiel	Confl. Peds. (#/hr)	130		99	99		130	137		56	56		137	
New yeaks (n) N	Confi. Bikes (#/hr) Peak Hour Factor	0.97	0.97	0.97	0.98	0.98	0.98	0.97	0.97	0.97	0.75	0.75	0.75	
Partial point 1 4 0 1 12 0 12 0 13 0 7 9 Land Cancel 1 1 1 1 5 3 0 0 1 0 1 0 1	Heavy Vehicles (%)	0%	1%	1%	0%	1%	0%	0%	0%	0%	0%	0%	0%	
Syntem Tare	Parking (#/hr) Adi Elow (vph)	1	408	136	127	312	10	132	8	156	20	7	Q	
Line Coope Prov (A) 0 499 30 1/2 3.2 0 0 140 86 0 36 0 The Type Prov (A) Prov (A) Prov (A) Prov (A) 1 1 3 5 3 3 5 4 4 2 Penallel Phone (A) 1 1 3 5 15 3 3 5 4 4 2 Penallel Phone (A) 10 10 00 60 50 80 80 80 40 80 80 80 80 80 80 80 80 80 80 80 80 80	Shared Lane Traffic (%)		400	150	127	512	10	132	0	150	20	,	,	
Table Spees Tell	Lane Group Flow (vph)	0 Dorm	409	136	127	322	0	0 Solit	140	156	0 Solit	36	0)
Pennika Preview 1 1 1 5 5 3 3 5 4 4 Such Preview 1 1 1 5 5 3 3 5 4 4 Such Preview 1 100 100 100 100 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	Protected Phases	Perm	NA 1	Perm	D.P+P 5	NA 15		Spiit 3	NA 3	Over 5	Spiit 4	NA 4		2
Database 1 1 1 5 1 3 3 5 4 4 Minume sign (n) 100	Permitted Phases	1		1	1									
Minume Self (s) 100	Detector Phase Switch Phase	1	1	1	5	15		3	3	5	4	4		
Minum Spit (s) 19 19 19 10 14 14 14 12 12 24 Minum Spit (s) 03 3 3 03 10 10 12 12 24 Video Time (s) 3 3 0.3 <th0.3< th=""></th0.3<>	Minimum Initial (s)	10.0	10.0	10.0	6.0			8.0	8.0	6.0	6.0	6.0		8.0
Total Sgin (h) 32.44 Area 32.5 13.64 13.44 17.35 10.74 10.74 22.6 Velow The (c) 30 40 All Not The (c) 70 70 70 70 40 70 40 70 40 Scalad (c) Load Load Load Load Load Load 100 710 80 Recall Mode C Aw Max Max Nax <	Minimum Split (s)	19.0	19.0	19.0	14.0			14.0	14.0	14.0	12.0	12.0		24.0
Value Time (c) 30	Total Split (%)	36.4%	40.0	40.0	17.3%			13.6%	13.6%	17.3%	10.9%	10.9%		24.0
Makele Intelle Time (2) 40 40 40 40 40 20 20 20 20 20 00 Total les Time (2) 70 70 70 70 70 70 40 70 40 20 20 00 Leading intelles Time (2) 70 70 70 70 70 40 70 40 10 Leading intelles Time (2) 70 70 70 70 70 70 70 70 70 70 70 70 70	Yellow Time (s)	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0		4.0
Tai La Carl Tare (a) 70 70 70 70 70 70 70 70 70 70 70 70 70	All-Red Time (s)	4.0	4.0	4.0	4.0			2.0	-1.0	4.0	2.0	-1.0		0.0
Liaol 1 g liaol 1 g d liaol 1	Total Lost Time (s)		7.0	7.0	7.0				4.0	7.0		4.0		
Bacal Model CMax CMax Max None Max None Act let Cle (n) 330 330 450 520 110 120 8.0 Act let Cle (n) 330 303 0.40 0.47 0.10 0.11 0.07 Vic Raio 0.51 0.40 0.30 0.42 0.76 0.49 0.30 Control Delay 347 348 170 174 737 10.3 459 Control Delay 347 58 170 174 737 10.3 450 Control Delay 34 68 170 174 737 10.3 450 Control Delay 35.4 7 8 0	Lead/Lag	Lead	Lead	Lead				Lead	Lead		Lag	Lag		Lag
Act Bits Green (s) 33.0 33.0 45.0 5.2.0 11.0 12.0 8.0 Actabady (c) Reen (s) 0.30 0.30 0.40 0.41 0.07 0.40 0.30 vic Rate 0.54 0.45 0.33 0.42 0.76 0.49 0.30 Cance Deby 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cance Deby 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cance Deby 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Approach Deby 3.4 0.8 8.0 0 0.0 0.0 0.0 Approach Deby 3.4 0.8 1.3 3.1 0 0.0 <td< td=""><td>Recall Mode</td><td>C-Max</td><td>C-Max</td><td>C-Max</td><td>None</td><td></td><td></td><td>Max</td><td>Max</td><td>None</td><td>Max</td><td>Max</td><td></td><td>None</td></td<>	Recall Mode	C-Max	C-Max	C-Max	None			Max	Max	None	Max	Max		None
All and give Frailed 0.3 0.3 0.4 0.4 0.1 <th0.1< th=""> 0.1 0.1</th0.1<>	Act Effct Green (s)		33.0	33.0	45.0	52.0			11.0	12.0		8.0		
Control belay 34 9 36 8 170 17.4 73 9 10.3 45 9 Total Delay 34 9 36.8 170 17.4 73 9 10.3 45 9 LOS C D B B E B D Approach LOS 0 - B D D D Approach LOS 0 - B D D D Approach LOS 0 - B D D D D Stops (ph) 249 45 5 21 3 3 D <tdd< td=""> D D</tdd<>	v/c Ratio		0.30	0.30	0.41	0.47			0.10	0.11		0.07		
Cueue Delay 00 00 00 00 00 00 Cala Delay 04 0.6 0.0 0.0 0.0 LOS C D B E B D Approach Delay 3.5.4 17.3 40.3 45.9 Approach DOS D B D D Stack (an) 5 1 18 10.2 Cole mestions (an) 58 12 1 3 3 1 Cole mestions (an) 68 22 15 21 1 10.0 Cole mestions (an) 68 23 46 32 10.0 10.0 Cole mestions (an) 67 23 19 40.0 6 10.0 Downe Length Stoth (n) 100 43 38 133 369 10.0 Deave Length Stoth (n) 100 43 38 133 369 10.0 Deave Length Stoth (n) 100 45 33 469 40.0 Stanadro Cap Reduch 0 0 0 0 0 0 Deave Length Stoth (n) 111 398 133 369 10.0 Stanadro Cap Reduch 0 <td>Control Delay</td> <td></td> <td>34.9</td> <td>36.8</td> <td>17.0</td> <td>17.4</td> <td></td> <td></td> <td>73.9</td> <td>10.3</td> <td></td> <td>45.9</td> <td></td> <td></td>	Control Delay		34.9	36.8	17.0	17.4			73.9	10.3		45.9		
LOS C C C D B B E B D Apprach Delsy 35.4 17.3 40.3 45.9 Apprach Dols D B D D Stage (and) 5 2 1 3 3 1 D Stage (and) 5 2 1 3 3 1 D Ober Insides (and) 63 21.4 3 3 1 D Ober Stage (and) 79 27 19 50 48 11 7 Demae Length Stoft (f) 100 64 2 40 9 6 Over Envisions (and) 100 3 104 98 0 18 Ourse Length Stoft (f) 100 17 62 13 369 Tim Bay Length (f) 100 100 100 100 100 Staration Cap Reductin 0 0 0 0 0 0 Staration Cap Reductin 0 0 0 0 0 0 Staration Cap Reductin 0 0 0 0 0 0 Staration Cap Reductin 0 0 0 <td< td=""><td>Queue Delay Total Delay</td><td></td><td>34.9</td><td>0.0 36.8</td><td>0.0</td><td>0.0</td><td></td><td></td><td>0.0 73.9</td><td>0.0</td><td></td><td>0.0 45.9</td><td></td><td></td></td<>	Queue Delay Total Delay		34.9	0.0 36.8	0.0	0.0			0.0 73.9	0.0		0.0 45.9		
Approach Delay 35.4 17.3 40.3 45.9 Approach Delay 20 D B D D Stops (ph) 269 65 54.1 13.8 12.2 15 21 C0 Emissions (ghn) 34.3 11.6 83 21.4 20.6 45 32 VOC Emissions (ghn) 79 27.3 16 42 40.9 6 VOC Emissions (ghn) 79 27.1 9 50 48 11.7 7 Deman Vehicles (P 0 0 0 0 0 0 0 Ouceue Length Stht (tt) 101 76 21.9 #197 46 42 Unternal Vehicles (P 0 0 0 0 0 0 0 0 Storage Cap Reduct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	LOS		C	D	B	В			E	B		D		
Application 209 85 54 138 122 15 21 Fuel Less(ta) 5 2 1 3 3 1 0 Old Emissions (phr) 64 23 16 42 40 9 6 VOC Emissions (phr) 67 23 16 42 40 9 6 VOC Emissions (phr) 67 23 16 42 40 9 6 VOC Emissions (phr) 17 71 19 50 48 11 7 Olderau Length Shift) 100 6 39 104 98 133 369 Turn Bay Length (Phr) 100 767 185 318 120 5 5 21 Starvation Cap Reductin 0	Approach Delay		35.4			17.3 R			40.3			45.9		
Fuel Used(a) 5 2 1 3 3 1 0 Co Emissions (a/h) 343 116 83 214 206 45 32 NOX Emissions (a/h) 97 23 16 42 40 9 6 O/C Emissions (a/h) 10 63 39 10 7 <th7< th=""> 7 7 7<td>Stops (vph)</td><td></td><td>269</td><td>85</td><td>54</td><td>138</td><td></td><td></td><td>122</td><td>15</td><td></td><td>21</td><td></td><td></td></th7<>	Stops (vph)		269	85	54	138			122	15		21		
CUC Emissions (ghr) -943 100 63 214 200 43 52 VOC Emissions (ghr) 79 22 16 42 40 9 6 VOC Emissions (ghr) 79 27 19 50 48 11 7 Diemar Vehilds (f) 0 0 0 0 0 0 Queue Length Stoh (f) 100 63 39 104 98 0 Queue Length Stoh (f) 100 63 39 104 98 0 Tum Bay Length Stoh (f) 100 150 177 62 100 Base Capacity (kph) 759 301 383 767 185 318 120 Stanation Cap Reducin 0 0 0 0 0 0 SpliBack Cap Reducin 0 0 0 0 0 Strage Cap Reducin 0 0 0 0 0 Other Strage Cap Reducin 0 0	Fuel Used(gal)		5	2	1	3			3	1		0		
VOC Top 77 77 19 50 48 11 7 Diema Vehicles (e) 0	NOx Emissions (g/hr)		545	23	03 16	42			40	45		52		
Dieman Vehicles (r) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC Emissions (g/hr)		79	27	19	50			48	11		7		
Queste length 95th (ft) 150 177 62 139 #197 46 42 Internal Link Dist (ft) 111 398 133 369 Tum Bay Length (ft) 100 100 100 100 100 Base Capacity (typh) 759 301 383 767 185 318 120 Stanation Cap Reductin 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 Reduced vic Ratio 0.54 0.45 0.33 0.42 0.76 0.49 0.30 0	Dilemma Vehicles (#) Queue Length 50th (ft)		100	63	39	104			98	0		18		
Internal Link Dist (ff) 111 398 133 369 Tum Bay Length (f) 100 100 Base Capacity (vph) 759 301 383 767 185 318 120 Starvation Cap Reductin 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.54 0.45 0.33 0.42 0.76 0.49 0.30 Intersection Summary Area Type: CBD Cycle Length : 10 Actuated Cycle Length: 10 Cycle Length: 10 Cycle Length: 10 Control Type: Actuated-Coordinated Maximum v/c Ratio 0.76 Intersection Capacity Ullization 59.0% ICU Level of Service B Analysis Period (min) 15 = 95th period (min) 15 = 95t	Queue Length 95th (ft)		150	117	62	139			#197	46		42		
Turn by Englin (V) 759 301 383 767 185 318 120 Starvation Cap Reductin 0 <td>Internal Link Dist (ft)</td> <td></td> <td>111</td> <td>100</td> <td></td> <td>398</td> <td></td> <td></td> <td>133</td> <td>100</td> <td></td> <td>369</td> <td></td> <td></td>	Internal Link Dist (ft)		111	100		398			133	100		369		
Staration Cap Reductn 0 <td>Base Capacity (vph)</td> <td></td> <td>759</td> <td>301</td> <td>383</td> <td>767</td> <td></td> <td></td> <td>185</td> <td>318</td> <td></td> <td>120</td> <td></td> <td></td>	Base Capacity (vph)		759	301	383	767			185	318		120		
Spinada Cap Reducini 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Starvation Cap Reductn		0	0	0	0			0	0		0		
Reduced v/c Ratio 0.54 0.45 0.33 0.42 0.76 0.49 0.30 Intersection Summary Area Type: CBD Cycle Length: 10 CBD CGD Actuated Cycle Length: 110 Actuated Cycle Length: 110 CGD CGD CGD Actuated Cycle Length: 10 Actuated Cycle Length: 10 CGD CGD CGD Actuated Cycle Length: 10 Actuated Cycle: 85 CGD CGD CGD Control Type: Actuated-Coordinated Maximur (Actuated-Coordinated) CGD CGD Maximur (Actuated-Coordinated) Maximur (Actuated-Coordinated) CGD CGD Analysis Period (min) 15 Intersection Signal Delay: 30.7 Intersection LOS: C C Intersection Signal Delay: 30.7 Intersection LOS: C C C Analysis Period (min) 15 CUL Level of Service B C C # 95th percentile volume exceeds capacity, queue may be longer. C C C Cueue shown is maximum after two cycles. S S S S Split and Phases: 15: A Street/Thomson St & Congress Street T T T	Storage Cap Reductin		0	0	0	0			0	0		0		
Intersection Summary Area Type: CBD Cycle Length: 110 Actuated Cycle Length: 110 Offset: 91 (83%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.76 Intersection Signal Delay: 0.07 Intersection Signal Delay: 0.07 Int	Reduced v/c Ratio		0.54	0.45	0.33	0.42			0.76	0.49		0.30		
Area Type: CBD Cycle Length: 110 Actuated Cycle Length: 110 Offset: 91 (83%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.76 Intersection Signal Delay: 30.7 Intersection LOS: C Intersection Signal Delay: 30.7 Inters	Intersection Summary													
Actualed Cycle Length: 110 Offset: 91 (83%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 85 Control Type: Actualed-Coordinated Maximum vic Ratio: 0.76 Intersection Capacity Utilization 59.0% ICU Level of Service B Analysis Period (min) 15 # 05th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street Splits and Phases: 15: A Street/Thomson St & Congress Street Splits and Phases: 15: A Street/Thomson St & Congress Street	Area Type: Cycle Length: 110	CBD												
Offset: 91 (83%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Maximum Vic Ratio: 0.76 Intersection Capacity Utilization 59.0% ICU Level of Service B Analysis Period (min) 15 # 05th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street \$	Actuated Cycle Length: 110													
Natura Cycle: e3 Control Type: Kataled-Coordinated Maximum vic Ratio: 0.76 Intersection Capacity Utilization 59.0% ICU Level of Service B Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street Splits and Phases: 15: A Street/Thomson St & Congress Street \$\$ 01(R) \$\$ 01(R)	Offset: 91 (83%), Referenced	d to phase 1	:EBWB, S	tart of Gre	en									
Maximum vic Ratio: 0.76 Intersection Capacity Utilization 59.0% ICU Level of Service B Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street Splits and Phases: 15: A Street/Thomson St & Congress Street	Control Type: Actuated-Coor	rdinated												
Intersection Capacity Utilization 59.0% ICU Level of Service B Analysis Period (min) 15 # 05th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street Splits and Phases: 15: A Street/Thomson St & Congress Street	Maximum v/c Ratio: 0.76	0.7				torno-ti-	1.05-0							
Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street \$\$\screet\$	Intersection Signal Delay: 30 Intersection Canacity Utilizat	J. / tion 59.0%			ln IC	itersection	LUS: C f Service I	В						
# "Shin percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: A Street/Thomson St & Congress Street \$	Analysis Period (min) 15													
Splits and Phases: 15: A Street/Thomson St & Congress Street \$\frac{1}{2}01(R) \$\frac{1}{2}02 \$\frac{1}{2}03 \$\frac{1}{2}03 \$\frac{1}{2}04 \$\frac{1}{2}05 \$1	# 95th percentile volume e. Oueue shown is maximum	exceeds capa m after two o	acity, queu	ie may be	longer.									
Splits and Phases: 15: A Street/Thomson St & Congress Street \$\$\phi_1(R) \$\$\phi_2 \$\$\phi_3 \$\$\phi_2 \$\$\phi_03	Quoue shown is maximul	and two t	,,003.											
₩o2 No3 ₩o4 ₩o5	Splits and Phases: 15: A S	Street/Thom	son St & C	Congress S	Street			- I -						
	Ø1 (R)								R _{Ø2}					™ ø3 ₩°ø4 ₩°ø5

)s	24 s	15s	12 s	19 s
a1 (P)	1	↑ ₀₃	N 04	1 05
pills and Phases: 15: A Street/Thomson St & Congress Street				

	-	-		F	1	-	•		Ť	1	*	ŧ	*
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vpb)	22	ର୍ଜ୍ୟ 321	270	18	140	↑₽ 279	46	1 41	₽ 18	38	66	4 259	7 60
Future Volume (vph)	32	321	270	18	140	279	46	41	18	38	66	259	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	12	0	12	12	12	0	0	11	0	0	11	125
Storage Lanes	0		1		1		0	1		0	0		1
Laper Length (ft)	25	1 00	1 00	0.95	25	0.95	0.95	25	1 00	1.00	25	1.00	1 00
Ped Bike Factor	1.00	0.98	0.72	5.75	0.86	0.95	0.70	0.92	0.96	1.00		0.99	1.00
Frt Elt Protected		0.005	0.850		0.050	0.979		0.050	0.899			0.000	0.850
Satd. Flow (prot)	0	1686	1454	0	1610	2857	0	1805	1346	0	0	1598	1405
Flt Permitted	,	0.943	4070		0.458	0057	-	0.950				0.990	
Satd. Flow (perm) Right Turn on Red	0	1568	1052 Yes	0	667	2857	0 Yes	1654	1346	0 Yes	0	1582	1405 Yes
Satd. Flow (RTOR)			278			18	.05		39	.05			89
Link Speed (mph)		30				30			30			30	
Travel Time (s)		478				521 11.8			4.6			20.7	
Confl. Peds. (#/hr)	121		83	38	83		121	82		38	38		82
Contl. Bikes (#/hr) Peak Hour Factor	0.07	0.97	10	0.03	0.03	0.93	8	0.97	0.97	0.97	0.94	0.94	0.94
Heavy Vehicles (%)	0.97	1%	0.97	0.93	1%	0.93	0.93	2%	17%	0%	0.94	3%	0.94
Parking (#/hr)	20	221	070	10	151	0	0	10	10	20	70	27/	
Auj. Flow (vpn) Shared Lane Traffic (%)	33	331	278	19	151	300	49	42	19	39	/0	276	64
Lane Group Flow (vph)	0	364	278	0	170	349	0	42	58	0	0	346	64
Turn Type Protocted Phases	Perm	NA	Perm	Perm	Perm	NA		Split	NA		Split	NA	Prot
Permitted Phases	1		1	1	1			2	2		3	3	3
Detector Phase	1	1	1	1	1	1		2	2		3	3	3
Switch Phase Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0		8.0	8.0		8.0	8.0	8.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	29.0		30.0	30.0		33.0	33.0	33.0
Total Split (s)	43.0	43.0	43.0	43.0	43.0	43.0		30.0	30.0		37.0	37.0	37.0
rotal Split (%) Yellow Time (s)	39.1%	39.1% 3.0	39.1%	39.1%	39.1% 3.0	39.1% 3.0		27.3%	27.3%		33.6%	33.6%	33.6% 3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		9.0	9.0	9.0
Lost Time Adjust (s)		-1.0	-1.0		-1.0	-1.0		-1.0	-1.0			-1.0	-1.0
Lead/Lag		5.0	5.0		5.0	5.0		5.0 Lead	5.0 Lead		Lag	Lag	Lag
Lead-Lag Optimize?													
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max		None 9.6	None		None	None 25.4	None 25.4
Actuated g/C Ratio		0.52	0.52		0.52	0.52		0.09	0.09			0.23	0.23
v/c Ratio		0.45	0.41		0.49	0.24		0.27	0.38			0.94	0.16
Control Delay Queue Delay		6.8 0.0	2.3		12.5	4.7		51.2	29.2			59.0 0.0	2.4
Total Delay		6.8	2.3		12.5	4.7		51.2	29.2			59.0	2.4
LOS Approach Dalais		A	A		В	A		D	C			E	A
Approach Delay Approach LOS		4.9 A				7.3 A			38.4 D			50.1 D	
Stops (vph)		74	19		69	110		38	24			264	8
Fuel Used(gal)		2	1		100	2		1	1			8	0
NOx Emissions (g/hr)		30	86		100	30		49	39			536 104	35 7
VOC Emissions (g/hr)		36	20		23	36		11	9			124	8
Dilemma Vehicles (#)		0	0		0	0		0	0			0	0
Queue Length 50th (ft) Queue Length 95th (ft)		54 70	20		30 57	20		28	53			230 #399	0 m2
Internal Link Dist (ft)		398	20		5,	441		50	124			832	
Turn Bay Length (ft)		000	477		150	1404		410	224			277	125
Starvation Cap Reductn		809	6//		344 0	1484		410	336			3//	400
Spillback Cap Reductn		0	0		0	0		0	0			0	0
Storage Cap Reductn		0.45	0 41		0.40	0.24		0 10	0 17			0 0 0 0	0 14
Interception Summers		0.45	0.41		0.49	0.24		0.10	0.17			0.92	0.10
Area Type:	CBD												
Cycle Length: 110	000												
Actuated Cycle Length: 110													
Offset: 97 (88%), Reference Natural Cycle: 95	d to phase 1:	EBWB, SI	tart of Gre	en									
Control Type: Actuated-Coor	rdinated												
Maximum v/c Ratio: 0.94													
Intersection Signal Delay: 18 Intersection Canacity Utilizat	3.7 tion 86.1%			In	itersection	LOS: B f Service F							
Analysis Period (min) 15	uull 00.170			IC	O Level 0	- Service E							
# 95th percentile volume e	exceeds capa	icity, queu	e may be	longer.									
Queue shown is maximur M Volume for 95th percent	m after two c	ycles. metered b	v unstrear	n signal									
m volume for your percent	ure queue is i	metered D	y upstream	n siyildi.									
Splits and Phases: 16: Bo	ston Wharf F	Road (WSF	R) & Cong	ress Stree	et								
#Ø1(R)								_ ◄†	Ø2				
40 -								11	~~				

	٦	->	-	•	1	Ť	1	•	•	/
ane Group	EBL	EBT	WBT	WBR	NBL	NBT	NBR	NEL2	NEL	NER
ane Configurations	<u> </u>	††	† î»	10	5/	4†	1	07	٦Y	
ramic Volume (vph) uture Volume (vph)	47	446 446	372 372	19 19	56 56	88 88	27	37	95 95	46
leal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft) torage Length (ft)	12	12	13	16	12	12	12	12	12	12
torage Lanes	1/5			0	0		1		2	0
aper Length (ft)	25				25				25	
ane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.97	0.95
rt	0.93		0.993			0.99	0.850		0.95	
It Protected	0.950					0.981			0.964	
atd. Flow (prot)	1624	3249	3277	0	0	3168	1454	0	3014	0
atd. Flow (perm)	0.497	3249	3277	0	0	0.981	1454	0	0.964 2919	0
tight Turn on Red	,07	0277	5211	Yes	0	0100	Yes	0	2717	0
atd. Flow (RTOR)			5				99		~~	
ink Speed (mph) ink Distance (ff)		30 521	30 509			30 178			200	
ravel Time (s)		11.8	11.6			4.0			4.5	
onfl. Peds. (#/hr)	100			100	20		17	20		17
onti. Bikes (#/hr)	0.04	0.04	0.01	3	0.04	0.04	0.04	0.05	0.05	0.05
eavy Vehicles (%)	0.96	0.96	1%	0.91	0.80	1%	0.80	0.95	1%	0.95
dj. Flow (vph)	49	465	409	21	65	102	31	39	100	48
hared Lane Traffic (%)	40	A40	(20	0	0	147	21	0	107	0
ane Group Flow (vpn) urn Type	49 Perm	465 NA	430 NA	U	Snlit	NA	31 Prot	Perm	187 Prot	U
rotected Phases		1	1		2	2	2		3	
ermitted Phases	1	4	1		2	2	2	3	2	
witch Phase	1	1	I		2	2	2	3	3	
1inimum Initial (s)	8.0	8.0	8.0		8.0	8.0	8.0	8.0	8.0	
linimum Split (s)	32.0	32.0	32.0		30.0	30.0	30.0	33.0	33.0	
otal Split (s) otal Split (%)	47.0 42.7%	47.0	47.0 42.7%		30.0	30.0	30.0	33.0	33.0	
ellow Time (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
II-Red Time (s)	4.0	4.0	4.0		3.0	3.0	3.0	3.0	3.0	
ost Lime Adjust (s)	-2.0	-2.0	-2.0			-2.0	-2.0		-2.0	
ead/Lag	5.0	5.0	5.0		Lead	4.0 Lead	Lead	Lag	Lag	
ead-Lag Optimize?										
tecall Mode	C-Max	C-Max	C-Max		None	None	None	None	None 13.5	
ctuated g/C Ratio	0.65	0.65	0.65			0.11	0.11		0.12	
/c Ratio	0.10	0.22	0.20			0.47	0.12		0.52	
ontrol Delay	5.0	4.7	11.8			49.7	1.0		50.1	
otal Delay	5.0	4.7	11.8			49.7	1.0		50.1	
OS I D I	А	Α	В			D	А		D	
pproach Delay		4.7	11.8 P			42.1			50.1	
tops (vph)	11	93	238			130	0		162	
uel Used(gal)	0	3	4			2	0		3	
U Emissions (g/hr)	21	192	266			166	3		209	
OC Emissions (g/hr)	5	45	62			38	1		48	
ilemma Vehicles (#)	0	0	0			0	0		0	
Lueue Length 50th (ft)	7 m17	35 m54	92			58	0		64	
nternal Link Dist (ft)		441	429			98	0		120	
urn Bay Length (ft)	175									
ase Capacity (vph)	508	2100	2119			748	419		769	
pillback Cap Reductin	0	0	0			0	0		0	
torage Cap Reductn	0	0	Ũ			0	0		0	
educed v/c Ratio	0.10	0.22	0.20			0.22	0.07		0.24	
tersection Summary	000									
rea Type: vole Length: 110	CBD									
ctuated Cycle Length: 110										
ffset: 1 (1%), Referenced to	o phase 1:EE	WB, Star	t of Green							
atural Cycle: 95	rdinated									
aximum v/c Ratio: 0.52	unated									
tersection Signal Delay: 19	9.0			In	tersection	LOS: B	_			
tersection Capacity Utilizat	ion 65.2%			IC	U Level o	r Service	L			
Volume for 95th percent	tile queue is r	netered b	y upstrean	n signal.						
	1	_								
plits and Phases: 17: Co	ngress Stree	t & East S	Service Ro	ad						
Ø1 (R)								_	10	2
c									30 s	

	٦	-	\mathbf{r}	1	←	•	1	Ť	1	\	Ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	125	4 ↑ 236	159	1 426	41	116	182	191	271	22	↑↑ 162	1
Future Volume (vph)	125	236	158	426	145	116	182	181	271	23	163	64
Ideal Flow (vphpl) Lane Width (ft)	1900 12	1900 12	1900 12	1900 12	1900 12	1900 12	1900 16	1900 14	1900 12	1900 12	1900 11	1900 11
Storage Length (ft)	0	12	200	250	12	0	0		0	0		125
Storage Lanes Taper Length (ft)	25		1	25		0	25		1	25		1
Lane Util. Factor	0.95	0.95	1.00	0.91	0.91	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.98	0.850	0.96	0.95		0.95		0.850		0.98	0.92
Fit Protected	0	0.983	1454	0.950	0.978	0	0.950	1024	1420	0	0.994	1405
Flt Permitted	0	0.983	1404	0.950	0.978	0	0.950	1024	1439	U	0.885	1405
Satd. Flow (perm) Right Turn on Red	0	3080	1454 No	1409	2730	0 Ves	1744	1824	1439 Ves	0	2700	1293 Ves
Satd. Flow (RTOR)			110		36	105			279			109
Link Speed (mph) Link Distance (ft)		30 509			30 995			30 220			30 498	
Travel Time (s)		11.6			22.6			5.0			11.3	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	71		21 5	21		71	23		70	70		23
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.96	0.96	0.96
Adj. Flow (vph)	1%	2%	0% 163	439	6% 149	0% 120	0% 188	187	279	24	1%	0% 67
Shared Lane Traffic (%)	0	272	140	50%	400	0	100	107	270	0	107	47
Turn Type	Split	372 NA	Prot	219 Split	489 NA	U	Prot	NA	Prot	Perm	194 NA	67 custom
Protected Phases	2	2	2	1	1		3	34	34	4	4	4
Detector Phase	2	2	2	1	1		3	34	34	4	4	4
Switch Phase	0.0	0.0	0.0	0.0	0.0		0.0			0 0	0.0	0.0
Minimum Split (s)	0.0 19.0	19.0	0.0 19.0	31.0	31.0		16.0			0.0 19.0	0.0 19.0	0.0 19.0
Total Split (s) Total Split (%)	30.0 27 3%	30.0	30.0 27.3%	35.0 31.8%	35.0 31.8%		25.0			20.0	20.0	20.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0	3.0
All-Red Time (s) Lost Time Adjust (s)	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0	4.0
Total Lost Time (s)		5.0	5.0	5.0	5.0		5.0				5.0	5.0
Lead/Lag Lead-Lag Optimize?	Lead	Lead	Lead				Lag					
Recall Mode	Мах	Max	Max	C-Max	C-Max		Max	20.4	20.4	None	None	None
Actuated g/C Ratio		25.0 0.23	25.0	31.6 0.29	31.6 0.29		20.0	38.4 0.35	38.4 0.35		0.12	38.4 0.35
v/c Ratio		0.52	0.49	0.52	0.59		0.56	0.29	0.41		0.59	0.13
Queue Delay		27.0	29.4	28.5	25.9 0.0		48.4	0.0	4.8		20.0 0.0	6.5 0.0
Total Delay		27.0	29.4	28.5	25.9		48.4	27.1	4.8		26.6	8.5
Approach Delay		27.7	C	C	26.7		D	23.7	A		21.9	A
Approach LOS Stops (vph)		C 292	128	161	C 336		163	C 128	25		C	32
Fuel Used(gal)		5	2	4	8		3	2	1		3	1
CO Emissions (g/hr) NOx Emissions (a/hr)		351 68	159 31	263 51	562 109		210 41	141 27	61 12		189 37	37
VOC Emissions (g/hr)		81	37	61	130		49	33	14		44	9
Dilemma Vehicles (#) Queue Length 50th (ft)		0 106	0 87	0 106	0 112		0 122	0 94	0		0 74	0 21
Queue Length 95th (ft)		153	157	m79	m71		197	150	55		m102	m32
Turn Bay Length (ft)		429	200	250	915			140			418	125
Base Capacity (vph)		714	330	421	824		334	663	700		368	554
Starvation Cap Reductn Spillback Cap Reductn		0	0	0	0		0	0	0		0	0
Storage Cap Reductn		0 52	0.40	0.52	0		0 54	0	0 40		0 52	0 12
Intersection Summary		0.52	0.49	0.52	0.59		U.30	υ.28	0.40		0.53	U.12
Area Type:	CBD											
Cycle Length: 110												
Offset: 93 (85%), Referenced	d to phase 1	WBTL, S	tart of Gre	en								
Natural Cycle: 85	dipotod											
Maximum v/c Ratio: 0.59	luinateu											
Intersection Signal Delay: 25	5.5 tion 64.7%			lr 14	tersection	LOS: C	^					
Analysis Period (min) 15							-					
m Volume for 95th percenti	tile queue is	metered b	y upstrea	m signal.								
Splits and Phases: 18: B S	Street & Con	gress Stre	eet			1.2						
Ø1 (R)						4	Ø2					

Synchro 9 Report Lanes, Volumes, Timings

	1	≯	->	\mathbf{i}	1	-	•	₹	1	Ť	1	L	1	ţ	~
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations		401	4 î b	1	407	ፋጉ			ካካ	f a			6 7	41>	
Future Volume (vph)	22	101	158 158	189	135	172	75	6	267	119 110	45	9	25	312 312	52 52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	13	12	13	12	12	11	12	12	12	12	14	12
Storage Length (ft)		0		150	0		0		0		0		0		0
Taper Length (ft)		25			25		0		25		0		25		0
Lane Util. Factor	0.95	0.95	0.91	0.91	0.95	0.95	0.95	1.00	0.97	1.00	1.00	0.95	0.95	0.95	0.95
Ped Bike Factor			0.92	0.850		0.93				0.97				0.97	
Flt Protected			0.982	0.050		0.983			0.950	0.737				0.996	
Satd. Flow (prot)	0	0	2815	1327	0	3072	0	0	2988	1550	0	0	0	3290	0
Fit Permitted Satd. Flow (nerm)	0	0	0.982	1227	0	0.983	0	0	0.200	1550	0	0	0	0.996	0
Right Turn on Red	J	U	2072	No	U	2737	Yes	U	027	1000	Yes	U	U	J244	Yes
Satd. Flow (RTOR)						22				15				13	
Link Speed (mph)			30			30				30				30	
Travel Time (s)			22.6			7.3				7.2				8.5	
Confl. Peds. (#/hr)	37	50		57	57		50	57	37		57	50	57		37
Confl. Bikes (#/hr)	0.05	0.05	0.05	7	0.0/	0.0/	5	0.00	0.00	0.00	4	0.00	0.00	0.00	8
Heavy Vehicles (%)	0.95	0.95	4%	0.95	08.0	2%	08.0	0.90	2%	3%	0.90	0.98	0.98	0.98	0.98
Parking (#/hr)	0,0	0.0		0.0	0.0	270	5.0	3.0	270	5.0	0	5.0	3.0	170	5.0
Adj. Flow (vph)	23	106	166	199	157	200	87	7	297	132	50	9	26	318	53
Shared Lane Traffic (%)	0	0	257	31%	0	444	0	0	201	182	0	0	0	406	0
Turn Type	Perm	Split	NA	Prot	Split	NA	0	Perm	Split	NA	0	Perm	Split	NA	0
Protected Phases		1	1	1	4	4			2	2			3	3	
Permitted Phases	1	1	1	1	4	4		2	2	2		3	2	2	
Switch Phase	1	- 1		1	4	4		2	2	2		3	3	5	
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0		8.0	8.0	8.0		8.0	8.0	8.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	17.0	17.0		27.0	27.0	27.0		18.0	18.0	18.0	
Total Split (S) Total Split (%)	38.0	38.0 34.5%	38.0	38.0 34.5%	17.0	17.0 15.5%		27.0	27.0	27.0		28.0	28.0	28.0	
Yellow Time (s)	34.370	3.0	34.370	34.370	3.0	3.0		4.0	4.0	4.0		3.0	3.0	3.0	
All-Red Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0		5.0	5.0	5.0	
Lost Time Adjust (s)			-2.0	-2.0		-2.0			-2.0	-2.0				-2.0	
Lead/Lag			0.0	0.0		0.0		Lead	Lead	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?													.9		
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None		Max	Max	Max		Max	Max	Max	
Actuated g/C Ratio			32.0	32.0		0.10			20.0	20.0				22.0	
v/c Ratio			0.44	0.35		1.36			2.67	0.62				0.61	
Control Delay			21.5	22.5		216.5			792.9	34.9				43.2	
Queue Delay Total Dolay			21.5	0.0		0.0			0.0	25.0				0.0	
LOS			21.5 C	22.5 C		210.5 F			792.9 F	33.0 C				43.2 D	
Approach Delay			21.8			216.5				509.1				43.2	
Approach LOS			C 150	E7		F			170	175				D	
Fuel Used(gal)			150	2		19			46	3				344	
CO Emissions (g/hr)			345	134		1351			3208	177				458	
NOx Emissions (g/hr)			67	26		263			624	35				89	
VOC Emissions (g/hr) Dilemma Vehicles (#)			80	31		313			/43	41				106	
Queue Length 50th (ft)			61	46		~211			~180	93				134	
Queue Length 95th (ft)			94	86		#296			#272	174				186	
Internal Link Dist (ft)			915	150		239				237				292	
Base Capacity (vph)			818	386		327			114	294				668	
Starvation Cap Reductn			0	0		0			0	1				0	
Spillback Cap Reductn			0	0		0			0	0				0	
Storage Cap Reductn			0 44	0 25		1 26			2.67	0 62				0 61	
Internetion Comments			0.44	0.30		1.30			2.07	0.02				0.01	
Area Type:	CBD														
Cycle Length: 110	CDD														
Actuated Cycle Length: 110	l.														
Offset: 32 (29%), Reference	ed to phase 1:	EBTL, Sta	art of Gree	en											
Control Type: Actuated-Con	rdinated														
Maximum v/c Ratio: 2.67	anatou														
Intersection Signal Delay: 20	03.2			In	tersection	LOS: F									
Intersection Capacity Utiliza Analysis Period (min) 15	tion 74.0%			IC	U Level o	t Service D)								
 Volume exceeds capacit 	ty, queue is th	neoreticall	y infinite.												
Queue shown is maximu	m after two c	ycles.													
# 95th percentile volume e Queue shown is maximum	exceeds capa	city, queu	e may be	longer.											
Queue showit is maximu	in anel two C	yoica.													
Splits and Phases: 19: D	Street & Con	gress Stre	et												
₩ Ø1 (R)							1						,	N 03	

28 s

27 s

17 s

Synchro 9 Report
Lanes, Volumes, Timings

	≯		\mathbf{r}	1	←	•	1	Ť	1	1	Ŧ	-				
Lane Group	EBI	EBT	EBR	WBI	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2			
Lane Configurations		¢,			4			†† ĵ ₂			††					
Traffic Volume (vph)	0	29	0	4	26	1	0	436	0	0	642	0				
Future Volume (vph)	1900	29	1900	1000	26	1000	1000	436	1000	1000	642 1900	1000				
Lane Width (ft)	1900	1900	1900	1900	1900	1700	1900	1900	1700	1900	13	1900				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00				
Ped Bike Factor																
Frt Fit Protected					0.997											
Satd. Flow (prot)	0	912	0	0	979	0	0	4776	0	0	3291	0				
Flt Permitted					0.956											
Satd. Flow (perm)	0	912	0	0	942	0	0	4776	0	0	3291	0				
Satd Flow (RTOR)			Yes		1	res			res			res				
Link Speed (mph)		30			30			30			30					
Link Distance (ft)		368			292			293			317					
Travel Time (s)		8.4			6.6			6.7	47		7.2					
Confl. Bikes (#/hr)									4							
Peak Hour Factor	0.91	0.91	0.91	0.78	0.78	0.78	0.95	0.95	0.95	0.98	0.98	0.98				
Heavy Vehicles (%)	0%	100%	0%	0%	100%	0%	0%	1%	0%	0%	2%	0%				
Parking (#/hr) Adi Elow (vpb)	0	22	0	5	22	1	0	450	0	0	455	0				
Shared Lane Traffic (%)	U	32	U	5	33	1	U	459	U	U	000	U				
Lane Group Flow (vph)	0	32	0	0	39	0	0	459	0	0	655	0				
Turn Type		NA		Perm	NA			NA			NA					
Protected Phases		3		2	3			1			12		2			
Detector Phase		3		3	3			1			12					
Switch Phase		-		-	-						-					
Minimum Initial (s)		8.0		8.0	8.0			20.0					4.0			
Minimum Split (s)		15.0		15.0	15.0			27.0					10.0			
Total Split (%)		22.7%		22.7%	22.7%			67.3%					10%			
Yellow Time (s)		3.0		3.0	3.0			4.0					4.0			
All-Red Time (s)		3.0		3.0	3.0			1.0					1.0			
Lost Lime Adjust (s)		-1.0			-1.0			-1.0								
Lead/Lag		5.0			5.0			Lead					Lag			
Lead-Lag Optimize?													5			
Recall Mode		None		None	None			C-Max			00.7		Max			
Actuated q/C Ratio		0.10			0.10			0.74			93.7					
v/c Ratio		0.36			0.41			0.13			0.23					
Control Delay		56.4			58.3			5.7			3.4					
Queue Delay Total Delay		0.0			0.0			0.0			0.3					
10S		50.4 F			50.5 F			3.7 A			3.7 A					
Approach Delay		56.4			58.3			5.7			3.7					
Approach LOS		E			E			A			A					
Stops (vpn) Evel Used(gal)		28			28			142			1/3					
CO Emissions (q/hr)		40			40			160			209					
NOx Emissions (g/hr)		8			8			31			41					
VOC Emissions (g/hr)		9			9			37			48					
Oueue Length 50th (ff)		22			26			47			57					
Queue Length 95th (ft)		52			50			27			m87					
Internal Link Dist (ft)		288			212			213			237					
Turn Bay Length (ft)		1/5			170			2554			2002					
Starvation Can Reducts		165			1/2			3554 0			2802					
Spillback Cap Reductn		0			0			0			0					
Storage Cap Reductn		0			0			0			0					
Reduced v/c Ratio		0.19			0.23			0.13			0.49					
Intersection Summary																
Area Type: (CBD															
Cycle Lengin: 110 Actuated Cycle Length: 110																
Offset: 48 (44%), Referenced	to phase 1:	NBSB, Sta	art of Gree	en												
Natural Cycle: 55																
Control Type: Actuated-Coord	inated															
Intersection Signal Delay: 7.7				In	tersection	105.1										
Intersection Capacity Utilizatio	n 33.9%			IC	CU Level of	Service A										
Analysis Period (min) 15																
m Volume for 95th percentile	e queue is r	metered by	/ upstream	n signal.												
Splits and Phases 20. D St	reet & Tran	sitway														
	. socia indi													1	4	
▼ Ø1 (R)														▼ Ø2	₩ Ø3	

	٭	\mathbf{r}	1	t.	ŧ	-				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø2		 	
Lane Configurations			٦	† †	≜ î⊳					
Traffic Volume (vph)	0	0	360	436	326	320				
Ideal Flow (vphpl)	1900	1900	1900	430	1900	1900				
Lane Width (ft)	12	12	13	12	13	12				
Storage Length (ft)	0	0	200			0				
Storage Lanes	25	0	25			0				
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95				
Ped Bike Factor			0.97		0.95					
Frt Elt Drotostad			0.050		0.926					
Satd Flow (prot)	0	0	1679	3217	2896	0				
Flt Permitted			0.950	0217	2070					
Satd. Flow (perm)	0	0	1623	3217	2896	0				
Right Turn on Red		Yes			253	Yes				
Link Speed (mph)	30			30	30					
Link Distance (ft)	346			297	293					
Travel Time (s)	7.9		10	6.8	6.7	10				
Confl. Peds. (#/hr)			49			49				
Peak Hour Factor	0.25	0.25	0.96	0.96	0.97	0.97				
Heavy Vehicles (%)	0%	0%	0%	1%	3%	1%				
Adj. Flow (vph)	0	0	375	454	336	330				
Snared Lane Traffic (%)	0	0	375	151	444	0				
Turn Type	U	U	Prot	A04 NA	NA	U				
Protected Phases			3	13	1		2			
Permitted Phases			-	4.0	4					
Delector Phase Switch Phase			3	13	1					
Minimum Initial (s)			8.0		15.0		8.0			
Minimum Split (s)			15.0		23.0		28.0			
Total Split (s)			37.0		45.0		28.0			
Total Split (%) Vollow Time (s)			33.6%		40.9%		25%			
All-Red Time (s)			2.0		2.0		0.0			
Lost Time Adjust (s)			-1.0		-1.0					
Total Lost Time (s)			5.0		5.0					
Lead-Lag					Lead		Lag			
Recall Mode			Max		C-Max		None			
Act Effct Green (s)			32.0	103.4	62.4					
Actuated g/C Ratio			0.29	0.94	0.57					
Control Delay			43.8	2.2	9.3					
Queue Delay			6.4	0.0	0.6					
Total Delay			50.1	2.2	9.9					
LOS Approach Dolou			D	A 22.0	A					
Approach LOS				23.9 C	9.9 A					
Stops (vph)			327	48	153					
Fuel Used(gal)			6	1	4					
CO Emissions (g/hr)			409	103	248					
VOC Emissions (g/hr)			95	20	40					
Dilemma Vehicles (#)			0	0	0					
Queue Length 50th (ft)			228	0	25					
Queue Length 95th (tt)	266		#387	217	213					
Turn Bay Length (ft)	200		200	217	213					
Base Capacity (vph)			488	3024	1752					
Starvation Cap Reductn			73	430	651					
Spiliback Cap Reductn			0	0	0					
Reduced v/c Ratio			0.90	0.18	0.60					
Intersection Summary										
Area Type:	CBD									
Cycle Length: 110										
Actuated Cycle Length: 110	to ph 1		art of Ca							
Natural Cycle: 75	no phase 1:	WBSB, St	art of Gree	311						
Control Type: Actuated-Coord	dinated									
Maximum v/c Ratio: 0.77										
Intersection Signal Delay: 17.	.6			Ir	ntersection	LOS: B				
Intersection Capacity Utilizati Analysis Period (min) 15	001 53.9%			10	CU Level o	I Service A	4			
# 95th percentile volume ex	ceeds capa	city, aueu	e mav be	longer.						
Queue shown is maximum	n after two cy	cles.	, <u>j</u> = 5							
Solits and Phases 21- D S	Street & LQO	Ramn								
		p						11	▲†	
= (31 (0))								1 7 5 00	N (32	

	٦	-	\mathbf{i}	1	+	٩.	1	Ť	1	1	Ŧ	∢
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	1 92	↑1 > 518	93	1 8	↑ 292	382	5 3	↑1 → 222	22	1 59	ፋች› 104	63
-uture Volume (vph)	192	518	93	18	292	382	53	222	22	159	104	63
Lane Width (tt)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	155		0	0		0	150		0	200		0
Taper Length (ft)	25		U	25		I	25		U	25		U
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.91	0.91	0.95
Ped Bike Factor Frt	0.97	0.98				0.92	0.94	0.99		0.95	0.96	
Flt Protected	0.950	00.15		0.950	4.700	4500	0.950	00.11		0.950	0.990	
Satd. Flow (prot) Flt Permitted	1555 0 366	3040	0	1464	1730	1599	1593	3341	0	1401	2770	0
Satd. Flow (perm)	581	3040	0	208	1730	1473	1496	3341	0	1336	2744	0
Right Turn on Red		22	Yes			No		8	Yes		51	Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft) Travel Time (s)		635			580 13.2			659 15 0			297	
Confl. Peds. (#/hr)	37	14.4	54	54	13.2	37	51	13.0	40	40	0.0	51
Confl. Bikes (#/hr)	0.05	0.05	12	0.01	0.01	16	0.04	0.04	2	0.00	0.00	9
Peak Hour Factor Heavy Vehicles (%)	0.95	0.95	0.95 1%	0.91	0.91	0.91	0.84 2%	0.84 7%	0.84 18%	0.89	0.89 12%	0.89 0%
Parking (#/hr)			0				2.0		0	2.70		
Adj. Flow (vph) Shared Lane Traffic (%)	202	545	98	20	321	420	63	264	26	179	117	71
Lane Group Flow (vph)	202	643	0	20	321	420	63	290	0	132	235	0
Turn Type	D.P+P	NA		Perm	NA	pm+ov	Split	NA		Split	NA	
Protected Phases Permitted Phases	- 4	14		1		2	3	3		2	2	
Detector Phase	4	14		1	1	2	3	3		2	2	
Switch Phase Minimum Initial (s)	60			8.0	8.0	8.0	8.0	8.0		8.0	8.0	
Vinimum Split (s)	15.0			30.0	30.0	28.0	27.0	27.0		28.0	28.0	
Total Split (s)	19.0			35.0	35.0	29.0	27.0	27.0		29.0	29.0	
Yellow Time (s)	4.0			4.0	31.6% 4.0	20.4% 3.0	24.0% 3.0	∠4.3% 3.0		20.4% 3.0	20.4%	
All-Red Time (s)	4.0			4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lost Time Adjust (s) Total Lost Time (s)	-1.0			-1.0 7.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
_ead/Lag	7.0			7.0	7.0	Lead	Lag	Lag		Lead	Lead	
ead-Lag Optimize?	Mov			C Mov	C.May	Ded	Max	Max		Ded	Ded	
Act Effct Green (s)	Max 41.6	48.6		C-IVIAX 29.6	29.6	Pea 52.0	21.0	21.0		21.4	21.4	
Actuated g/C Ratio	0.38	0.44		0.27	0.27	0.47	0.19	0.19		0.19	0.19	
/c Ratio	0.62	0.47		0.36	0.69	0.58	0.21	0.45		0.49	0.41	
Queue Delay	0.0	0.0		0.0	42.5	0.3	0.0	40.8		44.0	0.0	
Total Delay	18.9	8.6		54.4	42.5	15.3	39.7	41.2		44.6	30.4	
LOS Approach Delav	В	A 11.0		D	27.8	В	D	40.9		U	35.5	
Approach LOS		В			C			D			D	
Stops (vph)	103	249		13	185	199	43	205		105	188	
CO Emissions (g/hr)	158	382		25	341	279	66	309		134	197	
NOx Emissions (g/hr)	31	74		5	66	54	13	60		26	38	
VUC Emissions (g/hr) Dilemma Vehicles (#)	37	89 0		6	79	65 0	15	72		31	46	
Queue Length 50th (ft)	37	60		9	143	111	38	93		94	67	
Queue Length 95th (ft)	59	73		m25	#227	217	72	126		176	122	
Turn Bay Length (ft)	155	000			500		150	5/9		200	217	
Base Capacity (vph)	326	1355		55	465	744	304	644		292	619	
Starvation Cap Reductn Spillback Cap Reductn	0	0		0	0	65	0	85		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.62	0.47		0.36	0.69	0.62	0.21	0.52		0.45	0.38	
ntersection Summary	CRD											
area Type: Cycle Length: 110	CRD											
Actuated Cycle Length: 110												
Offset: 109 (99%), Reference	ed to phase 1	EBWB, S	tart of Gr	een								
Control Type: Actuated-Coc	rdinated											
Maximum v/c Ratio: 0.69	4.0			,		1.00.0						
ntersection Signal Delay: 2 ntersection Canacity Utiliza	4.9 tion 83 1%			In	tersection	LUS: C f Service I	-					
Analysis Period (min) 15					2 201010		-					
95th percentile volume e	exceeds capa	city, queue	may be	longer.								
 Volume for 95th percent 	in alter two cy itile queue is n	netered by	upstrear	n signal.								
allia and Dha	Character C											
spiils and Phases: 22: D	Sireet & Sum	mer Street				K*-						
🗝 🕬 (R)						↓>	Ø2					

	→	\rightarrow	⊾	1	-	₹I	1	1
Movement	EBT	EBR	WBU	WBL	WBT	NBU	NBL	NBR
Lane Configurations	•	1			4		¥	
Traffic Volume (veh/h)	3	11	5	318	8	1	7	88
Future Volume (Veh/h)	3	11	5	318	8	1	7	88
Sign Control	Free		5	510	Eree		Ston	00
Grade	0%				0%		0%	
Peak Hour Factor	0.88	0.88	0.92	0.93	0.93	0.98	0.98	0.98
Hourly flow rate (upb)	2	13	0.72	3/2	0.75	0.70	7	0.70
Podostrians	213	15	U	542		0	83	70
Lane Width (ff)	110						11.0	
Walking Spood (ft/s)	4.0						4.0	
Dercont Plackage	4.0						4.0	
Dight turn flore (uch)	10						0	
Right turn hare (ven)	News				News			
Median storage usb)	None				None			
Ivieulari storage Ven)								
Upstream signal (II)			0.00			0.00		
px, platoon unblocked			0.00	000		0.00	002	0(
vc, conflicting volume			0	99		0	992	86
vC I, stage I cont vol								
vC2, stage 2 cont vol								
vCu, unblocked vol			0	99		0	992	86
tC, single (s)			0.0	4.1		0.0	6.4	6.2
tC, 2 stage (s)								
tF (s)			0.0	2.2		0.0	3.5	3.3
p0 queue free %			0	76		0	96	90
cM capacity (veh/h)			0	1411		0	163	914
Direction, Lane #	EB 1	EB 2	WB 1	NB 1				
Volume Total	3	13	351	97				
Volume Left	0	0	342	7				
Volume Right	0	13	0	90				
cSH	1700	1700	1411	686				
Volume to Capacity	0.00	0.01	0.24	0.14				
Queue Length 95th (ft)	0	0	24	12				
Control Delay (s)	0.0	0.0	8.2	11.1				
LaneLOS		2.2	A	В				
Approach Delay (s)	0.0		8.2	11.1				
Approach LOS	2.0		5.2	В				
Intersection Summary								
Average Delay			85					
Intersection Canacity Utilization			40.2%	10	`III evel o	f Service		
Analysis Dariad (min)			15	IC.	JO LEVELU	JEINCE		
Analysis Fellou (IIIII)			10					

	٠	-	F	+	•	1	~
Movement	FBI	FBT	WBU	WBT	WBR	SBI	SBR
Lane Configurations		4		1.		M	
Traffic Volume (veh/h)	33	63	1	193	22	18	138
Future Volume (Veh/h)	33	63	1	193	22	18	138
Sign Control	55	Free		Eree	~~~~	Ston	150
Grade		0%		0%		0%	
Peak Hour Factor	0.03	0.03	0.80	0.80	0.80	0.07	0.07
Hourty flow rate (upb)	25	60.75	0.07	217	25	10	1/2
Dedestriens	30	00	0	217	25	407	142
Long Width (ft)						407	
Lane Width (II)						11.0	
waiking Speed (it/s)						4.0	
Percent Blockage						31	
Right turn hare (Ven)							
Median type		None		None			
weulan storage ven)				44/6			
upstream signal (ft)			0.00	1160			
px, platoon unblocked			0.00				
vc, conflicting volume	649		0			//4	636
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	649		0			774	636
tC, single (s)	4.1		0.0			6.4	6.2
tC, 2 stage (s)							
tF (s)	2.2		0.0			3.5	3.3
p0 queue free %	95		0			92	57
cM capacity (veh/h)	652		0			241	332
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	103	242	161				
Volume Left	35	0	19				
Volume Right	0	25	142				
cSH	652	1700	317				
Volume to Capacity	0.05	0.14	0.51				
Queue Length 95th (ft)	4	0	68				
Control Delay (s)	4.1	0.0	27.5				
Lane LOS	А		D				
Approach Delay (s)	4.1	0.0	27.5				
Approach LOS			D				
Intersection Summary							
Average Delay		_	9.6				
Intersection Capacity Utilization			40.1%	IC	U Level of	Service	
Analysis Period (min)			15				

	⋬	۶		-	•	1	~
Movement	FRU	FBI	FRT	WRT	WRR	SBI	SRR
Lano Configurations	LDU	LDL		1	WDI	JDL	JDI
Tarffa Values (ushib)	1	14	*	124	01	T 111	01
Traffic Volume (ven/n)	1	14	6/	134	21	111	81
Future Volume (Veh/h)	1	14	- 6/	134	21	111	81
Sign Control			Free	Free		Stop	
Grade			0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	15	73	149	23	123	90
Pedestrians						363	
Lane Width (ft)						11.0	
Walking Speed (ft/s)						4.0	
Percent Blockage						28	
Right turn flare (veb)						20	
Modian typo			None	Nonc			
Median storage yeb)			none	none			
lineterer signal (0)				050			
Upstream signal (ft)	0.00			858			
px, platoon unblocked	0.00						
vC, conflicting volume	0	535				626	524
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	0	535				626	524
tC, single (s)	0.0	4.1				6.4	6.2
tC, 2 stage (s)							
tF (s)	0.0	2.2				3.5	3.3
n0 queue free %	0	98				61	77
cM canacity (veh/h)	0	754				318	396
Direction Long #		MD 1	CD 1			510	370
Volumo Total	ED I 00	172	3D I 212				
Volume Total	00	1/2	213				
Volume Leit	15	0	123				
Volume Right	0	23	90				
cSH	754	1700	347				
Volume to Capacity	0.02	0.10	0.61				
Queue Length 95th (ft)	2	0	97				
Control Delay (s)	1.9	0.0	30.5				
Lane LOS	Α		D				
Approach Delay (s)	1.9	0.0	30.5				
Approach LOS			D				
Intersection Summary							
Average Delay			14.1				
Intersection Canacity Utilization			37.3%	10	CLL evel of	Service	
Analysis Dariad (min)			15	IC.		SCINC	
Analysis Period (IIIII)			10				

	≤	≯	-+	+	•	1	~	
Movement	FRII	FRI	FRT	WRT	WRR	SBI	SRR	
Lane Configurations	LDO	LDL	1	1	WDIX	M	301	
Traffic Volume (vol/h)	2	11	164	120	22	00	12	
Future Volume (Veh/h)	2	11	164	139	23	90	13	
Future Volume (Ven/n)	3		104	139	23	90	13	
Sign Control			Free	Free		Stop		
Grade			0%	0%		0%		
Peak Hour Factor	0.93	0.93	0.93	0.88	0.88	0.89	0.89	
Hourly flow rate (vph)	0	12	176	158	26	101	15	
Pedestrians				15		285		
Lane Width (ft)				12.0		12.0		
Walking Speed (ft/s)				4.0		4.0		
Percent Blockage				1		24		
Right turn flare (veh)								
Median type			None	None				
Median storage veh)								
Upstream signal (ft)				655				
pX, platoon unblocked	0.00							
vC. conflicting volume	0	469				671	456	
vC1_stage 1 conf vol								
vC2_stage 2 conf vol								
vCu_unblocked.vol	0	460				671	156	
tC single (s)	0.0	409				6.4	430	
tC 2 stans (s)	0.0	4.1				0.4	0.2	
tE (c)	0.0	2.2				2.5	2.2	
ur (S)	0.0	2.2				3.0	3.3 07	
po quede li ee %	0	99				00	9/	
civi capacity (ven/h)	0	841				315	464	
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	188	184	116					
Volume Left	12	0	101					
Volume Right	0	26	15					
cSH	841	1700	329					
Volume to Capacity	0.01	0.11	0.35					
Queue Length 95th (ft)	1	0	39					
Control Delay (s)	0.7	0.0	21.8					
LaneLOS	A		C					
Approach Delay (s)	0.7	0.0	21.8					
Approach LOS	0.7	0.0	C.					
Intersection Summany								
Average Delev			EE			_	_	
Average Delay			5.5	10		Condes		
intersection capacity Utilization			32.1%	IC	U Level of	Service		
Analysis Period (min)			15					
	≤	٦	-	F	+	•	1	~
-----------------------------------	------	------	-------	------	--------------	---------	------	------
Movement	FRU	FBI	FRT	WRIT	WRT	WRD	SBI	SBD
Lane Configurations	LDO	LDL	1	1100	1	WDIX	M	JDIX
Traffic Volume (veh/h)	1	10	243	12	152	20	18	0
Future Volume (Veh/h)	1	10	243	13	152	29	40	9
Future Volume (Ven/n)	1	10	243	13	152	29	48	9
Sign Control			Free		Free		Stop	
Grade			0%		0%		0%	
Peak Hour Factor	0.98	0.98	0.98	0.87	0.87	0.87	0.95	0.95
Hourly flow rate (vph)	0	10	248	0	175	33	51	9
Pedestrians			70		45		140	
Lane Width (ft)			12.0		12.0		12.0	
Walking Speed (ft/s)			4.0		4.0		4.0	
Percent Blockage			6		4		12	
Right turn flare (veh)								
Median type			None		None			
Median storage veh)								
Upstream signal (ft)					278			
pX, platoon unblocked	0.00			0.00				
vC. conflicting volume	0	348		0			644	402
vC1 stage 1 conf vol	Ŭ	0.0		5				102
vC2 stage 2 conf vol								
vCu unblocked vol	0	3/18		0			644	402
tC single (s)	0.0	J40		0.0			6.4	402
tC 2 stage (s)	0.0	4.1		0.0			0.4	0.2
10, 2 sidye (s)	0.0	2.2		0.0			2.5	2.2
(F (S)	0.0	2.2		0.0			3.5	3.3
po queue nee %	0	99		0			86	98
cM capacity (veh/h)	0	1080		0			371	543
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	258	208	60					
Volume Left	10	0	51					
Volume Right	0	33	9					
cSH	1080	1700	389					
Volume to Capacity	0.01	0.12	0.15					
Queue Length 95th (ft)	1	0	13					
Control Delay (s)	0.4	0.0	15.9					
Lane LOS	Α		С					
Approach Delay (s)	0.4	0.0	15.9					
Approach LOS			С					
Intersection Summary								
Average Delay			2.0	_				
Intersection Capacity Utilization			35.0%	10	CLL level of	Service		
Analysis Period (min)			15		50 2010101	00.100		
Analysis Feriou (IIIII)			10					

	≤	-	\rightarrow	⊾	1	-	1	1
Movement	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations		A 1.				41		
Traffic Volume (veh/h)	5	597	174	2	52	515	0	0
Future Volume (Veh/h)	5	507	174	2	52	515	0	0
Sign Control	5	Free	174	2	JZ	Free	Ston	0
Crado		00/				00/	00/	
Dook Hour Eactor	0.05	0.05	0.05	0.07	0.07	0.07	0.25	0.25
Peak Hour Factor	0.95	(20	100	0.97	0.97	0.97	0.25	0.25
Houriy llow rate (vpn)	0	628	183	0	54	531	0	U
Pedestrians							191	
Lane Width (ft)							0.0	
Walking Speed (ft/s)							4.0	
Percent Blockage							0	
Right turn flare (veh)								
Median type		None				None		
Median storage veh)								
Upstream signal (ft)		600				376		
pX, platoon unblocked	0.00			0.00	0.83		0.85	0.83
vC, conflicting volume	0			0	1002		1284	596
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu_unblocked vol	0			0	589		795	100
tC single (s)	0.0			0.0	41		6.8	6.9
tC 2 stano (s)	0.0			0.0	4.1		0.0	0.7
tE (c)	0.0			0.0	2.2		2.5	2.2
n (s)	0.0			0.0	2.2		100	1.0
po quede nee 76	0			0	73		240	701
civi capacity (venini)	0			0	020		200	/01
Direction, Lane #	EB 1	EB 2	WB 1	WB 2				
Volume Total	419	392	231	354				
Volume Left	0	0	54	0				
Volume Right	0	183	0	0				
cSH	1700	1700	826	1700				
Volume to Capacity	0.25	0.23	0.07	0.21				
Queue Length 95th (ft)	0	0	5	0				
Control Delay (s)	0.0	0.0	2.8	0.0				
Lane LOS	5.0	0.0	Δ	0.0				
Approach Delay (s)	0.0		11					
Approach LOS	0.0		1.1					
Approach EOS								
Intersection Summary								
Average Delay			0.5					
Intersection Capacity Utilization			46.4%	IC	CU Level o	of Service		
Analysis Period (min)			15					
, , ,								

	≯	-	\mathbf{F}	1	+	•	٩.	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Traffic Volume (veh/h)	54	392	0	6	303	137	4	0	5	79	0	33
Future Volume (Veh/h)	54	392	0	6	303	137	4	0	5	79	0	33
Sign Control		Free	-	-	Free			Stop	-		Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.97	0.97	0.97	0.75	0.75	0.75	0.90	0.90	0.90
Hourly flow rate (vph)	57	413	0	6	312	141	5	0	7	88	0	37
Pedestrians											547	
Lane Width (ft)											12.0	
Walking Speed (ft/s)											4.0	
Percent Blockage											46	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		789			496							
pX, platoon unblocked	0.89			0.85			0.90	0.90	0.85	0.90	0.90	0.89
vC, conflicting volume	1000			413			958	1539	413	1476	1468	930
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	941			214			634	1280	214	1210	1202	863
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	84			99			97	100	99	0	100	79
cM capacity (veh/h)	359			1156			159	68	702	44	76	174
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	470	459	12	125								
Volume Left	57	6	5	88								
Volume Right	0	141	7	37								
cSH	359	1156	290	57								
Volume to Capacity	0.16	0.01	0.04	2.20								
Queue Length 95th (ft)	14	0	3	308								
Control Delay (s)	5.2	0.2	18.0	705.7								
Lane LOS	Α	A	С	F								
Approach Delay (s)	5.2	0.2	18.0	705.7								
Approach LOS			С	F								
Intersection Summary												
Average Delay			85.3									
Intersection Capacity Utilization			70.9%	10	CU Level of	Service			С			
Analysis Period (min)			15									
· · · · · · · · · · · · · · · · · · ·												

	٠	-	+	•	1	-
Movement	FBI	FBT	WBT	WBR	SBI	SBR
Lane Configurations	LUL	101	1	mon	V	OBIC
Traffic Volume (veh/h)	13	463	401	40	66	45
Future Volume (Veh/h)	13	463	401	40	66	45
Sign Control	10	Free	Free	10	Ston	10
Grade		0%	0%		0%	
Peak Hour Factor	0.98	0.98	0.97	0.97	0.96	0.96
Hourly flow rate (yph)	13	172	/13	/1	60	47
Podestrians	15	472	415		303	47
Lane Width (ff)					12.0	
Malking Speed (#/c)					12.0	
Porcont Plockago					4.0	
Pight turn flore (uch)					33	
Median tune		None	None			
Median storage usb)		None	None			
Weulan Storage Ven)		1004	101			
Opstream signal (it)	0.00	1094	141		0.00	0.00
px, platoon unblocked	0.88				0.89	0.88
vc, conflicting volume	847				1324	820
VC I, stage I cont vol						
VC2, stage 2 cont voi						-
vCu, unblocked vol	/54				1221	/31
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue tree %	97				41	81
cM capacity (veh/h)	509				117	246
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	485	454	116			
Volume Left	13	0	69			
Volume Right	0	41	47			
cSH	509	1700	149			
Volume to Capacity	0.03	0.27	0.78			
Queue Length 95th (ft)	2	0	121			
Control Delay (s)	0.7	0.0	84.2			
Lane LOS	А		F			
Approach Delay (s)	0.7	0.0	84.2			
Approach LOS			F			
Intersection Summary						
Average Delay			9.6			
Intersection Capacity Utilization			47.9%	IC	U Level of	Service
Analysis Period (min)			15	10		
r marysis i crioù (min)			13			

	٭	-	\rightarrow	1	-	•	▲	1 t	1	1	Ŧ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	LUL	ا ھ	1		4		1	1.		500	4	2011
Traffic Volume (vph)	7	4	107	29	5	0	339	132	11	0	20	4
-uture Volume (vph)	1000	1000	107	29	1000	1000	339	132	1000	1000	20	1000
ane Util. Factor	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1.00	1,00	1,00	1,00
Ped Bike Factor	1.00	0.93	0.97	1.00	0.98	1.00	1100	0.99	1.00	1.00	1.00	1.00
rt			0.850					0.988			0.977	
Fit Protected	0	0.968	1/17	0	0.959	0	0.950	1040	0	0	1054	0
It Permitted	U	0.816	1417	0	0.746	0	0.950	1000	0	0	1000	0
Satd. Flow (perm)	0	1439	1373	0	1359	0	1719	1860	0	0	1856	0
Right Turn on Red			Yes			Yes			Yes			Yes
satd. Flow (RTOR)		20	116		20			12			8	
Link Distance (ff)		278			172			335			275	
Travel Time (s)		6.3			3.9			7.6			6.3	
Confl. Peds. (#/hr)	35		10	10		35			31	31		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.95	0.95	0.38	0.38	0.38
neavy venicies (%) Adi, Flow (vph)	U%	0%	14%	3%	0%	U%	5% 357	120	U%	0%	U%	0%
Shared Lane Traffic (%)	0	4	110	32	5	0	331	137	12	U		
ane Group Flow (vph)	0	12	116	0	37	0	357	151	0	0	64	0
ium Type	Perm	NA	pm+ov	Perm	NA		Prot	NA			NA	
Protected Phases	r.	5	1	c	5		1	14		4	4	
remitted Phases	5	5	5	5	5		1	14		4	4	
Switch Phase	J	J	- 1	J	5			14		4	4	
/inimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0	
/inimum Split (s)	22.0	22.0	22.0	22.0	22.0		22.0			22.0	22.0	
otal Split (s)	22.0	22.0	63.0	22.0	22.0		63.0			25.0	25.0	
(ellow Time (s)	20.0%	20.0% 3.0	31.3% 30	20.0% 3.0	20.0%		30 30			22.1%	22.1%	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0			2.0	2.0	
ost Time Adjust (s)		0.0	0.0	-	0.0		0.0			-	0.0	
Total Lost Time (s)		5.0	5.0		5.0		5.0				5.0	
.eau/Lag ead.Lag.Optimize?	Lag	Lag		Lag	Lag					Lead	Lead	
Recall Mode	None	None	C-Max	None	None		C-Max			None	None	
Act Effct Green (s)		8.7	88.1		8.7		82.7	98.5			8.9	
ctuated g/C Ratio		0.08	0.80		0.08		0.75	0.90			0.08	
//c Ratio		0.11	0.10		0.35		0.28	0.09			0.41	
Conirol Delay		48.6	0.6		56.9		4.7	1.4			50.1	
Fotal Delay		48.6	0.0		56.9		5.1	1.4			50.1	
OS		D	A		E		А	А			D	
Approach Delay		5.1			56.9			4.0			50.1	
Approach LOS		A	,		E		70	A			D	
Siops (vpn) Fuel Used(gal)		12	4		32		13	15			20	
CO Emissions (g/hr)		14	19		43		113	35			28	
NOx Emissions (g/hr)		3	4		8		22	7			6	
/OC Emissions (g/hr)		3	4		10		26	8			7	
Dilemma Vehicles (#)		0	0		0		0	12			30	
Queue Length 95th (ft)		27	9		59		101	24			30	
nternal Link Dist (ft)		198			92			255			195	
Furn Bay Length (ft)												
Base Capacity (vph)		222	1156		210		1291	1773			344	
Snillback Can Reductn		0	0		0		338 0	0			0	
Storage Cap Reductn		0	0		0		0	0			0	
Reduced v/c Ratio		0.05	0.10		0.18		0.47	0.09			0.19	
ntersection Summarv												
Area Type:	Other											
Cycle Length: 110												
Actuated Cycle Length: 110												
Unset: 20 (18%), Referenced	d to phase 1	:NBTL, St	tart of Gree	en								
Control Type: Actuated-Coor	rdinated											
Maximum v/c Ratio: 0.41	anatou											
ntersection Signal Delay: 10).9			Ir	ntersection	LOS: B						
ntersection Capacity Utilizati	tion 46.2%			10	CU Level o	f Service A	A					
manysis Period (min) 15												
Splits and Phases: 6: Nort	thern Avenue	e & Pier 4	Boulevard	i								
1 (1/P)												
1 (R)												

	٩	→	\mathbf{i}	1	+	•	•	t	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	41	10/	47	ፋጉ		70	4	~~		Ł	1
Future Volume (vph)	163 163	963 963	106 106	17	698 698	33	79	68 68	33	33	41	77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft) Storage Length (ft)	12	11	12	12	12	12	12	11	12	12	11	11 100
Storage Lanes	1		0	0		0	0		0	0		0
Taper Length (ft)	25	0.05	0.05	25	0.05	0.05	25	1.00	1.00	25	1.00	1.00
Ped Bike Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	0.93	1.00	1.00	0.94	0.92
Frt		0.985			0.993			0.975			0.070	0.850
Fit Protected Satd. Flow (prot)	0.950	2812	0	0	0.999	0	0	0.979	0	0	0.978	1255
Flt Permitted	0.268	2012	U	U	0.698	U	U	0.834	U	U	0.822	1200
Satd. Flow (perm)	432	2812	0	0	2050	0	0	1083	0	0	1103	1153
Right Turn on Red Satd, Flow (PTOP)		10	Yes		5	Yes		11	Yes			Yes
Link Speed (mph)		30			30			30			30	05
Link Distance (ft)		1029			308			511			339	
Travel Time (s) Confl Peds (#/hr)	130	23.4	69	69	7.0	130	46	11.6	157	157	1.1	46
Confl. Bikes (#/hr)	100		29	07		8	10		5	107		2
Peak Hour Factor	0.96	0.96	0.96	0.97	0.97	0.97	0.92	0.92	0.92	0.93	0.93	0.93
neavy venicles (%) Parking (#/hr)	6%	7%	0%	0%	6%	38%	1%	2%	0%	35%	0%	12%
Adj. Flow (vph)	170	1003	110	18	720	34	86	74	36	35	44	83
Shared Lane Traffic (%)	470	1110	^	^	770	^	•	10/	^	^	70	
Lane Group Flow (vph) Turn Type	170 D P+P	1113 NA	0	0 Perm	/72 NA	0	0 Perm	196 NA	0	0 Perm	79 NA	83 Perm
Protected Phases	6	16		1 GHH	1		i citii	5		r cm	5	i cim
Permitted Phases	1			1			5			5		5
Detector Phase Switch Phase	6	16		1	1		5	5		5	5	5
Minimum Initial (s)	4.0			10.0	10.0		8.0	8.0		8.0	8.0	8.0
Minimum Split (s)	9.0			23.0	23.0		29.0	29.0		29.0	29.0	29.0
Total Split (s) Total Split (%)	20.0			50.0 45.5%	50.0 45.5%		40.0	40.0		40.0	40.0	40.0 36.4%
Yellow Time (s)	3.0			3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0			2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s) Total Lost Time (s)	-2.0				-2.0			-2.0			-2.0	-2.0
Lead/Lag	Lao				3.0		Lead	Lead		Lead	Lead	Lead
Lead-Lag Optimize?	209										_500	_ 544
Recall Mode	None	70.7		C-Max	C-Max		None	None 25.2		None	None	None
Actuated g/C Ratio	/5./ 0.69	0.72			53.4 0.49			25.3			25.3 0.23	25.3 0.23
v/c Ratio	0.33	0.55			0.77			0.76			0.31	0.25
Control Delay	5.9	4.4			20.0			53.6			46.9	18.4
Queue Delay Total Delay	0.0	0.1			20.0			0.0 53.6			0.0 46 9	0.0
LOS	A	A			B			D			D	B
Approach Delay		4.6			20.0			53.6			32.3	
Approach LUS Stops (vph)	40	A 180			8 319			D 184			C 60	40
Fuel Used(gal)	2	11			7			4			1	1
CO Emissions (g/hr)	121	735			462			291			85	53
NUX Emissions (g/hr)	23	143			90			57			17	10
Dilemma Vehicles (#)	20	0			0			0			20	0
Queue Length 50th (ft)	18	65			46			103			52	13
Queue Length 95th (ft)	m24	m78 940			#304			m135 421			250	45
Turn Bay Length (ft)	80	747			220			431			234	100
Base Capacity (vph)	521	2004			998			371			371	442
Starvation Cap Reductn	0	0 159			1			0			0	0
Storage Cap Reductin	0	100			0			0			0	0
Reduced v/c Ratio	0.33	0.60			0.77			0.53			0.21	0.19
Intersection Summary												
Area Type:	CBD											
Cycle Length: 110 Actuated Cycle Length: 110												
Offset: 75 (68%), Reference	ed to phase 1:	EBWB, Sta	art of Gre	en								
Natural Cycle: 65		,	2.0									
Control Type: Actuated-Coc	ordinated											
Intersection Signal Delay: 1	5.4			In	tersection	LOS: B						
Intersection Capacity Utiliza	ition 86.3%			IC	U Level of	Service I	-					
Analysis Period (min) 15	wood	situ arres	moute	longer								
 Source percentile volume (Oueue shown is maximum) 	exceeus capai im after two cy	.ny, queue (cles.	e may be l	ionger.								
m Volume for 95th percen	itile queue is n	netered by	upstream	n signal.								
Califo and Discours 7, Cl	opor Ctt o	Coop-+ P	oulou '									
Spins and Phases: 7: Sle	ehei Pileei &	Seaport B	oulevard									
🕈 Ø1 (R)										₹ Ø5		

	-	\mathbf{r}	F	1	←	1	1
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	≜ ⊅	005	45	1	††	100	1
Traffic Volume (vph)	720	205	15 15	90 90	718	139	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	11	12	12
Storage Length (It) Storage Lanes		0		100		1	100
Taper Length (ft)		0		25		25	·
Lane Util. Factor	0.95	0.95	0.95	1.00	0.95	1.00	1.00
Peu Bike Factor	0.99						0.850
Flt Protected				0.950		0.950	2.300
Satd. Flow (prot)	2807	0	0	1520	2935	1608	1454
Fit Permitted Satd Flow (perm)	2807	Ο	0	0.236	2035	0.950	1454
Right Turn on Red	2007	Yes	5	510	2700	. 500	Yes
Satd. Flow (RTOR)	45				~~		51
LINK Speed (mph)	30				30 255	30 912	
Travel Time (s)	3.2				5.8	20.7	
Confl. Bikes (#/hr)		20	0.00		0.00	0.01	0.01
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.96	0.96
Adj. Flow (vph)	783	223	16	98	780	145	51
Shared Lane Traffic (%)							
Lane Group Flow (vph)	1006	0	0 Prot	114 D P+P	780	145 Prot	51 custom
Protected Phases	1		5	5	15	4	4
Permitted Phases				1			5
Detector Phase Switch Phase	1		5	5	15	4	4
Minimum Initial (s)	10.0		8.0	8.0		8.0	8.0
Minimum Split (s)	24.0		15.0	15.0		30.0	30.0
Total Split (s) Total Split (%)	55.0		15.0	15.0		40.0	40.0
Yellow Time (s)	3.0		3.0	3.0		30.470	3.0
All-Red Time (s)	2.0		2.0	2.0		2.0	2.0
Lost Time Adjust (s)	-2.0			-1.0		-1.0	0.0
Lead/Lag	5.0			4.0		4.0	5.0
Lead-Lag Optimize?							
Recall Mode	C-Max		None	None 82.6	87.6	None 15.4	None 20 1
Actuated g/C Ratio	0.66			0.75	0.80	0.14	0.26
v/c Ratio	0.54			0.29	0.33	0.64	0.12
Control Delay	4.3			4.9	3.3	51.2	15.6
Total Delay	4.3			4.9	3.6	51.2	15.6
LOS	A			A	A	D	В
Approach Delay	4.3				3.8	41.9	
Stops (vph)	A 282			23	A 157	139	39
Fuel Used(gal)	3			0	3	3	1
CO Emissions (g/hr)	235			31	194	224	50
VOC Emissions (g/hr)	46			6	38 45	44 52	10
Dilemma Vehicles (#)	0			0	0	0	0
Queue Length 50th (ft)	24			14	64	110	6
Internal Link Dist (ft)	98 59			55	87	832	11127
Turn Bay Length (ft)				100		502	100
Base Capacity (vph)	1875			399	2329	526	498
Starvation Cap Reductn Spillback Cap Reductn	0			0	851	0	0
Storage Cap Reductn	0			0	0	0	0
Reduced v/c Ratio	0.54			0.29	0.53	0.28	0.10
Intersection Summary							
Area Type: Civels Longth: 110	CBD						
Actuated Cycle Length: 110							
Offset: 75 (68%), Referenced	d to phase 1:6	BWB, St	tart of Gre	een			
Natural Cycle: 75	dia ata 1						
Control Type: Actuated-Coor Maximum v/c Ratio: 0.64	ainated						
Intersection Signal Delay: 7.0	6			In	tersection	LOS: A	
Intersection Capacity Utilizat	ion 54.6%			IC	CU Level o	f Service A	Ą
Analysis Period (min) 15 m. Volume for 95th percent	ile queue is m	netered by	vunstraa	m signal			
volume for your percent	no quote is li	SIGICU D	Jupsucal	signai.			
Splits and Phases: 8: Bost	ton Wharf Ro	ad (WSR)) & Seapo	ort Bouleva	rd		
Ø1 (R)							
55 s							

	_	٦	-	\mathbf{r}	1	←	۰.	1	Ť	1	5	Ŧ	1	
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		٦	††			≜ ‡≯			- 4 ↑	1	ሻሻ			
Traffic Volume (vph)	10	70	705	0	0	581	95	151	316	76	78	0	80	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	12	11	11	11	11	12	11	12	11	12	12	12	
Storage Length (ft)		150		0	0		0	0		125	0		0	
Taper Length (ft)		25		0	25		0	25			25		U	
Lane Util. Factor	0.95	1.00	0.95	1.00	1.00	0.95	0.95	0.95	0.95	1.00	0.97	1.00	1.00	
Ped Bike Factor						0.96			0.98	0.950	0.91	0.46		
Fit Protected		0.950				0.777			0.984	0.030	0.950	0.000		
Satd. Flow (prot)	0	1373	2737	0	0	2711	0	0	3154	1405	2764	0	0	
Fit Permitted	0	0.264	2727	0	0	0711	0	0	0.984	1405	0.950	0	0	
Right Turn on Red	0	301	2131	Yes	U	2711	Yes	U	3067	Yes	2012	0	Yes	
Satd. Flow (RTOR)						19				119		169		
Link Speed (mph)			30			30			30			30		
Travel Time (s)			6.0			8.5			18.5			7.6		
Confl. Peds. (#/hr)	50	127					127	50		74	74		50	
Confl. Bikes (#/hr) Deak Hour Factor	0.02	0.02	0.02	0.02	0.04	0.04	26	0.02	0.02	0.02	0.02	0.02	0.02	
Heavy Vehicles (%)	0.92	21%	9%	0.92	0.74	9%	7%	0.92	2%	0.92	14%	0.92	13%	
Parking (#/hr)			0	0										
Adj. Flow (vph) Shared Lane Traffic (%)	11	76	766	0	0	618	101	164	343	83	85	0	87	
Lane Group Flow (vph)	0	87	766	0	0	719	0	0	507	83	85	87	0	
Turn Type	D.P+P	D.P+P	NA			NA		Split	NA	Prot	Prot			
Protected Phases	6	6	16			1		4	4	4	5			
Detector Phase	6	6	16			1		4	4	4	5			
Switch Phase														
Minimum Initial (s)	4.0	4.0				10.0		8.0	8.0	8.0	8.0			
Total Split (s)	10.0	10.0				45.0		35.0	35.0	35.0	20.0			
Total Split (%)	9.1%	9.1%				40.9%		31.8%	31.8%	31.8%	18.2%			
Yellow Time (s)	3.0	3.0				3.0		3.0	3.0	3.0	3.0			
Lost Time Adjust (s)	2.0	0.0				-2.0		2.0	0.0	-2.0	0.0			
Total Lost Time (s)		5.0				3.0			5.0	3.0	5.0			
Lead/Lag								Lead	Lead	Lead	Lag			
Recall Mode	None	None				C-Max		None	None	None	None			
Act Effct Green (s)		61.3	68.3			48.4			22.7	24.7	8.7	0.0		
Actuated g/C Ratio		0.56	0.62			0.44			0.21	0.22	0.08	0.00		
Control Delay		15.2	10.9			15.4			45.8	2.3	55.6	0.0		
Queue Delay		0.0	0.5			0.8			0.0	0.0	0.0	0.0		
LOS		15.2 B	11.4 B			16.1 B			45.8 D	2.3 A	55.6 E	0.0 A		
Approach Delay		-	11.8			16.1			39.7		-	27.5		
Approach LOS		20	B			B			D	10	70	C		
Fuel Used(gal)		29	191			404			433	10	2	40		
CO Emissions (g/hr)		40	284			462			677	40	105	32		
NUX Emissions (g/hr)		8	55			90			132	8	20	6		
Dilemma Vehicles (#)		0	0			0			0	0	0	0		
Queue Length 50th (ft)		20	78			73			187	3	31	0		
Queue Length 95th (tt) Internal Link Dist (ft)		45	127			296			233	m4	5/	255		
Turn Bay Length (ft)		150	102			270			.52	125		200		
Base Capacity (vph)		346	1698			1203			860	493	376	169		
Starvation Cap Reductn Spillback Cap Reductn		0	489 137			212			0	0	0	0		
Storage Cap Reductn		0	0			0			0	0	0	0		
Reduced v/c Ratio		0.25	0.63			0.73			0.59	0.17	0.23	0.51		
Intersection Summary														
Area Type:	CBD													
Actuated Cycle Length: 110														
Offset: 75 (68%), Reference	d to phase 1	:EBWB, St	art of Gre	en										
Natural Cycle: 70	rdinote -													
Control Type: Actuated-Cool Maximum v/c Ratio: 0.78	ruinated													
Intersection Signal Delay: 21	1.3			In	tersection	LOS: C								
Intersection Capacity Utilizat	tion Err%			IC	U Level of	f Service H								
Analysis Period (min) 15 m Volume for 95th percent	tile queue is	metered by	/ upstream	n signal.										
	. 42.040 15		,	<u></u>										
Splits and Phases: 9: Eas	st Service Ro	ad & Seap	ort Boulev	ard										
Ø1 (R)									104 04					•
45 s								3	5 s					20 s

	-	\mathbf{r}	1	+	٩	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1-		10	41	ነካ	1
Traffic Volume (vph)	779	90	49 49	315	358	133
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	13	11	12
Storage Length (II) Storage Lanes		0	0		125	125
Taper Length (ft)		-	25		25	-
Lane Util. Factor	0.95	0.95	0.95	0.95	0.97	1.00
Ped Bike Factor	0.984					0.850
Flt Protected	0.701			0.993	0.950	0.000
Satd. Flow (prot)	2890	0	0	2485	2901	1358
Fit Permitted Satd Flow (perm)	2890	Λ	0	0.758	0.950 2901	1358
Right Turn on Red	2070	No	J	1077	2701	No
Satd. Flow (RTOR)						
Link Speed (mph) Link Distance (ft)	30			30 591	30 498	
Travel Time (s)	8.9			13.4	11.3	
Confl. Bikes (#/hr)		23			0.00	
Peak Hour Factor Heavy Vehicles (%)	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)	1170	J /0	∠470	2070	-J /0	1 /0
Adj. Flow (vph)	847	98	53	342	389	145
Shared Lane Traffic (%)	045	0	0	305	280	145
Turn Type	945 NA	U	Perm	595 NA	Prot	Prot
Protected Phases	1			1	4	4
Permitted Phases	1		1	1	A	4
Switch Phase	1		1	1	4	4
Minimum Initial (s)	10.0		10.0	10.0	8.0	8.0
Minimum Split (s)	28.0		28.0	28.0	28.0	28.0
Total Split (%)	65.0 59.1%		59.1%	65.0 59.1%	45.0 40.9%	40.9%
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Total Lost Time (s)	-2.0			-2.0	5.0	5.0
Lead/Lag	0.0			0.0	0.0	0.0
Lead-Lag Optimize?			0.1.1	0.1.		
Recall Mode Act Effct Green (s)	C-Max 82.6		C-Max	C-Max 82.6	Min 19.4	Min 19.4
Actuated g/C Ratio	0.75			0.75	0.18	0.18
v/c Ratio	0.44			0.28	0.76	0.60
Control Delay	12.8			5.4	36.0	35.3
Total Delay	13.9			5.4	36.1	35.3
LOS	В			А	D	D
Approach Delay	13.9			5.4	35.9	
Approach LOS Stops (vph)	608			A 109	320	111
Fuel Used(gal)	8			3	6	2
CO Emissions (g/hr)	578			187	404	146
VOC Emissions (g/nr)	113			30 43	94	28
Dilemma Vehicles (#)	0			0	0	0
Queue Length 50th (ft)	244			38	121	80
Queue Length 95th (tt) Internal Link Dist (ft)	380 312			511	164 418	m130
Turn Bay Length (ft)	512			511	125	125
Base Capacity (vph)	2169			1424	1054	493
Starvation Cap Reductin	912			0	33	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.75			0.28	0.38	0.29
Intersection Summary						
Area Type:	CBD					
Cycle Length: 110						
Offset: 0 (0%). Referenced t	o phase 1:FB	WB, Star	t of Greer	1		
Natural Cycle: 60		,				
Control Type: Actuated-Coo	rdinated					
Maximum v/c Ratio: 0.76	3.3			le	tersection	I OS B
Intersection Capacity Utiliza	tion 60.5%			10	CU Level o	of Service
Analysis Period (min) 15						
m Volume for 95th percen	tile queue is n	netered by	y upstrea	m signal.		
Splits and Phases: 10: B	Street & Sean	ort Boule	vard			
5		22.0				
= ⊤ [™] 01(R) 65 s						

	۶	-	\mathbf{r}	1	+	•	1	Ť	1	1	ŧ	-			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2		
Lane Configurations		€î î•			4î»		٦		1		4				
Traffic Volume (vph)	23	549	261	48	162	28	211	0	43	36	16	16			
Ideal Flow (vphpl)	1900	1900	1900	48	1900	1900	1900	1900	43	1900	1900	1900			
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00			
Ped Bike Factor		0.96			0.99		0.94	0.57			0.88				
Frt Elt Drotostod		0.953			0.983		0.050	0.850	0.850		0.969				
Satd. Flow (prot)	0	2835	0	0	2504	0	1626	0	1615	0	1325	0			
Flt Permitted	-	0.941	-	-	0.724	-	0.950	-		-	0.974	-			
Satd. Flow (perm)	0	2669	0	0	1821	0	1532	0	1615	0	1216	0			
Right Turn on Red		02	Yes		10	Yes		164	Yes 100		12	Yes			
Link Speed (mph)		30			30			30	109		30				
Link Distance (ft)		372			296			334			515				
Travel Time (s)	00	8.5	470	470	6.7	00	20	7.6	04	04	11.7	20			
Confl. Peds. (#/nr)	29		1/3	1/3		29	32		31	31		32			
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.95	0.95	0.95	0.92	0.92	0.92			
Heavy Vehicles (%)	26%	17%	13%	0%	49%	50%	11%	0%	0%	24%	67%	7%			
Adj. Flow (vph)	25	590	281	52	176	30	222	0	45	39	17	17			
Shared Lane Traffic (%)	0	896	0	0	258	0	222	5	10%	0	73	0			
Turn Type	Perm	NA	0	Perm	NA	U	Prot	5	Prot	Split	NA	0			
Protected Phases		1			1		7		7	. 8	8		2		
Permitted Phases	1	1		1	1		7		7	0	0				
Switch Phase	1	1		1	I		/		/	8	8				
Minimum Initial (s)	16.0	16.0		16.0	16.0		6.0		6.0	6.0	6.0		4.0		
Minimum Split (s)	21.0	21.0		21.0	21.0		11.0		11.0	11.0	11.0		21.0		
Total Split (s)	48.0	48.0		48.0	48.0		20.0		20.0	11.0	11.0		21.0		
Vellow Time (s)	48.0%	48.0%		48.0%	48.0%		20.0%		20.0%	11.0%	11.0%		21%		
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0		2.0	2.0	2.0		0.0		
Lost Time Adjust (s)		0.0			0.0		0.0		0.0		0.0				
Total Lost Time (s)	Load	5.0		Load	5.0		5.0		5.0	Log	5.0		Lag		
Lead-Lag Optimize?	Leau	Leau		Leau	Leau		Leau		Leau	Lay	Lay		Lay		
Recall Mode	C-Max	C-Max		C-Max	C-Max		None		None	None	None		None		
Act Effct Green (s)		55.2			55.2		19.6	0.0	19.6		10.2				
v/c Ratio		0.55			0.55		0.20	0.00	0.20		0.10				
Control Delay		16.3			13.0		49.0	0.0	0.5		47.3				
Queue Delay		0.0			0.0		0.0	0.0	0.0		0.0				
Total Delay		16.3			13.0		49.0	0.0	0.5		47.3				
Approach Delay		16.3			13.0		D	40.8	А		47.3				
Approach LOS		В			В			D			D				
Stops (vph)		500			116		192	0	0		52				
Fuel Used(gal) CO Emissions (g/hr)		556			127		260	1	7		84				
NOx Emissions (g/hr)		108			25		51	0	1		16				
VOC Emissions (g/hr)		129			29		60	0	2		19				
Dilemma Vehicles (#)		172			0		122	0	0		27				
Queue Length 95th (ft)		277			76		203	0	0		80				
Internal Link Dist (ft)		292			216			254			435				
Turn Bay Length (ft)		1515			1012		200	1/4	107		145				
Starvation Cap Reducto		1515			1013		322	164	407		145				
Spillback Cap Reductn		0			0		0	0	0		0				
Storage Cap Reductn		0			0		0	0	0		0				
Reduced v/c Ratio		0.59			0.25		0.69	0.03	0.10		0.50				
Intersection Summary															
Area Type: Cuelo Longth: 100	Other														
Actuated Cycle Length: 100															
Offset: 19 (19%), Referenced	to phase 1:	EBWB, St	art of Gre	en											
Natural Cycle: 80															
Control Type: Actuated-Coor Maximum v/c Patio: 0.70	unated														
Intersection Signal Delay: 21	.7			In	tersection	LOS: C									
Intersection Capacity Utilizati	ion 69.1%			IC	CU Level of	f Service	С								
Analysis Period (min) 15															
Splits and Phases: 12: D S	Street & Sea	port Boule	vard												
\$ (R)											102			◆27	108
48 s											- 22			20 s	11s

	•	→	\rightarrow	1	-	•	▲	1 t	1	1	Ŧ	-				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2			
Lane Configurations		44	1	1	4Î			र्भ	1		4					
Future Volume (vph)	4	354	140	340	454	7	153	16	162	18	38	16				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
Lane Width (ft)	12	11	11	11	11	12	12	16	12	12	16	12				
Storage Length (tt) Storage Lanes	100		100	0		0	0		100	0		0				
Taper Length (ft)	25			25		0	25			25		0				
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Ped Bike Factor			0.96		1.00				0.950		0.071					
Fit Protected		0.999	0.600	0.950	0.996			0.957	0.650		0.971					
Satd. Flow (prot)	0	2990	1364	1570	1617	0	0	1775	1425	0	1708	0				
Flt Permitted	0	0.750	4007	0.485	4/47	0	0	0.957	4.405	0	0.987	0				
Sata. Flow (perm) Right Turn on Red	0	2245	1307 No	802	1617	Ves	0	1775	1425 Yes	0	1708	Ves				
Satd. Flow (RTOR)					1	105			167		10	105				
Link Speed (mph)		30			30			30			30					
Link Distance (tt) Travel Time (s)		191			4/8			213			/10					
Confl. Bikes (#/hr)		4.5	14		10.7	8		4.0	2		10.1					
Peak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.97	0.97	0.97	0.92	0.92	0.92				
Heavy Vehicles (%)	0%	5%	3%	0%	2%	0%	4%	9%	2%	0%	0%	40%				
Adj. Flow (vpn) Shared Lane Traffic (%)	4	305	144	370	493	8	158	16	107	20	41	17				
Lane Group Flow (vph)	0	369	144	370	501	0	0	174	167	0	78	0				
Turn Type	Perm	NA	Perm	D.P+P	NA		Prot	NA	custom	Split	NA		•			
Protected Phases Permitted Phases	1	1	1	5	15		3		35	4	4		2			
Detector Phase	1	1	1	5	15		3		35	4	4					
Switch Phase																
Minimum Initial (s)	10.0	10.0	10.0	6.0			8.0			6.0	6.0		8.0			
Total Split (s)	33.0	33.0	33.0	24.0			14.0			12.0	12.0		24.0			
Total Split (%)	30.0%	30.0%	30.0%	21.8%			15.5%			10.9%	10.9%		22%			
Yellow Time (s)	3.0	3.0	3.0	3.0			3.0			3.0	3.0		4.0			
All-Red Time (S)	4.0	4.0	4.0	4.0			2.0			2.0	-1.0		0.0			
Total Lost Time (s)		7.0	7.0	7.0							4.0					
Lead/Lag	Lead	Lead	Lead				Lead			Lag	Lag		Lag			
Lead-Lag Optimize?	C-Max	C-Max	C-Max	None			Max			Max	Max		None			
Act Effct Green (s)	O Midx	30.8	30.8	47.8	54.8		Max	14.0	31.0	IVIGA	8.0		None			
Actuated g/C Ratio		0.28	0.28	0.43	0.50			0.13	0.28		0.07					
V/c Ratio		0.59	0.39	0.79	0.62			0.77	0.32		0.59					
Queue Delay		0.0	0.0	40.0	37.5			0.0	0.0		0.0					
Total Delay		38.3	37.4	48.8	42.9			69.8	4.8		68.2					
LOS Approach Dolay		20 1	D	D	D 45.4			20 D	A		60 D					
Approach LOS		30.1 D			45.4 D			36.0 D			00.2 E					
Stops (vph)		273	100	367	397			154	18		60					
Fuel Used(gal)		5	2	7	8			4	1		2					
NOx Emissions (g/nr)		338	25	467	533			48	37		25					
VOC Emissions (g/hr)		78	30	108	123			57	9		30					
Dilemma Vehicles (#)		0	0	0	0			0	0		0					
Queue Length 50th (ft)		111	123	265 #422	357			121 #228	39		4/ m#104					
Internal Link Dist (ft)		111	120		398			133	0,7		630					
Turn Bay Length (ft)			100						100							
Base Capacity (vph) Starvation Can Peducth		628	365	467	806 211			225	521		133					
Spillback Cap Reductn		0	0	0	0			0	0		0					
Storage Cap Reductn		0	0	0	0			0	0		0					
Reduced v/c Ratio		0.59	0.39	0.79	0.84			0.77	0.32		0.59					
Intersection Summary																
Area Type: Cyclo Longth: 110	CBD															
Actuated Cycle Length: 110																
Offset: 20 (18%), Reference	d to phase 1:	EBWB, St	tart of Gre	een												
Natural Cycle: 85																
Maximum v/c Ratio: 0.79	rumatéd															
Intersection Signal Delay: 42	2.9			In	tersection	LOS: D										
Intersection Capacity Utilizat	tion 70.0%			IC	CU Level of	Service (2									
Analysis Period (min) 15 # 95th percentile volume of	avceeds cana	city quere	e may be	longer												
Queue shown is maximur	m after two c	ycles.	o may be	onger.												
m Volume for 95th percent	tile queue is i	metered by	y upstrea	m signal.												
Splits and Phases 15- A 4	Street/Thoms	on St & C	onaress	Street												
		on ot or U	origi 033 c	54000		11						٠.			* 7]
₩ Ø1 (R)					-	π 6 Ø2						Y Ø3		▼ 04	♥ ¶Ø5	

	•	-	\rightarrow	⊾	1	+	•	1	Ť	1	1	ŧ	-		
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	40	4	145	10	122	†	100	101	124	EO	40	4	1		
Future Volume (vph)	60	283	165	18	132	657	129	101	124	58	40	63	38 38		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width (ft) Storage Length (ft)	12	12	12	12	12	12	12	16	11	12	12	11	11		
Storage Lanes	0		1		150		0	1		0	0		125		
Taper Length (ft)	25				25			25			25				
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00		
Frt		0.77	0.850		0.00	0.975		0.71	0.952			0.70	0.850		
Flt Protected		0.991			0.950	0/27		0.950		-	-	0.981			
Satd. Flow (prot) Elt Permitted	0	1602	1454	0	1624	2697	0	1841	1462	0	0	1511	1405		
Satd. Flow (perm)	0	1160	1114	0	684	2697	0	1674	1462	0	0	1488	1405		
Right Turn on Red			Yes			24	Yes		20	Yes			Yes		
Link Speed (mph)		30	1/9			30			30			30	04		
Link Distance (ft)		478				521			204			912			
Travel Time (s) Confl. Peds. (#/br)	103	10.9	69	36	69	11.8	103	64	4.6	36	36	20.7	64		
Confl. Bikes (#/hr)	105		9	50	07		8	04		2	50		04		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92		
neavy venicies (%) Parking (#/hr)	0%	1%	0%	0%	0%	5%	8% 0	0%	1%	2%	11%	5%	0%		
Adj. Flow (vph)	65	308	179	20	143	714	140	107	132	62	43	68	41		
Shared Lane Traffic (%)	0	272	170	0	140	854	0	107	104	0	0	111	41		
Turn Type	Perm	NA	Perm	Perm	Perm	NA	0	Split	NA	0	Split	NA	Prot		
Protected Phases	_	1				1		2	2		3	3	3		
Permitted Phases	1	1	1	1	1	1		2	2		3	2	3		
Switch Phase								2	2		J	J	J		
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0		8.0	8.0		8.0	8.0	8.0		
Total Split (s)	29.0	29.0 47.0	29.0 47.0	29.0 47.0	29.0 47.0	29.0 47.0		30.0 30.0	30.0 30.0		33.0 33.0	33.0 33.0	33.0 33.0		
Total Split (%)	42.7%	42.7%	42.7%	42.7%	42.7%	42.7%		27.3%	27.3%		30.0%	30.0%	30.0%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0		
Lost Time Adjust (s)	3.0	-1.0	-1.0	3.0	-1.0	-1.0		-1.0	-1.0		9.0	-1.0	-1.0		
Total Lost Time (s)		5.0	5.0		5.0	5.0		5.0	5.0			11.0	11.0		
Lead/Lag Lead-Lag Optimize?								Lead	Lead		Lag	Lag	Lag		
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max		None	None		None	None	None		
Act Effct Green (s)		57.1	57.1		57.1	57.1		18.3	18.3			13.6	13.6		
v/c Ratio		0.62	0.32		0.32	0.52		0.35	0.75			0.12	0.12		
Control Delay		22.0	3.3		20.7	17.4		42.2	55.9			40.5	2.5		
Queue Delay Total Delay		0.0 22.0	0.0		0.0 20.7	0.0		0.2 42.4	0.0			40.5	0.0		
LOS		C	A		C	В		D	E			D	A		
Approach Delay		15.9 D				18.0 D			51.1			30.2			
Stops (vph)		264	48		74	406		85	152			78	5		
Fuel Used(gal)		4	1		2	8		1	3			2	0		
NOx Emissions (g/hr)		299	69 13		22	575 112		20	224			140	22		
VOC Emissions (g/hr)		69	16		27	133		24	52			32	5		
Dilemma Vehicles (#)		0	0		0	0		0	110			0	0		
Queue Length 95th (ft)		#387	127		54 m114	238		112	186			101	m5		
Internal Link Dist (ft)		398				441			124			832			
Turn Bay Length (ft) Base Capacity (vph)		601	664		150 354	1410		418	347			302	125 352		
Starvation Cap Reductn		0	0		0	0		0	0			0	0		
Spillback Cap Reductn		0	0		0	23		69	0			0	12		
Reduced v/c Ratio		0.62	0.27		0.46	0.62		0.31	0.56			0.37	0.12		
Intersection Summary															
Area Type:	CBD														
Cycle Length: 110															
Offset: 48 (44%). Referenced	to phase 1:	EBWB. S	tart of Gre	en											
Natural Cycle: 105	1 1.400 1.	2													
Control Type: Actuated-Coord	dinated														
Intersection Signal Delay: 23.	.3			In	tersection	LOS: C									
Intersection Capacity Utilizati	on 100.2%			IC	CU Level o	f Service G									
Analysis Period (min) 15 # 95th percentile volume ex	ceeds cana	city, queu	e mav be	longer											
Queue shown is maximum	n after two c	ycles.													
m Volume for 95th percenti	le queue is r	metered b	y upstrea	m signal.											
Splits and Phases: 16: Bos	ston Wharf R	Road (WSI	R) & Conc	ress Stree	et										
(P)		,								12				•	1 as
, , , , , , , , , , , , , , , , , , ,									10	12					¥ د ک

	•	→	-	•	1	T.	1	•	•	/
ane Group	EBL	EBT	WBT	WBR	NBL	NBT	NBR	NEL2	NEL	NER
ane Configurations	٦	*	†	74	17/	41	1	200	1	170
rame volume (vph) uture Volume (vph)	61	304 304	533	74	176	285	89 89	208	260 260	178
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft)	12	12	13	16	12	12	12	12	12	12
Storage Length (IT) Storage Lanes	1/5			50	0		1		2	0
Taper Length (ft)	25				25				25	Ū
ane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.97	0.95
reu Bike Factor	0.97		0.982			0.98	0.850		0.92	
Fit Protected	0.950		0.702			0.981	0.000		0.965	
Satd. Flow (prot)	1624	3094	3091	0	0	3168	1398	0	2987	0
Fit Permitted	0.281	2004	2001	0	0	0.981	1200	0	0.965	0
Satu, Flow (perm) Right Turn on Red	464	3094	3091	Yes	U	3090	1398 Yes	U	2790	U
Satd. Flow (RTOR)			13				99			
Link Speed (mph)		30	30			30			30	
Link Distance (ft)		521	509			178			200	
Confl. Peds. (#/hr)	82	11.0	11.0	82	43	4.0	12	43	4.0	12
Confl. Bikes (#/hr)				12				10		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	0%	5%	5%	3%	0%	1%	4%	0%	1%	4%
Ruj. Flow (Vpn) Shared Lane Traffic (%)	66	330	579	80	191	310	97	226	283	193
Lane Group Flow (vph)	66	330	659	0	0	501	97	0	702	0
Furn Type	Perm	NA	NA		Split	NA	Prot	Perm	Prot	
Protected Phases		1	1		2	2	2		3	
Permitted Phases	1	1	1		2	2	2	3	2	
Switch Phase	1	1	1		2	2	2	J	3	
Vinimum Initial (s)	8.0	8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Vinimum Split (s)	32.0	32.0	32.0		30.0	30.0	30.0	33.0	33.0	
i otal Split (S) Total Split (%)	34.0	34.0	34.0		30.0	30.0	30.0	46.0	46.0	
Yellow Time (s)	30.976	30.970	30.970		3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	4.0	4.0	4.0		3.0	3.0	3.0	3.0	3.0	
ost Time Adjust (s)	-2.0	-2.0	-2.0			-2.0	-2.0		-2.0	
I otal Lost Time (s)	5.0	5.0	5.0		Lood	4.0	4.0	1.00	4.0	
ead-Lag Optimize?					read	read	read	Lag	Lag	
Recall Mode	C-Max	C-Max	C-Max		None	None	None	None	None	
Act Effct Green (s)	39.5	39.5	39.5			23.0	23.0		34.5	
Actuated g/C Ratio	0.36	0.36	0.36			0.21	0.21		0.31	
Control Delay	0.40	0.30	23.6			48.6	0.26		0.80 41 Q	
Queue Delay	20.4	0.0	0.0			-0.0	0.0		0.0	
Total Delay	28.4	18.4	23.6			48.6	8.5		41.9	
LOS	С	В	С			D	А		D	
Approach LOS		20.1	23.6			42.1			41.9	
Stops (vph)	38	143	344			421	14		570	
Fuel Used(gal)	1	3	7			8	0		10	
CO Emissions (g/hr)	57	221	504			526	25		676	
NOx Emissions (g/hr)	11	43	98			102	5		131	
VOC EMISSIONS (g/Nr) Dilemma Vehicles (#)	13	51	0			122	0		157	
Queue Length 50th (ft)	17	38	127			174	0		232	
Queue Length 95th (ft)	m63	101	m186			229	41		274	
Internal Link Dist (ft)		441	429			98			120	
Turn Bay Length (ft)	175	1110	1110			740	10/		10/5	
Base Capacity (vph) Starvation Cap Reducte	166	1112	1119			/48	406		1065 0	
Spillback Cap Reductn	0	0	0			0	0		0	
Storage Cap Reductn	0	0	0			0	0		0	
Reduced v/c Ratio	0.40	0.30	0.59			0.67	0.24		0.66	
Intersection Summary										
Area Type:	CBD									
Cycle Length: 110										
Actuated Cycle Length: 110 Offset: 58 (53%) Reference	d to phase 1	FBWRS	start of Gre	en						
Natural Cycle: 95	a to priase 1.	.cowd, 3	an or ore	01						
Control Type: Actuated-Coo	rdinated									
Maximum v/c Ratio: 0.80										
Intersection Signal Delay: 33	3.1			lr	ntersection	LOS: C	D			
Analysis Period (min) 15	uull /0.5%			IC	C Level C	n Service	U			
m Volume for 95th percent	tile queue is i	metered b	by upstream	n signal.						
				5						
Splits and Phases: 17: Co	ngress Stree	et & East S	Service Ro	ad		1.4				
Ø1 (R)						1 No:	2			
34 s						30 s				

	٦		\mathbf{r}	F	4	-	•	1	Ť	1	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		-¢†	1		1	4î•		1	1	1		† †	1
Traffic Volume (vph)	325	120	128	1	300	263	89	306	299	344	11	66	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	16	14	12	12	11	11
Storage Lanes	0		200		250		0	1		1	0		125
Taper Length (ft)	25	0.05	4.00	0.05	25	0.01	0.05	25	4.00	4.00	25	0.05	4
Lane Util. Factor Ped Bike Factor	0.95	0.95	1.00	0.95	0.91	0.91	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.75	0.850		0.74	0.973				0.850		0.77	0.850
Fit Protected	0	0.965	1200	0	0.950	0.985	0	0.950	1754	1244	0	0.993	1000
Fit Permitted	0	0.965	1398	0	0.950	2629	0	0.950	1/54	1346	0	0.860	1232
Satd. Flow (perm)	0	2755	1398	0	1303	2584	0	1770	1754	1346	0	2667	1210
Right Turn on Red Satd, Flow (RTOR)			No			21	Yes			Yes 355			Yes 109
Link Speed (mph)		30				30			30	555		30	107
Link Distance (ft)		509				995			220			498	
Confl. Peds. (#/hr)	126	11.0	37		37	22.0	126		5.0		45	11.3	2
Confl. Bikes (#/hr)	<i>.</i>	0.51		<i>.</i>	<i>.</i>	0.51	1	0.57	0.07	0.07	0.00	0.01	1
Peak Hour Factor Heavy Vehicles (%)	0.94	0.94	0.94 4%	0.94	0.94	0.94 9%	0.94 14%	0.97	0.97 4%	0.97	0.92	0.92	0.92 14%
Adj. Flow (vph)	346	128	136	1	319	280	95	315	308	355	12	72	32
Shared Lane Traffic (%)	0	474	10/	<u>^</u>	50%	EDE	0	245	200	255	0	07	22
Lane Group Flow (vph) Turn Type	0 Split	4/4 NA	136 Prot	0 Split	160 Split	535 NA	0	315 Prot	308 NA	355 Prot	0 Perm	84 NA	32 custom
Protected Phases	2	2	2	1	1	1		3	3 4	3 4	. silli	4	4
Permitted Phases	2	2	2	1	1	1		2	3 1	3 1	4	Α	2
Switch Phase	2	2	2	1	1	1		3	34	54	4	4	4
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0	8.0
rvinimum Split (s) Total Split (s)	19.0 31.0	19.0 31.0	19.0 31.0	31.0 32.0	31.0 32.0	31.0 32.0		16.0 28.0			19.0 19.0	19.0 19.0	19.0 19.0
Total Split (%)	28.2%	28.2%	28.2%	29.1%	29.1%	29.1%		25.5%			17.3%	17.3%	17.3%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0	3.0
All-Red Time (s) Lost Time Adjust (s)	4.0	4.0 -2.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0	4.0
Total Lost Time (s)		5.0	5.0		5.0	5.0		5.0				5.0	5.0
Lead/Lag	Lead	Lead	Lead					Lag					
Recall Mode	Max	Мах	Max	C-Max	C-Max	C-Max		Max			None	None	None
Act Effct Green (s)		26.0	26.0		29.8	29.8		23.0	39.2	39.2		11.2	37.2
Actuated g/C Ratio v/c Ratio		0.24 0.93dl	0.24		0.27	0.27		0.21	0.36	0.36		0.10	0.34
Control Delay		50.3	47.1		23.4	27.8		64.0	30.6	5.2		65.8	2.4
Queue Delay		0.0	0.0		0.0	0.0		0.0	0.0	0.0		0.0	0.0
LOS		50.3 D	47.1 D		23.4 C	21.8 C		64.U	30.6 C	5.2 A		65.8 E	2.4 A
Approach Delay		49.6			Ŭ	26.8		-	32.1			48.4	
Approach LOS Stops (vph)		284	100		83	C 401		276	C 227	30		D 76	4
Fuel Used(gal)		304	2		2	401		270	4	30 1		2	4
CO Emissions (g/hr)		591	160		163	627		422	254	78		122	10
NOx Emissions (g/hr)		115	31		32	122 145		82	49	15 18		24	2
Dilemma Vehicles (#)		0	0		0	0		0	0	0		0	0
Queue Length 50th (ft)		148	73		47	74		216	171	0		33	0
Under Length 95th (ft)		429	m13/		m108	#284 915		#367	242 140	60		61 418	m11
Turn Bay Length (ft)		127	200		250	710						+10	125
Base Capacity (vph)		699	330		374	727		370	669	733		339	512
Starvation Cap Reductn Spillback Can Reductn		0	0		0	0		0	0	0		0	0
Storage Cap Reductn		0	0		0	0		0	0	0		0	0
Reduced v/c Ratio		0.68	0.41		0.43	0.74		0.85	0.46	0.48		0.25	0.06
Intersection Summary	200												
Area Type: C Cycle Length: 110	'RD												
Actuated Cycle Length: 110													
Offset: 100 (91%), Referenced	to phase '	1:WBTL, S	Start of Gr	reen									
ivatural Cycle: 85 Control Type: Actuated-Coordi	nated												
Maximum v/c Ratio: 0.85													
Intersection Signal Delay: 35.8	n 8/1 70/			li	ntersection	LOS: D							
Analysis Period (min) 15	11 04.7%			1	CO Level C	I Service E							
# 95th percentile volume exc	eeds capa	city, queu	e may be	longer.									
Queue shown is maximum a Molume for 95th perceptile	after two c	ycles.	vunstraa	m signal									
dl Defacto Left Lane. Recode	e with 1 th	ough lane	as a left l	lane.									
		~											
Splits and Phases: 18: B Str	eet & Con	gress Stre	et			*							
₩Ø1 (R)					4	Ø2							1

Synchro 9 Report Lanes, Volumes, Timings

E D or Optimized in the set of the set		\$	≯	→	\mathbf{r}	1	+	۹.	₹	1	Ť	1	L#	1	Ŧ	~
Configurations H F H H N N F Second Sec	Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
ne voure eqnn 0 10 105 268 373 646 94 20 2 374 161 22 374 161 24 2 28 28 28 22 22 20 20 20 20 20 20 20 20 20 20 20	Lane Configurations			4î þ	1		ፋፑ			ሻሻ	4				4î þ	
in bin jording '9300	Future Volume (vph)	10	105	268	373	68 68	94 94	20 20	2	374	163 163	24	2	20	226	42
Width (m) 12	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
mode Laman mode La	Lane Width (ft) Storage Length (ft)	12	12	12	13	12	13	12	12	11	12	12	12	12	14	12
existing (1) 25 35 35 35 35 35 35 35 Bile Factar 0 05 05 07 0.01 0.00 <td>Storage Lanes</td> <td></td> <td>0</td> <td></td> <td>130</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>2</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td>	Storage Lanes		0		130	0		0		2		0		0		0
et all Factor 0.05 0.07 0.07 0.07 0.08 0.05	Taper Length (ft)		25			25				25				25		
Outcome Origin of Data	Lane Util. Factor Ped Rike Factor	0.95	0.95	0.91	0.91	0.95	0.95	0.95	1.00	0.97	1.00	1.00	0.95	0.95	0.95	0.95
Packed 0.987 0.982 0.950 0.989 0.98 <th0.98< th=""> 0.98 0.98 <</th0.98<>	Frt			0.986	0.850		0.983			0.02	0.981				0.978	
Trongent D<	Fit Protected	0	0	0.987	1014	0	0.982	0	0	0.950	1514	0	0	0	0.996	0
1 from group 0 0 2 / 2 / 3 3 / 3 0 1 / 3 / 3 1 / 3 / 3 2 / 2 / 3 2 / 2 / 3 2 / 2 / 3 2 / 2 / 3 3 / 3 <	Fit Permitted	0	0	2834	1314	0	2850	0	0	0.950	1514	0	0	U	0.996	0
No Yes Yes Yes Yes Yes Yes Yes Speed (rpat) 30 40 40 22 20 0.92 0.93 0.9	Satd. Flow (perm)	0	0	2690	1314	0	2692	0	0	1814	1514	0	0	0	2985	0
Tank (1) 0 100 50 10 In Stanker (0) 995 319 317 333 sel Time (s) 226 90 56 57 76 If Base (n) 56 20 90 90 50 57 76 If Base (n) 07 97 97 90	Right Turn on Red				No		10	Yes			4	Yes			14	Yes
Distance (n) 996 319 317 334 II Peck, (khr) 56 226 70 20 72 6 75 26 57 58 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 57 75 26 77 75 <t< td=""><td>Link Speed (mph)</td><td></td><td></td><td>30</td><td></td><td></td><td>30</td><td></td><td></td><td></td><td>30</td><td></td><td></td><td></td><td>30</td><td></td></t<>	Link Speed (mph)			30			30				30				30	
ed Ime (s) 22.6 7.3 7.2 7.2 7.6 5.5 5.5 5.5 5.6 5.6 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Link Distance (ft)			995			319				317				334	
ni klase globa (ne verse glo	Travel Time (s) Confl. Peds. (#/hr)	56	26	22.6	90	90	7.3	26	90	56	7.2	57	26	57	7.6	56
ht Hour Fador 0.97 0.97 0.97 0.97 0.92 </td <td>Confl. Bikes (#/hr)</td> <td>50</td> <td>20</td> <td></td> <td>8</td> <td>70</td> <td></td> <td>7</td> <td>70</td> <td>50</td> <td></td> <td>6</td> <td>20</td> <td>57</td> <td></td> <td>1</td>	Confl. Bikes (#/hr)	50	20		8	70		7	70	50		6	20	57		1
y verhales (b) Une une done of the constraint of	Peak Hour Factor	0.97	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93
Time Viron 10 10 10 27 38 74 102 22 2 407 177 20 2 22 243 45 of Cours Prov (rph) 0 0 0 33 346 0 186 0 <	Heavy Vehicles (%) Parking (#/hr)	0%	0%	6%	4%	2%	23%	0%	0%	5%	9%	9%	0%	0%	11%	0%
nerd Lame Traffic (%) e Group Flow (P) Perm Spli NA Pero Spli NA Perot Spli NA Spli Spli N	Adj. Flow (vph)	10	108	276	385	74	102	22	2	407	177	26	2	22	243	45
e se use prive per more per more per more per per per per per per per per per p	Shared Lane Traffic (%)	0	0	(22	10%	0	100	0	0	400	202	0	0	0	212	0
accords 1 1 1 4 4 2 2 2 3 3 3 accord Dasse 1 1 1 1 4 4 2 2 2 3 3 3 accord Phase 1 1 1 1 4 4 2 2 2 3 3 3 3 accord Phase 1 1 1 1 4 4 2 2 2 3 <td>Turn Type</td> <td>Perm</td> <td>Split</td> <td>433 NA</td> <td>346 Prot</td> <td>Split</td> <td>NA</td> <td>0</td> <td>Split</td> <td>409 Split</td> <td>203 NA</td> <td>0</td> <td>Split</td> <td>Split</td> <td>312 NA</td> <td>0</td>	Turn Type	Perm	Split	433 NA	346 Prot	Split	NA	0	Split	409 Split	203 NA	0	Split	Split	312 NA	0
nimed Phases 1 th Phases there Phase th Phases there Phase th Phases there Phase	Protected Phases		1	1	1	4	4		2	2	2		3	3	3	
concernance i <th< td=""><td>Permitted Phases</td><td>1</td><td>1</td><td>1</td><td>1</td><td>4</td><td>4</td><td></td><td>2</td><td>2</td><td>2</td><td></td><td>3</td><td>3</td><td>2</td><td></td></th<>	Permitted Phases	1	1	1	1	4	4		2	2	2		3	3	2	
mum final (s) 120 120 120 120 20 120 80 80 80 80 80 80 80 80 80 80 80 80 80	Switch Phase					4	4		2	2	2		3	3	3	
minim aprily 2.20 2.20 2.20 17.0 17.0 27.0 27.0 18.0 18.0 18.0 18.0 13.0 2501 2501 250 220 220 220 250 251 51 55 55 55 55 55 55 55 55 50 5.0 5.0 5.0	Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0		8.0	8.0	8.0		8.0	8.0	8.0	
ai spin (%) 35.5% 35.5% 35.5% 35.5% 17.3% 17.3% 27.3% 27.3% 27.3% 20.0%	Total Split (s)	22.0 39.0	22.0 39.0	22.0 39.0	22.0 39.0	17.0	19.0		30.0	27.0	30.0		22.0	22.0	22.0	
own Time (s) 3.0	Total Split (%)	35.5%	35.5%	35.5%	35.5%	17.3%	17.3%		27.3%	27.3%	27.3%		20.0%	20.0%	20.0%	
scale inter (y) sole	Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		4.0	4.0	4.0		3.0	3.0	3.0	
al Los Time (s) 6.0 6.0 6.0 7.0 7.0 6.0 drag drag Lead Lead Lead Lead Lead Lag Lag Lag Lag Lag Chag L	Lost Time Adjust (s)	5.0	5.0	-2.0	-2.0	5.0	-2.0		5.0	-2.0	-2.0		5.0	5.0	-2.0	
dfag Lead Lad Lad <td< td=""><td>Total Lost Time (s)</td><td></td><td></td><td>6.0</td><td>6.0</td><td></td><td>6.0</td><td></td><td></td><td>7.0</td><td>7.0</td><td></td><td></td><td></td><td>6.0</td><td></td></td<>	Total Lost Time (s)			6.0	6.0		6.0			7.0	7.0				6.0	
And Grand C-Max C-Max C-Max C-Max C-Max C-Max C-Max C-Max None None Max Max<	Lead/Lag								Lead	Lead	Lead		Lag	Lag	Lag	
Effel Green (s) 33.8 33.8 1.2.2 23.0 16.0 valed g/C Ratio 0.31 0.31 0.11 0.21 0.21 0.15 Ratio 0.50 0.86 0.61 0.67 0.63 0.69 triot Delay 30.1 53.2 52.6 32.3 33.6 51.6 vale Delay 30.1 53.2 52.6 32.5 34.1 51.6 vale Delay 30.1 53.2 52.6 32.5 34.1 51.6 oreach Delay 40.4 52.6 33.0 51.6 51.6 55 53 5 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 56 56 57 299	Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None		Max	Max	Max		Max	Max	Max	
Jame up Nation U.31 U.11 U.21 U.21 U.15 Raio 0.50 0.86 0.61 0.67 0.63 0.69 Itto Delay 30.1 53.2 52.6 32.3 33.6 51.6 uz Delay 30.1 53.2 52.6 32.5 34.1 51.6 Soch Delay 40.4 52.6 33.0 51.6 0.0 roach Delay 40.4 52.6 33.0 51.6 roach Delay 10.1 10.6 24.7 205 25.9 U Used(ga) 7 8 3 5 3 5 Emissions (ghr) 101 106 455 72 39 71 Z Ensistons (ghr) 101 106 441 106 10 0	Act Effct Green (s)			33.8	33.8		12.2			23.0	23.0				16.0	
Construction Construction<	v/c Ratio			0.31	0.31		0.11			0.21	0.21				0.15	
uue Delay 0.0 0.0 0.0 0.1 0.5 0.0 al Delay 30.1 53.2 52.6 32.5 34.1 51.6 sroach Delay 40.4 52.6 33.0 51.6 0 sroach DCS D D C O 0	Control Delay			30.1	53.2		52.6			32.3	33.6				51.6	
al Uelay 30,1 53,2 5,2 6,7 3,4 1, 0,1,0 S C D D D C C D proach Delay 40,4 52,6 33,0 51,6 mrach LOS D D D C D ps (vph) 291 281 162 347 205 259 Il Used (gal) 7 8 3 5 3 5 Emissions (ghn) 520 545 230 372 201 366 k Emissions (ghn) 101 106 45 72 39 71 2 Emissions (ghn) 101 106 72 72 39 71 2 Emissions (ghn) 101 106 72 72 39 72 real Link Obit (ft) 113 237 66 147 137 106 tue Length 50th (ft) 113 237 66 147 137 106 tue Length 50th (ft) 915 239 237 254 real Link Obit (ft) 915 239 237 254 real Capacity (vph) 870 404 345 606 321 450 valion Cap Reductn 0 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 reade Cap Reductn 0 0 0 0 0 0 reade Cap Reductn 0 0 0 0 reade Cap Reductn 0 0 0 0 reade Cap Reductn 0 0.50 0.86 0.57 0.69 0.66 0.69 rescion Summary a Type: CBD tel canght: 110 used Cycle Length: 110 rescion Signal Delay: 41.1 Intersection LOS: D rescion Signal Delay: 41.1 Intersection LOS: D rescion Capacity Utilization 74.2% ICU Level of Service D lysis Period (min) 15 95th period (min) 15 95th period New Voulme exceeds capacity, queue may be longer. 2ueue shown is maximum after two cycles. Is and Phases: 19: D Street & Congress Street	Queue Delay			0.0	0.0		0.0			0.1	0.5				0.0	
invach Delay 40.4 52.6 33.0 51.6 iroach LOS D D C D so (ph) 291 281 162 347 205 259 I Used(gal) 7 8 3 5 3 5 Emissions (ghr) 101 106 45 72 39 71 C Emissions (ghr) 121 126 53 86 47 85 mma Vehicles (r) 0<	LOS			30.1 C	53.2 D		52.6 D			32.5 C	34.1 C				51.6 D	
roach LOS D D D C C D so (ph) 291 281 162 347 205 259 1Used(ga) 7 8 3 5 3 5 Emissions (ghn) 520 545 230 372 201 366 Emissions (ghn) 101 106 45 72 39 71 C Emissions (ghn) 121 126 53 86 47 85 mma Vehicles (#) 0 0 0 0 0 0 0 0 ue Length 50h (th) 113 237 66 147 137 106 ue Length 95h (th) 166 #441 106 189 203 55 mal Link Dist (th) 915 239 237 254 ma Vehicles (#) 0 0 0 0 10 14 00 back Cap Reductn 0 150 te Capacity (vph) 870 404 345 606 321 450 vation Cap Reductn 0 0 0 0 10 14 0 back Cap Reductn 0 0 0 0 0 0 0 0 the data 10 0 0 0 0 0 0 0 the data 10 0 0 0 0 0 0 steel cangth 50h (th) 165 0 steel cap Reductn 0 0 0 0 0 0 0 steel cap Reductn 0 0 0 0 0 0 the data 10 0 0 0 0 0 0 steel cap Reductn 0 0 0 0 0 steel cap Reductn 0 0 0 0 0 steel cap Reductn 0 0 0 0 0 steel 37 (34%), Referenced to phase 1: EBTL, Start of Green traat Cycle 85 trot Type: CBD steel cap Reduct 0 phase 1: EBTL, Start of Green traat Cycle 85 trot Type CBD steel cap Reduct 0 0 steel cap Reduct 0 steel cap Reduc	Approach Delay			40.4			52.6				33.0				51.6	
Display 2.17 2.01 102 347 203 2.19 Lissed(gal) 7 8 3 5 3 5 Emissions (ghr) 101 106 45 72 39 71 C Emissions (ghr) 121 126 53 86 47 85 mma Vehicles (#) 0 0 0 0 0 0 0 ue Length 50th (th) 113 237 66 147 137 106 use Length 50th (th) 113 237 66 147 137 106 use Length 50th (th) 113 237 66 147 137 106 use Length 50th (th) 113 237 66 147 137 106 use Length 50th (th) 113 106 321 450 321 450 use Length 50th (th) 0 0 0 0 0 0 0 10 14 0 126	Approach LOS Stops (uph)			D 201	201		D 162			347	C 205				250	
Emissions (g/hr) 520 545 230 372 201 366 K Emissions (g/hr) 101 106 45 72 39 71 C Emissions (g/hr) 121 126 53 86 47 85 mma Vehicles (#) 0 0 0 0 0 0 0 eue length 50th (ft) 113 237 66 147 137 106 eue length 50th (ft) 166 #441 106 189 203 155 mal Link Dist (ft) 915 239 237 254 n Bay Length (ft) 150	Fuel Used(gal)			7	8		3			5	3				5	
K Emissions (g/m) 101 106 45 72 39 71 C Emissions (g/m) 121 126 53 86 47 85 mma Vehicles (#) 0 0 0 0 0 0 0 ue Length 50th (th) 113 237 66 147 137 106 ue Length 50th (th) 166 #441 106 189 203 155 mal Link Dist (th) 915 239 237 254 c Capacity (tyoh) 870 404 345 606 321 450 valion Cap Reductn 0 0 0 0 0 0 0 usage Cap Reductn 0 <td>CO Emissions (g/hr)</td> <td></td> <td></td> <td>520</td> <td>545</td> <td></td> <td>230</td> <td></td> <td></td> <td>372</td> <td>201</td> <td></td> <td></td> <td></td> <td>366</td> <td></td>	CO Emissions (g/hr)			520	545		230			372	201				366	
Data Solution (grift) Table Dot Dot Dot Dot huma Vehicles (#) 0 0 0 0 0 0 0 use Length 50th (ft) 113 237 66 147 137 106 use Length 50th (ft) 166 #441 106 189 203 155 mal Link Dist (ft) 915 239 237 254 254 mask character 0 0 0 10 14 0 back cap Reductn 0 0 0 0 0 0 0 rage Cap Reductn 0 10 14 0 14	NOX Emissions (g/hr)			101	106		45			/2 86	39				/1	
uue Length 50th (th) 113 237 66 147 137 106 uue Length 95th (th) 166 #441 106 189 203 155 mal Link Dist (th) 915 239 237 254 n Bay Length (th) 150	Dilemma Vehicles (#)			0	0		0			0	0				0	
Use Length (1) 100 134 100 137 133 mal Link Disk (1) 915 239 203 237 254 n Bay Length (1) 150	Queue Length 50th (ft)			113	237		66			147	137				106	
n Bay Length (ft) 150 e Capacity (vph) 870 404 345 606 321 450 vation Cap Reductn 0 0 0 0 10 14 0 back Cap Reductn 0 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 0 rage Cap Reductn 0 0 0 0 0 0 0 section Summary Treection Summary E CBD Le Length: 110 Lated Cycle Length: 110 Let 37 (34%), Referenced to phase 1:EBTL, Start of Green ural Cycle: 85 trol Type: Actuated-Coordinated dimum Vc Ratio: 0.86 Treection Sum Capacity Utilization 74.2% ICU Level of Service D Hysis Period (min) 15 95th period line volume exceeds capacity, queue may be longer. Zueue shown is maximum after two cycles. ts and Phases: 19: D Street & Congress Street	Internal Link Dist (ft)			915	#441		239			109	203				254	
e Capacity (vph) 870 404 345 606 321 450 valion Cap Reducin 0 0 0 10 14 0 black Cap Reducin 0 <td>Turn Bay Length (ft)</td> <td></td> <td></td> <td></td> <td>150</td> <td></td>	Turn Bay Length (ft)				150											
Valuation 0 0 0 10 14 0 Tage Cap Reductin 0<	Base Capacity (vph)			870	404		345			606	321				450	
rage Cap Reductin 0 0 0 0 0 0 rsection Summary 0.50 0.86 0.57 0.69 0.66 0.69 rsection Summary	Spillback Cap Reductin			0	0		0			0	0				0	
Used vic Ratio 0.50 0.86 0.57 0.69 0.66 0.69 rsection Summary a Type: CBD Image: CBD	Storage Cap Reductn			0	0		0			0	0				0	
Intersection Summary a Type: CBD b b c Length: 110 set: 37 (34%), Referenced to phase 1:EBTL, Start of Green ural Cycle Length: 110 set: 37 (34%), Referenced to phase 1:EBTL, Start of Green ural Cycle x6 source of the set of the	Reduced v/c Ratio			0.50	0.86		0.57			0.69	0.66				0.69	
te Length: 110 Lated Cycle Length: 110 Lated Cycle Length: 110 Lated Cycle Length: 110 Lated Cycle Kength: 110 Lated Cycle Ken	Intersection Summary	`BD														
Jated Čycle Length: 110 Set: 37 (34%), Referenced to phase 1:EBTL, Start of Green Jard Cycle: 85 Trol Type: Actuated-Coordinated Amurn Vic Ratio: 0.86 Tresection Capacity Utilization 74.2% ICU Level of Service D Jysis Period (min) 15 Softh percentile volume exceeds capacity, queue may be longer. Jueue shown is maximum after two cycles. Is and Phases: 19: D Street & Congress Street	Cycle Length: 110	-00														
set: 37 (34%), Referenced to phase 1:EBTL, Start of Green ural Cycle: 85 trol Type: Actuated-Coordinated trow Ratio: 0.86 resoction Signal Delay: 41.1 Intersection LOS: D resoction Capacity Utilization 74.2% ICU Level of Service D lysis Period (min) 15 Sight percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. ts and Phases: 19: D Street & Congress Street	Actuated Cycle Length: 110															
tan Cycle. B3 Interface B4 Interface B4 Intersection LOS: D Intersection LOS: D Intersection LOS: D Intersection Capacity Utilization 74.2% ICU Level of Service D Iysis Period (min) 15 ISB the period levolume exceeds capacity, queue may be longer. Dueue shown is maximum after two cycles. Is and Phases: 19: D Street & Congress Street Is and Phases:	Offset: 37 (34%), Referenced i Natural Cycle: 85	to phase 1:	EBTL, Sta	art of Gree	en											
kimum v/c Ratio: 0.86 Intersection LOS: D rsection Signal Delay: 41.1 Intersection LOS: D rsection Capacity Utilization 74.2% ICU Level of Service D lysis Period (min) 15 95th percentile volume exceeds capacity, queue may be longer. Jueue shown is maximum after two cycles. Its and Phases: 19: D Street & Congress Street Its and Phases:	Control Type: Actuated-Coord	inated														
InterSection Signal Delay: 41.1 InterSection LOS: D ICU Level of Service D IVsis Periof (min) 15 95th percentile volume exceeds capacity, queue may be longer. Dueue shown is maximum after two cycles. Is and Phases: 19: D Street & Congress Street	Maximum v/c Ratio: 0.86				,		100.0									
Itysis Period (min) 15 95th percentile volume exceeds capacity, queue may be longer. Dueue shown is maximum after two cycles. Is and Phases: 19: D Street & Congress Street	Intersection Signal Delay: 41.1 Intersection Canacity Utilization	n 74.2%			In	ULL evel of	LUS: D f Service D)								
95th percentile volume exceeds capacity, queue may be longer. Dueue shown is maximum after two cycles. ts and Phases: 19: D Street & Congress Street	Analysis Period (min) 15					2 2010101	. 50, VICC D									
Is and Phases: 19: D Street & Congress Street	# 95th percentile volume exc Queue about in month.	eeds capa	city, queu	e may be	longer.											
ts and Phases: 19: D Street & Congress Street	Queue snown is maximum	aiter two c	ycies.													
	Splits and Phases: 19: D St	reet & Con	gress Stre	et				.								

↓ ↓ Ø1 (R)	₩ _{Ø2}	₩ ₀₃	▼ Ø4
39 s	30 s	22 s	19 s

	٦	-	>	1	+	•	•	t	~	1	¥	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2
Lane Configurations		4Î			କ			<u>↑</u> ↑₽			↑ ↑		
Traffic Volume (vph) Future Volume (vph)	0	45 45	0	0	34 34	0	0	563 563	0	0	669 669	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	14	12	12	14	12	12	13	12	12	13	12	
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00	
Frt													
Fit Protected Satd Flow (prot)	0	012	0	0	012	0	0	4508	0	0	3100	0	
Flt Permitted	U	912	0	0	912	0	0	4006	U	U	2104	U	
Satd. Flow (perm)	0	912	0	0	912	0	0	4508	0	0	3109	0	
Right Turn on Red Satd Flow (RTOR)			Yes			Yes			Yes			Yes	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		368			292			293			317		
Confl Peds (#/br)		8.4			6.6			6.7	85		7.2		
Confl. Bikes (#/hr)									39				
Peak Hour Factor	0.95	0.95	0.95	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96	
neavy venicies (%) Parking (#/hr)	0%	100%	0%	0%	100%	U%	υ%	1%	0%	υ%	۵%	υ%	
Adj. Flow (vph)	0	47	0	0	37	0	0	612	0	0	697	0	
Shared Lane Traffic (%)	C	47	C	^	27	C	C	(10	0	0	(07	0	
Lane Group Flow (vph) Turn Type	0	47 NA	U	0	37 NA	0	0	612 NA	0	0	697 NA	0	
Protected Phases		3			3			1			12		2
Permitted Phases		2		3	2			1			10		
Switch Phase		3		3	3			I			12		
Minimum Initial (s)		8.0		8.0	8.0			20.0					4.0
Minimum Split (s)		15.0		15.0	15.0			27.0					10.0
Total Split (%)		33.0 30.0%		33.0 30.0%	33.0 30.0%			60.0%					10%
Yellow Time (s)		3.0		3.0	3.0			4.0					4.0
All-Red Time (s)		3.0		3.0	3.0			1.0					1.0
Total Lost Time (s)		-1.0			-1.0			-1.0					
Lead/Lag		0.0			0.0			Lead					Lag
Lead-Lag Optimize?		None		None	None			C-May					May
Act Effct Green (s)		12.0		NOTIC	12.0			80.8			92.6		widx
Actuated g/C Ratio		0.11			0.11			0.73			0.84		
V/c Ratio		0.47			0.37			0.18			0.27		
Queue Delay		0.0			0.0			0.2			0.6		
Total Delay		61.0			55.2			7.4			3.7		
LOS Approach Delay		E 61.0			55.2			A			A 3.7		
Approach LOS		01.0 E			55.2 E			7.4 A			3.7 A		
Stops (vph)		42			32			236			211		
Fuel Used(gal)		1			1			220			3		
NOx Emissions (g/hr)		13			9			46			44		
VOC Emissions (g/hr)		15			10			55			52		
Dilemma Vehicles (#)		22			25			50			0 50		
Queue Length 95th (ft)		69			57			130			m133		
Internal Link Dist (ft)		288			212			213			237		
Turn Bay Length (ft) Base Capacity (vph)		232			232			3313			2618		
Starvation Cap Reductn		0			0			1800			1460		
Spillback Cap Reductn		0			0			3			0		
Storage Cap Reductn Reduced v/c Ratio		0 20			0 16			0 40			0 60		
Intersection Summary		0.20			0.10			0.40			0.00		
Area Type:	CBD												
Cycle Length: 110													
Actuated Cycle Length: 110	to phase 1	NDCD C+	art of Cr-	on									
Natural Cycle: 55	to phase 1:	INDOD, STA	ait ur Grê	CII									
Control Type: Actuated-Coord	dinated												
Maximum v/c Ratio: 0.47					toreo-ti-	100 4							
Intersection Capacity Utilization	on 34.7%			In IC	itersection CU Level o	f Service A	4						
Analysis Period (min) 15													
m Volume for 95th percentil	e queue is n	netered by	y upstrea	m signal.									
Splits and Phases: 20: D S	treet & Tran	sitway											
66 g													

	≯	\mathbf{r}	1	Ť	Ŧ	-				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø2			
Lane Configurations			٦	††	ŧ₽					
Traffic Volume (vph)	0	0	242	563	465	204				
Future Volume (vph)	1900	1900	242	563 1900	465	204				
Lane Width (ft)	12	12	13	12	13	12				
Storage Length (ft)	0	0	200			0				
Storage Lanes	25	0	25			0				
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95				
Ped Bike Factor			0.96		0.97					
Frt Elt Drotoctod			0.050		0.954					
Satd. Flow (prot)	0	0	1584	3036	2850	0				
Flt Permitted			0.950							
Satd. Flow (perm)	0	0	1520	3036	2850	0				
Satd. Flow (RTOR)		165			71	162				
Link Speed (mph)	30			30	30					
Link Distance (ft)	346			297	293					
Confl. Peds. (#/hr)	7.9		62	0.8	0.7	62				
Confl. Bikes (#/hr)						4				
Peak Hour Factor	0.25	0.25	0.93	0.93	0.96	0.96				
Adi Flow (vph)	0%	0%	260	605	9% 484	8% 213				
Shared Lane Traffic (%)	Ŭ	Ŭ	200	500		2.0				
Lane Group Flow (vph)	0	0	260	605	697	0				
Protected Phases			Prot 3	NA 13	NA 1		2			
Permitted Phases			5	1.5			-			
Detector Phase			3	13	1					
Switch Phase Minimum Initial (s)			8.0		15.0		8.0			
Minimum Split (s)			15.0		23.0		28.0			
Total Split (s)			37.0		45.0		28.0			
Total Split (%) Vellow Time (s)			33.6%		40.9%		25%			
All-Red Time (s)			2.0		2.0		0.0			
Lost Time Adjust (s)			-1.0		-1.0					
Total Lost Time (s)			5.0		5.0		l an			
Lead-Lag Optimize?					Leau		Lay			
Recall Mode			Max		C-Max		None			
Act Effct Green (s)			32.0	103.4	62.4					
v/c Ratio			0.27	0.21	0.42					
Control Delay			40.0	1.2	13.7					
Queue Delay Total Delay			3.6	0.0	0.3					
LOS			43.0 D	A	B					
Approach Delay				14.0	14.0					
Approach LOS Stops (upb)			100	22	A72					
Fuel Used(gal)			4	2	4/2					
CO Emissions (g/hr)			247	113	420					
NOx Emissions (g/hr)			48	22	82					
Dilemma Vehicles (#)			0	0	0					
Queue Length 50th (ft)			140	0	78					
Queue Length 95th (tt) Internal Link Dist (ft)	266		m227	217	135 213					
Turn Bay Length (ft)	200		200	217	215					
Base Capacity (vph)			460	2854	1647					
Starvation Cap Reductn			123	341	402					
Storage Cap Reductn			0	0	0					
Reduced v/c Ratio			0.77	0.24	0.56					
Intersection Summary										
Area Type: Cl	BD									
Cycle Length: 110 Actuated Cycle Length: 110										
Offset: 56 (51%), Referenced to	phase 1:N	VBSB, Sta	art of Gree	en						
Natural Cycle: 70										
Control Type: Actuated-Coordin Maximum v/c Ratio: 0.57	ated									
Intersection Signal Delay: 14.0				Ir	ntersection	LOS: B				
Intersection Capacity Utilization	46.2%			10	CU Level o	f Service A				
Analysis Period (min) 15 m. Volume for 05th percentile	auque ie ~	notorod b	unstroop	n signal						
m volume for April hercentlie	yueue is ff	icici eu Dj	y upstredfi	n siylidi.						
Splits and Phases: 21: D Stre	et & I-90 F	Ramp							- -	
↓ ¶Ø1 (R)									↑ ø3	
45 s								28 s	37 s	

ane Group ane Configurations are Configurations arafic Volume (vph) uture Volume (vph) teal Flow (vphp)) ane With (ft) torage Length (ft) torage Lanes ane With (ft) torage Lanes aper Length (ft) ane Uiti. Factor ed Bike Factor ft Potected atd. Flow (prot) It Porentited atd. Flow (prot) It Permitted atd. Flow (prot) It Permitted atd. Flow (prot) ink Speed (mph) ink Distance (ft) ravel Time (s)	EBL 170 170 1900 11 155 1 255	EBT 564 564 1900	T EB • 4 7	R WBI	WBT	WBR	NBL	NBT	NBR	SBI	SBT	CDD
ane Configurations iraffic Volume (vph) deal Flow (vphpl) ane Width (ft) Storage Length (ft) storage Lanes aper Length (ft) ane Util. Factor Ped Bike Factor it Portected Bike Factor it Portected Bik	170 170 1900 11 155 1 255 1	↑ 564 564 1900	4 7	1 2	5 A					ODL		SDK
intent: volume (vpn) deal Flow (vphpl) a.ne Wildth (ft) Storage Length (ft) Storage Langth (ft) a.ne Util. Factor 'ed Bike Factor 'rt It Protected iatd. Flow (prot) It Permitted iatd. Flow (perm) tight Turn on Red iatd. Flow (RTOR) ink Speed (mph) ink Distance (ft) ravel Time (s) .onfl. Peds. (#/hr)	170 170 1900 11 155 1 25	564 564 1900	4 /		4. 404	170	147	† 1>	45	7	412	144
deal Flow (php)] ane Width (ft) Storage Length (ft) Storage Length (ft) Storage Lanes "aper Length (ft) ane Util. Factor red Bike Factor rit It Protected iatd. Flow (prot) It Port Hernitted iatd. Flow (perm) tight Turn on Red iatd. Flow (PTOR) ink Speed (mph) ink Distance (ft) ravel Time (s) 	1900 11 155 1 25	1900	47	71 34 71 34	406 4 406	470	147	164	45 45	233	88 88	144
ane Width (ft) Storage Length (ft) Storage Lanes Taper Length (ft) .ane Util. Factor 'rt de Bike Factor 'rt H Protected Sald. Flow (prot) 'it Permitted Sald. Flow (perm) àtght Turn on Red Sald. Flow (RTOR) ink. Speed (mph) ink. Distance (ft) Tavel Time (s) .onfl. Peds. (#/hr)	11 155 1 25		0 190)0 190) 1900	1900	1900	1900	1900	1900	1900	1900
Storage Langth (tt) lager Length (tt) .ane Util. Factor red Bike Factor rit It Protected Satd. Flow (prot) It Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) .ink. Speed (mph) .ink. Speed (mph) .ink. Distance (tt) Travel Time (s) .onfl. Peds. (#/hr)	135	13	3 1	12 12	2 16 1	16	12	16	12	200	13	12
Faper Length (ft) ane Ulti. Factor ede Bike Factor ft ft Protected Satd. Flow (prot) ft! Permitted Satd. Flow (prot) satd. Flow (prot) jaht Ziphi Turn on Red Satd. Flow (RTOR) ank. Speed (mph) ink. Distance (ft) fravel Time (s) 2001. Peds. (#/hr)	25			0	1	1	150		0	200		0
ane Uill. Factor Ped Bike Factor it tert tert stat. Flow (port) itt Permitted Satd. Flow (porm) Satd. Flow (porm) Satd. Flow (RTOR) ank. Speed (mph) ink Distance (ft) fravel Time (s) 2001. Peds. (#hr)	1 00			2	5		25		-	25		-
reu biker hactof rit lit Protected Satd. Flow (prot) lit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) ink Speed (mph) ink Distance (ft) Confl. Peds. (#/hr)	1.00	0.95	5 0.9	95 1.0	0 1.00	1.00	1.00	0.95	0.95	0.91	0.91	0.95
The Protected Satd. Flow (prot) The Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (mph) Link Speed (mph) Iravel Time (s) Confl. Peds. (#/hr)	0.98	0.99	3			0.93	0.97	0.98		0.95	0.96	
Satd. Flow (prot) It Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (mph) Link Distance (ft) Iravel Time (s) Confl. Peds. (#/n)	0.950	5.705	-	0.950)	0.000	0.950	0.700		0.950	0.988	
It Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) ink Speed (mph) ink Distance (ft) [ravel Time (s) 20nfl. Peds. (#/hr)	1555	2933	3	0 157	7 1656	1584	1608	2737	0	1374	2583	0
Right Turn on Red Satd. Flow (RTOR) ink Speed (mph) ink Distance (ft) Fravel Time (s) Confl. Peds. (#/hr)	0.263	2022	2	0.11	7 2 14F4	1 / 71	0.950	2727	0	0.950	0.988	0
Satd. Flow (RTOR) .ink Speed (mph) .ink Distance (ft) fravel Time (s) Confl. Peds. (#/hr)	423	2733	Ye	es 190	5 1030	No	100	2131	Yes	1307	2000	Yes
ink Speed (mph) ink Distance (ft) Travel Time (s) Confl. Peds. (#/hr)		16	6					28			148	
Fravel Time (s)		30	0		30			30			30	
Confl. Peds. (#/hr)		635 14 A	4		580			059 15 0			68	
	33	14.4	. 3	31 3	1	33	25	13.0	37	37	0.0	25
Confl. Bikes (#/hr)				9		15			32			2
Peak Hour Factor	0.97	0.97	7 0.9	97 0.90 % 20	5 0.96	0.96	0.95	0.95	0.95	0.97	0.97	0.97
Parking (#/hr)	1%	12%	0 9%	n 3% 0	o 17%	4%	1%	21%	26%	4%	30%	4%
dj. Flow (vph)	175	581	1 7	3 3!	5 423	490	155	173	47	240	91	148
hared Lane Traffic (%)										32%		
ane Group Flow (vph)	175	654 NIA	4	0 3!	5 423	490	155 Split	220	0	163 Split	316	0
Protected Phases	U.P+P	14	4	Pell	1 NA	pii1+0V 2	3 Spin	3		3piit 2	2	
Permitted Phases	1				1	1	Ū			-	-	
Detector Phase	4	14	4		1 1	2	3	3		2	2	
wiich Phase Ainimum Initial (s)	6.0			81) ጸብ	8.0	8.0	8.0		80	80	
Ainimum Split (s)	15.0			30.0	30.0	28.0	27.0	27.0		28.0	28.0	
otal Split (s)	15.0			40.0) 40.0	28.0	27.0	27.0		28.0	28.0	
Total Split (%)	13.6%			36.4%	6 36.4%	25.5%	24.5%	24.5%		25.5%	25.5%	
All-Red Time (s)	4.0			4.0) 4.0) 4.0	3.0	3.0 4.0	4.0		4.0	3.0 4.0	
ost Time Adjust (s)	-1.0			-1.0) -1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
otal Lost Time (s)	7.0			7.0) 7.0	6.0	6.0	6.0		6.0	6.0	
ead/Lag ead-Lag Optimize?						Lead	Lag	Lag		Lead	Lead	
Recall Mode	Max			C-Ma	x C-Max	Ped	Max	Max		Ped	Ped	
Act Effct Green (s)	41.6	48.6	6	33.	5 33.6	56.0	21.0	21.0		21.4	21.4	
Actuated g/C Ratio	0.38	0.44	4	0.3	0.31	0.51	0.19	0.19		0.19	0.19	
/c Ratio	0.73	0.50 20.6	U 6	0.5	5 0.84	0.64	0.51	0.40		0.61	0.51	
Queue Delay	2.6	20.0	0	02.)	0.0	0.0	0.0		0.0	0.4	
Total Delay	50.2	20.6	6	62.	5 43.3	11.5	46.5	36.5		22.3	6.4	
OS	D	C	2	E	D	В	D	D		С	A	
Approach Delay		26.8	5		27.6			40.6 D			11.8 R	
Stops (vph)	125	307	7	2	4 310	172	129	156		106	102	
uel Used(gal)	3	7	7		1 7	4	3	3		2	2	
U Emissions (g/hr)	222	524	4	50	J 498	292	200	244		117	117	
OC Emissions (g/nr)	43	102	2	1() 9/) 115	57	39	47		23	23	
Dilemma Vehicles (#)	0	0	D	() 0	0	40	0		0	0	
Queue Length 50th (ft)	67	112	2	1:	3 197	86	99	62		58	9	
Queue Length 95th (ft)	#130	174	4	m#50) #434	28	167	101		97	217	
furn Bay Length (ft)	155	555	5		500		150	579		200	217	
Base Capacity (vph)	241	1304	4	6	0 505	779	306	545		274	635	
Starvation Cap Reductn	0	0	D	(0 0	0	0	0		1	0	
Storage Cap Reducto	19	0	D N	(J 0	0	0	14		0	0	
Reduced v/c Ratio	0.79	0.50	0	0.5	3 0.84	0.63	0.51	0.41		0.60	0.50	
ntersection Summary	0.17	0.00	-	0.0	. 0.04	0.00	0.01	0.71		0.00	0.00	
rea Type:	CBD											
Cycle Length: 110	550											
ctuated Cycle Length:	110	= 0.1 ···-										
Introd Cycles 100	enced to phase 1	:EBWB, S	Start of C	Green								
valural Cycle: 100 Control Type: Actuated-	Coordinated											
Aaximum v/c Ratio: 0.84	4											
ntersection Signal Delay	y: 26.3				Intersectio	n LOS: C						
ntersection Capacity Uti	ilization 88.4%				ICU Level	of Service	E					
95th percentile volum	ne exceeds can:	acity, que	eue mav	be longer								
Queue shown is max	imum after two o	cycles.		_s longel.								
Volume for 95th per	centile queue is	metered I	d by upstr	eam signa	Ι.							
Inlite and Dhacoes	D Stract & Cur	nmar Stra	root									
pino anu Fildoes. 22	. ש אושט ע אושט ע	milei Sifé	CCI					5				

	٦	+	*	4	ł	*	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	≜ î⊳			4î»			4			4	
Traffic Volume (vph)	104	917	11	7	690	48	0	5	0	77	14	61
Future Volume (vph)	104	917	11	7	690	48	0	5	0	77	14	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (II)	125		0	0		0	0		0	0		0
Taper Length (ft)	25		0	25		0	25		0	25		0
Lane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998			0.990						0.946	
Flt Protected	0.950										0.975	
Satd. Flow (prot)	1805	3603	0	0	3574	0	0	1900	0	0	1752	0
Fil Permilled	0.253	2602	0	0	0.768	0	0	1000	0	0	1504	0
Right Turn on Red	401	3003	Yes	0	2743	Yes	0	1700	Yes	0	1304	Yes
Satd. Flow (RTOR)		2			8						34	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		294			222			175			328	
Travel Time (s)	0.00	6.7	0.00	0.00	5.0	0.00	0.00	4.0	0.00	0.00	7.5	0.00
Adi Flow (vpb)	0.92	0.92	0.92	0.92	750	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)	113	991	12	Ő	/50	32	0	э	0	04	15	00
Lane Group Flow (vph)	113	1009	0	0	810	0	0	5	0	0	165	0
Turn Type	D.P+P	NA		Perm	NA			NA		D.P+P	NA	
Protected Phases	6	16			1			5		4	45	
Permitted Phases	1			1			5			5		
Detector Phase Switch Phase	6	16		1	1		5	5		4	45	
Minimum Initial (s)	40			8.0	8.0		8.0	80		80		
Minimum Split (s)	4.0			22.0	22.0		20.0	20.0		27.0		
Total Split (s)	10.0			50.0	50.0		20.0	20.0		30.0		
Total Split (%)	9.1%			45.5%	45.5%		18.2%	18.2%		27.3%		
Yellow Time (s)	3.0			3.0	3.0		3.0	3.0		3.0		
All-Red Time (s)	2.0			2.0	2.0		2.0	2.0		2.0		
Lost Time Adjust (s) Total Lost Time (s)	0.0				0.0			0.0				
Lead/Lag	3.0				5.0		Lag	Lag		Lead		
Lead-Lag Optimize?							9					
Recall Mode	None			C-Max	C-Max		None	None		None		
Act Effct Green (s)	70.0	75.0			50.3			8.0			20.0	
Actuated g/C Ratio	0.64	0.68			0.46			0.07			0.18	
Control Delay	0.21	3.8			23.1			46.6			33.8	
Oueue Delay	4.2	0.4			0.7			0.0			0.0	
Total Delay	4.2	4.2			23.8			46.6			33.8	
LOS	A	Α			С			D			С	
Approach Delay		4.2			23.8			46.6			33.8	
Approach LOS	1/	A 122			007			D			102	
Stops (vpn) Eucl Used(gal)	10	132			397			/			102	
CO Emissions (a/hr)	29	250			488			8			140	
NOx Emissions (g/hr)	6	49			95			2			27	
VOC Emissions (g/hr)	7	58			113			2			32	
Dilemma Vehicles (#)	0	0			0			0			0	
Queue Length 50th (ft)	11	54			156			3			78	
Internal Link Dist (ff)	21	08 214			228			05			248	
Turn Bay Length (ft)	125	214			142			75			240	
Base Capacity (vph)	543	2458			1259			259			517	
Starvation Cap Reductn	0	853			172			0			0	
Spillback Cap Reductn	0	0			0			0			0	
Storage Cap Reductn	0	0			0.75			0			0	
Reduced NC Ratio	0.21	0.63			0.75			0.02			0.32	
Intersection Summary												
Area Type:	Other											
Cycle Lengin: TTU Actuated Cycle Length: 110												
Offset: 75 (68%) Reference	d to phase 1-	FBWB St	art of Gre	en								
Natural Cycle: 90	. = to pridoo 1.	, 51										
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.64												
Intersection Signal Delay: 14	4.2			Ir	ntersection	LOS: B						
Intersection Capacity Utiliza	ition 74.4%			10	CU Level o	Service I	U					
Analysis Period (Min) 15 m. Volume for 05th percon	ntile aueue is r	metered by	unstron	m signal								
in volume for your percen	une queue is f	netered by	apstream	ni siyildi.								
Splits and Phases: 23: Se	eaport Boulev	ard & Fan	Pier Bou	levard								
- ∀ *Ø1(R)							_			▼ 04		

	-	\mathbf{F}	1	+	▲	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĥ			ង	¥	
Traffic Volume (veh/h)	1	8	133	2	13	237
Future Volume (Veh/h)	1	8	133	2	13	237
Sian Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.67	0.67	0.92	0.92	0.92	0.92
Hourly flow rate (yph)	1	12	145	2	14	258
Pedestrians	183		110	115	137	200
Lane Width (ft)	11.0			11.0	11.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockade	4.0			4.0	4.0	
Dight turn flare (yeh)	14			,	10	
Modian type	Nono			Nono		
Median storage veh)	NOTIE			none		
Unstroam signal (ft)						
nY platoon unblocked						
vC conflicting volume			150		610	250
vC1, connicuity volume			150		019	209
VC1, stage 1 confive						
VC2, Stage 2 colli Voi			150		410	250
tC cipalo (c)			100		619	209
tC, Sillyle (S)			4.1		0.4	0.2
IC, Z Slaye (S)			2.2		2.5	2.2
IF (S)			2.2		3.D	3.3 E0
po queue free %			89		95	59
civi capacity (ven/n)			1281		311	637
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	13	147	272			
Volume Left	0	145	14			
Volume Right	12	0	258			
cSH	1700	1281	604			
Volume to Capacity	0.01	0.11	0.45			
Queue Length 95th (ft)	0	10	58			
Control Delay (s)	0.0	8.1	15.7			
Lane LOS		A	С			
Approach Delay (s)	0.0	8.1	15.7			
Approach LOS			С			
Intersection Summary						
Average Delay			12.7			
Intersection Capacity Utilization	1		44.8%	IC	U Level o	f Service
Analysis Period (min)			15	10		

	≯		-	•	\	-
Movement	FBI	FBT	WBT	WBR	SBI	SBR
Lane Configurations	LUL	101	1	mon	V	OBIC
Traffic Volume (veh/h)	142	95	98	43	6	33
Future Volume (Veh/h)	142	95	98	43	6	33
Sign Control	142	Free	Free	43	Stop	55
Crado		0%	0%		0%	
Dook Hour Easter	0.02	0.02	0.02	0.02	0.02	0.02
Peak nour racio	1.92	102	107	0.92	0.92	0.92
Houriy flow rate (vpn)	154	103	107	4/	/	30
Pedestrians					412	
Lane Width (ft)					11.0	
Walking Speed (ft/s)					4.0	
Percent Blockage					31	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			1145			
pX, platoon unblocked						
vC. conflicting volume	566				954	542
vC1_stage 1 conf vol	000					0.2
vC2_stage 2 conf vol						
vCz, stage z com vol	E 4 4				05.4	E 4 2
tC single (s)	300				734	J4Z
to, single (s)	4.1				0.4	0.4
IC, 2 stage (s)	0.0				0.5	0.5
tF (S)	2.2				3.5	3.5
p0 queue free %	11				95	90
cM capacity (veh/h)	683				154	346
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	257	154	43			
Volume Left	154	0	7			
Volume Right	0	47	36			
cSH	683	1700	287			
Volume to Capacity	0.23	0.09	0.15			
Queue Length 95th (ft)	22	0.07	13			
Control Delay (s)	8.2	0.0	19.7			
	0.2	0.0	17.7			
Approach Dolou (a)	A 0.2	0.0	10.7			
Approach Delay (S)	8.Z	0.0	19.7			
Approach LUS			C			
Intersection Summary						
Average Delay			6.5			
Intersection Capacity Utilization			41.0%	IC	CU Level of	f Service
Analysis Period (min)			15			
, , ,						

	۶	-	\mathbf{r}	∢	+	•	٩	Ť	1	1	Ŧ	1
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Lane Configurations	LDL	4	2011		<u></u>			4		ODL	4	00.0
Traffic Volume (veh/h)	0	101	0	5	139	0	0	103	0	0	103	0
Future Volume (Veh/h)	0	101	0	5	139	0	0	103	0	0	103	0
Sign Control	0	Free	0	5	Free	0	0	Ston	0	0	Ston	0
Crado		0%			0%			0%			0%	
Book Hour Factor	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Lough flow rate (uph)	0.92	110	0.92	0.92	151	0.92	0.72	110	0.92	0.72	110	0.92
Dedestrians	0	110	0	c	101	0	0	112	0	0	201	0
Pedesinans											291	
Lane Wight (II)											12.0	
waiking Speed (ii/s)											4.0	
Percent Blockage											24	
Right turn flare (ven)		News			Nega							
Median type		None			None							
ivieulari storage ven)					0.40							
upstream signal (ft)					843							
px, platoon unblocked	110			110			007	5/0	110	(40	510	140
vc, conflicting volume	442			110			327	562	110	618	562	442
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	442			110			327	562	110	618	562	442
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.2	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.0	3.3
p0 queue free %	100			100			100	66	100	100	66	100
cM capacity (veh/h)	855			1493			382	331	949	177	331	465
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	110	156	112	112								
Volume Left	0	5	0	0								
Volume Right	0	0	0	0								
cSH	855	1493	331	331								
Volume to Capacity	0.00	0.00	0.34	0.34								
Queue Length 95th (ft)	0	0	36	36								
Control Delay (s)	0.0	0.3	21.3	21.3								
Lane LOS		А	С	С								
Approach Delay (s)	0.0	0.3	21.3	21.3								
Approach LOS			С	С								
Intersection Summary												
Average Delay			9.8									
Intersection Capacity Utilization			26.0%	10	CU Level of	Service			A			
Analysis Period (min)			15									
,,												

٦	-	\mathbf{r}	1	←	۰.	1	Ť	1	1	Ŧ	1
EBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			1.			4.		5		
24	76	0	0	132	169	0	135	0	30	0	11
24	76	0	0	132	169	0	135	0	30	0	11
	Free	5		Free			Stop	-		Stop	
	0%			0%			0%			0%	
0.92	0.92	0.92	0.92	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92
26	83	0	0	136	174	0	147	0	33	0	12
										192	
										12.0	
										4.0	
										16	
	None			None							
				640							
502			83			370	637	83	624	550	415
502			83			370	637	83	624	550	415
4.1			4.1			7.1	6.5	6.2	7.5	6.5	6.2
2.2			2.2			3.5	4.0	3.3	3.9	4.0	3.3
97			100			100	55	100	80	100	98
901			1527			495	324	982	165	363	539
EB 1	WB 1	NB 1	SB 1								
109	310	147	45								
26	0	0	33								
0	174	0	12								
901	1700	324	202								
0.03	0.18	0.45	0.22								
2	0	56	21								
2.4	0.0	25.0	27.8								
A		С	D								
2.4	0.0	25.0	27.8								
		С	D								
		8.5									
on		Err%	IC	U Level of	Service			Н			
	EBL 24 24 24 24 26 502 502 502 502 4.1 2.2 97 901 EBL 00 2.4 2.4 0.92 2.6 0.92 2.2 0.92 2.2 0.92 2.2 0.92 2.2 0.92 2.2 0.92 2.2 0.92 2.2 0.92 2.2 0.92 2.2 0.02 2.2 0.03 2.2 2.2 0.03 2.2 2.2 0.03 2.2 2.2 0.03 2.2 2.2 0.03 0	▲ ↓ EBL EBT 24 76 6 Free 0% 0.92 0.92 26 83 None 502 1 502 4.1 2.2 97 901 26 EB1 WB 1 109 310 26 0 0.174 901 20 0.24 0.03 0.18 2 0.0 2.4 0.0	EBL EBT EBR 24 76 0 76 0 Free 0% 0.92 0.92 0.92 0.92 0.92 26 83 0 None 502	EBL EBT EBR WBL 24 76 0 0 76 0 0 0 90 Free 0% 0 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 26 83 0 0 502 83 4.1 4.1 2.2 2.2 2.2 97 100 901 1527 EB1 WB1 NB1 3 S512 26 0 0 33 0 174 0 1527 EB1 WB1 NB1 3 S512 20 56 21 20 0.0 174 0 124 901 1700 324 202 0.03 0.18 0.45 0.22 2.4 0.0 25.0 27.8 A C D 2.4 0.0 <tr< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>EBL EBT EBR WBL WBT WBR 24 76 0 0 132 169 24 76 0 0 132 169 24 76 0 0 132 169 24 76 0 0 132 169 97 76 0 0 132 169 0% 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 502 83 0 0 136 174 2.2 2 2 2 2 1527 EB1 WB1 NB1 SB1 1199 117 45 <!--</td--><td>EBL EBT EBR WBL WBT WBR NBL 24 76 0 0 132 169 0 24 76 0 0 132 169 0 24 76 0 0 132 169 0 Free Free Free 0% 0% 0 0 0.92 0.92 0.92 0.92 0.92 0.97 0.97 0.92 26 83 0 0 136 174 0 502 83 3 0 136 174 0 502 83 370 41 4.1 7.1 10 2.2 2.2 3.5 97 100 100 100 901 1527 495 5 100 100 100 901 1700 310 147 45 26 0 0 33 0 174</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>EBL EBT EBR WBL WBT WBR NBL NBT NBR 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 90 902 92 0.92</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></tr<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EBL EBT EBR WBL WBT WBR 24 76 0 0 132 169 24 76 0 0 132 169 24 76 0 0 132 169 24 76 0 0 132 169 97 76 0 0 132 169 0% 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 502 83 0 0 136 174 2.2 2 2 2 2 1527 EB1 WB1 NB1 SB1 1199 117 45 </td <td>EBL EBT EBR WBL WBT WBR NBL 24 76 0 0 132 169 0 24 76 0 0 132 169 0 24 76 0 0 132 169 0 Free Free Free 0% 0% 0 0 0.92 0.92 0.92 0.92 0.92 0.97 0.97 0.92 26 83 0 0 136 174 0 502 83 3 0 136 174 0 502 83 370 41 4.1 7.1 10 2.2 2.2 3.5 97 100 100 100 901 1527 495 5 100 100 100 901 1700 310 147 45 26 0 0 33 0 174</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>EBL EBT EBR WBL WBT WBR NBL NBT NBR 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 90 902 92 0.92</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	EBL EBT EBR WBL WBT WBR NBL 24 76 0 0 132 169 0 24 76 0 0 132 169 0 24 76 0 0 132 169 0 Free Free Free 0% 0% 0 0 0.92 0.92 0.92 0.92 0.92 0.97 0.97 0.92 26 83 0 0 136 174 0 502 83 3 0 136 174 0 502 83 370 41 4.1 7.1 10 2.2 2.2 3.5 97 100 100 100 901 1527 495 5 100 100 100 901 1700 310 147 45 26 0 0 33 0 174	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EBL EBT EBR WBL WBT WBR NBL NBT NBR 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 24 76 0 0 132 169 0 135 0 90 902 92 0.92	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	٦	-+	\mathbf{r}	1	←	•	1	Ť	1	1	Ŧ	1
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Lane Configurations	LDL	4	2011		<u></u>			<u></u>		002	4	0011
Traffic Volume (veh/h)	1	104	0	0	295	40	0	0	0	1	0	5
Future Volume (Veh/h)	1	104	0	0	295	40	0	0	0	1	0	5
Sign Control		Free	0	0	Eree	40	0	Ston	0		Stop	5
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.96	0.96	0.92	0.92	0.92	0.50	0.92	0.50
Hourly flow rate (uph)	1	113	0.72	0.72	307	12	0.72	0.72	0.72	0.00	0.72	10
Dodostrians		61	0	0	45	72	0	0	0	2	13/	10
Lane Width (ft)		12.0			12.0						12.0	
Walking Spood (ff/s)		12.0			12.0						4.0	
Percent Blockage		4.0			4.0						4.0	
Pight turn flare (ueb)		J			4							
Median type		None			None							
Median storage veb)		NOUG			NOUG							
Linstream signal (ff)					278							
nX nlatoon unblocked					210							
vC conflicting volume	482			112			514	598	158	622	577	523
vC1_stage 1 conf vol	403			113			314	370	130	022	511	JZJ
vC2 stage 2 conf vol												
vCu_unblocked vol	483			113			514	598	158	622	577	523
tC single (s)	41			4.1			71	65	6.2	7 1	65	6.2
tC_2 stage (s)								0.0	0.2		0.0	0.2
tE (s)	22			22			3.5	4.0	33	3.5	4.0	33
n0 queue free %	100			100			100	100	100	99	100	98
cM capacity (veh/h)	968			1489			403	371	859	314	382	470
Direction Lane #	FB 1	WB 1	NB 1	SB 1			.00	271	207	211	202	
Volume Total	114	349	0	12								
Volume Left	1	0	0	2								
Volume Right	0	42	0	10								
cSH	968	1489	1700	434								
Volume to Canacity	0.00	0.00	0.00	0.03								
Queue Length 95th (ft)	0.00	0.00	0.00	2								
Control Delay (s)	01	0.0	0.0	13.5								
Lane LOS	A	0.0	A	B								
Approach Delay (s)	0.1	0.0	0.0	13.5								
Approach LOS	0.1	0.0	Α	.u.u								
Intersection Summary				D								
Avorago Dolav			0.4									
Intersection Canacity Utilization			37.6%	10		Sorvice			٨			
Analysis Doried (min)			15	IC.	JU LEVELU	JEIVICE			~			
Analysis Penou (IIIII)			10									

	≤	-	\rightarrow	⋤	1	-	1	1
Movement	EBU	EBT	EBR	WBU	WBI	WBT	NBL	NBR
Lane Configurations		≜1 ₀				41		
Traffic Volume (veh/h)	2	832	78	1	24	362	0	0
Future Volume (Veh/h)	2	832	78	1	24	362	0	0
Sign Control	2	Free	70		24	Free	Ston	0
Grade		0%				0%	0%	
Peak Hour Factor	0.04	0.04	0.04	0.02	0.02	0.02	0.02	0.02
Hourly flow rate (vpb)	0.74	885	83	0.72	26	303	0.72	0.72
Dedestrians	0	005	05	0	20	373	142	0
Lano Width (ft)							143	
Walking Speed (#/s)							0.0	
Percent Pleakage							4.0	
Dight turn flore (uch)							U	
Right turn hare (ven)		News				Mana		
Median type		None				None		
Vieulan Storage Ven)		501				272		
upsitedm signal (II)	0.00	241		0.00	0.00	312	0.02	0.02
px, platoon unbiocked	0.00			0.00	0.92		0.92	0.92
vc, conflicting volume	0			0	1111		1318	027
VCI, stage I cont vol								
VC2, stage 2 cont voi								
vCu, unblocked vol	0			0	954		11/9	430
tC, single (s)	0.0			0.0	4.4		6.8	6.9
tC, 2 stage (s)								
tF (s)	0.0			0.0	2.3		3.5	3.3
p0 queue free %	0			0	96		100	100
cM capacity (veh/h)	0			0	597		165	534
Direction, Lane #	EB 1	EB 2	WB 1	WB 2				
Volume Total	590	378	157	262				
Volume Left	0	0	26	0				
Volume Right	0	83	0	0				
cSH	1700	1700	597	1700				
Volume to Capacity	0.35	0.22	0.04	0.15				
Queue Length 95th (ft)	0	0	3	0				
Control Delay (s)	0.0	0.0	2.3	0.0				
Lane LOS			A					
Approach Delay (s)	0.0		0.9					
Approach LOS								
Intersection Summarv								
Average Delay			03					
Intersection Canacity Utilization			32.2%	IC	: LL evel o	of Service		
Analysis Period (min)			15	i c		. OCIVICE		
analysis i criod (min)			15					

	≯	-	\rightarrow	1	←	•	٩.	1 T	1	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	63	405	0	12	375	153	2	0	2	102	0	45
Future Volume (Veh/h)	63	405	0	12	375	153	2	- 0	2	102	0	45
Sian Control	00	Free	Ū	12	Free	.00	-	Stop	-	.02	Stop	10
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.97	0.97	0.97	0.98	0.98	0.98	1.00	1.00	1.00	0.94	0.94	0.94
Hourly flow rate (vph)	65	418	0	12	383	156	2	0	2	109	0	48
Pedestrians	00	110			000	100	-	0	~	107	738	10
Lane Width (ft)											12.0	
Walking Speed (ft/s)											4.0	
Percent Blockage											61	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		TIONE			TUDIC							
Linstream signal (ft)		789			496							
nX nlatoon unblocked	0.82	707		0.84	470		0.90	0.90	0.84	0.90	0.90	0.82
vC. conflicting volume	1277			418			1081	1849	418	1773	1771	1199
vC1 stage 1 conf vol				110					.10			
vC2, stage 2 conf vol												
vCu_unblocked vol	1227			209			627	1483	209	1300	1396	1131
tC single (s)	4.2			4 1			7.1	65	62	71	65	62
tC, 2 stane (s)	7.2			-T. 1			7.1	0.0	0.2	7.1	0.0	0.2
tF (s)	23			2.2			3.5	4.0	33	3.5	4.0	33
n0 queue free %	63			90			96	100	100	0.5	100	39
cM capacity (veh/h)	174			1151			52	27	701	15	30	78
Direction Lane #	FR 1	WR 1	NR 1	CR 1			52	21	.01	15	50	70
Volume Total	/182	551	1 (1)	157								
Volume Loft	403	12	4	100								
Volume Dight	00	154	2	109								
cSH	174	100	07	40								
Volumo to Conocity	0.27	0.01	0.04	7 72								
Queue Length 95th (ff)	0.37	0.01	0.04	7.73 Err								
Control Dolay (c)	21.1	0.2	12.7	Err								
Lang LOS	21.1	0.5	43.7 E	E								
Approach Dolay (c)	21.1	0.2	42 T	Err								
Approach LOS	∠ 1.1	0.5	43.7 F	F								
Intersection Summary			L									
Augusta Dalau		_	1000 5	_	_		_		_	_		
Average Delay			1322.5	10	NILL out of	Convior			D			
Intersection Capacity Utilization			15.1%	IC	O Level of	Service			D			
Analysis Period (min)			15									

	۶	-	F	-	×.	1	4
Movement	FRI	FRT	WBU	WRT	WRR	SBI	SRR
Lane Configurations	LDL	1	1100	1	WDIX	M	301
Traffic Volume (veh/h)	41	041	2	516	104	27	24
Future Volume (Veh/h)	41	409	2	510	104	27	24
Future Volume (Venim)	41	409	3	510	104	21 Stop	24
Sign Control		Free		Free		Stop	
Grade		0%		0%		0%	
Peak Hour Factor	0.97	0.97	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	42	484	0	561	113	29	26
Pedestrians						485	
Lane Width (ft)						12.0	
Walking Speed (ft/s)						4.0	
Percent Blockage						40	
Right turn flare (veh)							
Median type		None		None			
Median storage veh)							
Upstream signal (ft)		1094		191			
pX, platoon unblocked	0.77		0.00			0.82	0.77
vC. conflicting volume	1159		0			1670	1102
vC1, stage 1 conf vol							
vC2 stage 2 conf vol							
vCu unblocked vol	1060		0			1476	987
tC single (s)	4.2		0.0			6.4	62
tC 2 stane (s)	7.2		0.0			0.4	0.2
tE (c)	2.2		0.0			2.5	2.2
n (3)	2.3		0.0			3.0	3.3 Q1
po quede nee 70	200		0			47	127
civi capacity (ven/n)	288		0			57	137
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	526	674	55				
Volume Left	42	0	29				
Volume Right	0	113	26				
cSH	288	1700	79				
Volume to Capacity	0.15	0.40	0.70				
Queue Length 95th (ft)	13	0	82				
Control Delay (s)	5.2	0.0	120.1				
Lane LOS	A		F				
Approach Delay (s)	5.2	0.0	120.1				
Approach LOS			F				
Intersection Summary							
Average Delay			75	_		_	_
Intersection Canacity Utilization			61.6%	10	111 0 101 01	Service	
Analysis Doriod (min)			04.070 1E	IC	O LEVELO	JEIVICE	
Analysis Period (Min)			15				

	∕		\rightarrow	1	+	•	1	Ť	1	1	Ŧ	-			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			
Lane Configurations		ę	1		4		1	₽			4				
Traffic Volume (vph)	1	5	249	4	6	0	167	34	26	0	143	25			
Ideal Flow (vphpl)	1900	5 1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped Bike Factor		0.95	0.97		0.99			0.88							
FIT Protected		0.002	0.850		0.082		0.050	0.935			0.980				
Satd. Flow (prot)	0	1885	1615	0	1866	0	1787	1557	0	0	1862	0			
Flt Permitted		0.939			0.877		0.950								
Satd. Flow (perm) Dight Turp on Pod	0	1696	1571	0	1657	0 Voc	1787	1557	0 Voc	0	1862	0 Voc			
Satd. Flow (RTOR)			259			res		28	162		7	162			
Link Speed (mph)		30			30			30			30				
Link Distance (ft)		278			143			338			266				
Confl Peds (#/hr)	03	6.3	8	8	3.3	93		1.1	84	84	6.0				
Peak Hour Factor	0.96	0.96	0.96	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%			
Adj. Flow (vph)	1	5	259	4	7	0	182	37	28	0	155	27			
Lane Group Flow (vph)	0	6	259	0	11	0	182	65	0	0	182	0			
Turn Type	Perm	NA	pm+ov	Perm	NA	-	Prot	NA	-	-	NA	-			
Protected Phases		5	1		5		1	14			4				
Permitted Phases	5	F	5	5	5		1	1.4		4	4				
Switch Phase	5	5		5	5			14		4	4				
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0				
Minimum Split (s)	22.0	22.0	23.0	22.0	22.0		23.0			23.0	23.0				
Total Split (s) Total Split (%)	22.0	22.0	63.0 57.3%	22.0	22.0		63.0 57.3%			25.0	25.0				
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0				
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0			2.0	2.0				
Lost Time Adjust (s)		0.0	0.0		0.0		0.0				0.0				
Lead/Lag	Lag	0.c	5.0	Lag	5.0 Lag		5.0			Lead	5.0 Lead				
Lead-Lag Optimize?	9	9		9											
Recall Mode	None	None	C-Max	None	None		C-Max			None	None				
Act Effet Green (s)		8.0	83.4		8.0		80.2	102.8			14.6				
v/c Ratio		0.05	0.20		0.07		0.14	0.04			0.72				
Control Delay		50.3	0.9		49.6		5.7	1.4			59.4				
Queue Delay		0.0	0.0		0.0		0.0	0.0			0.0				
10a Delay		50.5 D	0.9 A		49.0 D		5.7 A	1.4 A			39.4 F				
Approach Delay		2.0			49.6			4.5			59.4				
Approach LOS		A			D			A			E				
Stops (vph)		7	8		11		61	7			150				
CO Emissions (a/hr)		8	44		12		68	15			223				
NOx Emissions (g/hr)		2	9		2		13	3			43				
VOC Emissions (g/hr)		2	10		3		16	3			52				
Queue Length 50th (ft)		4	0		7		21	0			120				
Queue Length 95th (ft)		18	18		26		m87	m12			186				
Internal Link Dist (ft)		198			63			258			186				
Rase Canacity (vnh)		262	1286		256		1302	1465			344				
Starvation Cap Reductn		202	1200		0		0	0			0				
Spillback Cap Reductn		0	0		0		0	0			0				
Storage Cap Reductn		0	0		0		0 14	0			0 52				
		0.02	0.20		0.04		0.14	0.04			0.03				
Intersection Summary	Othor		_	_		_	_		_	_	_				
Area Type: Cycle Length: 110	Uther														
Actuated Cycle Length: 110															
Offset: 50 (45%), Referenced	d to phase 1	NBTL, St	art of Gree	en											
Natural Cycle: 70 Control Type: Actuated Case	rdinated														
Maximum v/c Ratio: 0.72	unateu														
Intersection Signal Delay: 18	3.4			Ir	ntersection	LOS: B									
Intersection Capacity Utilizat	tion 51.6%			10	CU Level o	f Service	Ą								
m Volume for 95th percent	tile queue is i	metered h	v unstrea	m signal											
	and queue is i		, upsucal	signai.											
Splits and Phases: 6: Nort	thern Avenue	e & Pier 4	Boulevard	1										*	
Ø1 (R)													₩ ø4	105	

	٦	-	\mathbf{r}	1	+	۰.	1	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph)	5 61	†₽ 820	101	0	ፋጉ 1034	47	157	↔ 18	73	144	କ 58	233
Future Volume (vph)	61	820	101	0	1034	47	157	18	73	144	58	233
Lane Width (ft)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		125	125		0	0		0	0		100
Taper Length (ft)	25		U	25		U	25		U	25		U
Lane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor Frt		0.94			0.98			0.93			0.96	0.92
Flt Protected	0.950	00.15	-		0000	-	-	0.969			0.966	
Satd. Flow (prot) Flt Permitted	1593	2845	0	0	3089	0	0	1333 0.549	0	0	1597	1405
Satd. Flow (perm)	146	2845	0	0	3089	0	0	733	0	0	1045	1286
Right Turn on Red Satd Flow (RTOP)		19	Yes		Ę.	Yes		22	Yes			Yes 60
Link Speed (mph)		30			30			30			30	07
Link Distance (ft)		1029			308			346			339	
Confl. Peds. (#/hr)	118	23.4	171	171	7.0	118	55	1.9	87	87	1.1	55
Confl. Bikes (#/hr)	0.07	0.07	30	0.00	0.00	22	0.00	0.00	4	0.01	0.01	3
Peak Hour Factor Heavy Vehicles (%)	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.96 0%	0.96 0%
Parking (#/hr)	2,5			0.0	2.00	0		0	0		0.0	5.0
Adj. Flow (vph) Shared Lane Traffic (%)	63	845	104	0	1124	51	171	20	79	150	60	243
Lane Group Flow (vph)	63	949	0	0	1175	0	0	270	0	0	210	243
Turn Type	D.P+P	NA			NA		D.P+P	NA		Perm	NA	pm+ov
Protected Phases Permitted Phases	6	16		1	1		5	45		4	4	6
Detector Phase	6	16		1	1		5	45		4	4	6
Switch Phase	4.0			10.0	10.0		4.0			0.0	0.0	4.0
Minimum Split (s)	4.0			23.0	23.0		4.0			30.0	30.0	4.0
Total Split (s)	10.0			50.0	50.0		10.0			40.0	40.0	10.0
Total Split (%) Yellow Time (s)	9.1%			45.5%	45.5%		9.1% 3.0			36.4%	36.4%	9.1%
All-Red Time (s)	2.0			2.0	2.0		2.0			2.0	2.0	2.0
Lost Time Adjust (s)	-2.0				-2.0						-2.0	-2.0
Lead/Lag	3.0				3.0		Lag			Lead	Lead	3.0
Lead-Lag Optimize?				C 11	C M					NL	NI.	NI
Act Effct Green (s)	None 57.4	60.4		C-Max	C-Max 47.0		Min	40.6		None	None 33.6	None 44.0
Actuated g/C Ratio	0.52	0.55			0.43			0.37			0.31	0.40
v/c Ratio	0.30	0.60			0.89			0.84			0.66	0.43
Queue Delay	20.2	0.0			21.4			0.0			43.0	0.0
Total Delay	20.2	11.1			21.4			56.6			43.0	11.5
LUS Approach Delay	С	B 11.7			C 21.4			56.6			D 26.1	В
Approach LOS		В			C			E			C	
Stops (vph)	34	276			330			201			161	93
CO Emissions (g/hr)	65	768			637			392			223	117
NOx Emissions (g/hr)	13	150			124			76			43	23
Dilemma Vehicles (#)	15	1/8			148			91			52	27
Queue Length 50th (ft)	14	112			100			150			113	47
Queue Length 95th (ft)	m16	m113			#142			m#238			196	99
Turn Bay Length (ft)		747			220			200			209	100
Base Capacity (vph)	212	1569			1322			335			351	567
Starvation Cap Reductn Spillback Cap Reductn	0	20			0			0			0	0
Storage Cap Reductn	0	0			0			0			0	0
Reduced v/c Ratio	0.30	0.61			0.89			0.81			0.60	0.43
Intersection Summary	CBD											
Cycle Length: 110	CDD											
Actuated Cycle Length: 110)											
Offset: 0 (0%), Referenced Natural Cycle: 80	to phase 1:EE	WB, Start	of Greer	1								
Control Type: Actuated-Con	ordinated											
Maximum v/c Ratio: 0.89	2.0											
Intersection Signal Delay: 2 Intersection Capacity Utiliza	2.0 ation 87.0%			In	U Level of	LOS: C Service F						
Analysis Period (min) 15												
# 95th percentile volume Queue shown is maximum	exceeds capa	city, queue	e may be	longer.								
m Volume for 95th percer	ntile queue is r	netered by	/ upstrea	m signal.								
	<u>.</u>											
Splits and Phases: 7: Sle	eeper Street &	Seaport B	oulevard							4 4		
🕶 Ø1 (R)									_	₩ Ø4		

	-	\mathbf{r}	⋤	∢	←	1	1
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	≜ †⊳			٦	††	٦	1
Traffic Volume (vph)	771	249	24 24	248	913 913	111 111	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	11	12	12
Storage Length (It) Storage Lanes		0		100		0	0
Taper Length (ft)				25		25	
Lane Util. Factor	0.95	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.85					0.90	0.850
Flt Protected				0.950		0.950	
Satd. Flow (prot)	2526	0	0	1624	3049	1608	1454
Satd. Flow (perm)	2526	0	0	308	3049	1441	1278
Right Turn on Red	50	Yes					Yes
Link Speed (mph)	59 30				30	30	31
Link Distance (ft)	139				274	912	
Travel Time (s) Confl. Peds. (#/br)	3.2	262	84	262	6.2	20.7	84
Confl. Bikes (#/hr)		202	04	202		17	04
Peak Hour Factor	0.96	0.96	0.92	0.92	0.92	0.93	0.93
Heavy Vehicles (%) Adi, Elow (vph)	2%	2%	0%	270	3%	1%	0%
Shared Lane Traffic (%)	005	237	20	210	112	117	
Lane Group Flow (vph)	1062	0	0	296	992	119	77
Protected Phases	NA 1		D.P+P 5	D.P+P 5	NA 15	Prot 4	cusiom 4
Permitted Phases			1	1			5
Detector Phase Switch Phase	1		5	5	15	4	4
Minimum Initial (s)	10.0		4.0	4.0		8.0	8.0
Minimum Split (s)	24.0		9.0	9.0		30.0	30.0
Total Split (%)	60.0 54.5%		9.1%	9.1%		40.0	40.0
Yellow Time (s)	3.0		3.0	3.0		3.0	3.0
All-Red Time (s)	2.0		2.0	2.0		2.0	2.0
Total Lost Time (s)	3.0			4.0		4.0	5.0
Lead/Lag							
Lead-Lag Optimize?	C-Max		None	None		None	None
Act Effct Green (s)	59.8			84.2	89.2	13.8	37.2
Actuated g/C Ratio	0.54			0.77	0.81	0.13	0.34
Control Delay	0.76			26.0	0.40	0.59	26.3
Queue Delay	0.5			0.7	0.2	0.0	0.0
Total Delay	10.5 B			26.6	3.5	57.9	26.3
Approach Delay	10.5			C	8.8	45.5	U.
Approach LOS	В				Α	D	
Stops (vph) Fuel Used(gal)	571			244	170	106 3	43
CO Emissions (g/hr)	442			235	244	188	79
NOx Emissions (g/hr)	86			46	48	36	15
Dilemma Vehicles (#)	0			0	57	43	18
Queue Length 50th (ft)	139			112	71	86	34
Queue Length 95th (ft) Internal Link Dist (ft)	144			202	90 194	m145 832	m74
Turn Bay Length (ft)	57			100	174	552	100
Base Capacity (vph)	1401			539	2472	526	564
Spillback Cap Reductn	0			65 0	678 278	12	0
Storage Cap Reductn	0			0	0	0	0
Reduced v/c Ratio	0.81			0.62	0.55	0.23	0.14
Intersection Summary							
Area Type: Cycle Length: 110	CBD						
Actuated Cycle Length: 110							
Offset: 0 (0%), Referenced to	o phase 1:EB	WB, Star	t of Greer	ı			
Natural Cycle: 90 Control Type: Actuated-Coord	rdinated						
Maximum v/c Ratio: 0.76	anatou						
Intersection Signal Delay: 12	2.3			In	tersection	LOS: B	-
Analysis Period (min) 15	uufi 82.3%			IC	O Level C	n Service	C
m Volume for 95th percent	tile queue is n	netered b	y upstrea	m signal.			
Colits and Decasary O. D.	top Wkf P	ad Alice	0.0.0	ort Doul-	rd		
Spiits and Phases: 8: Bos	ion what Ro	au (WSR	j & Seapo	UL ROUIEVS	ud		
● ● Ø1 (R)							

	≤	≯	-	\mathbf{r}	∢	←	•	•	1	1	1	Ŧ	<
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	17	10	††	0	•	† ĵ•	04	1/0	4 †	1	104	0	100
Future Volume (vph)	16	49	802 802	0	0	814 814	94 94	160	83	214	184	0	193
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11	12	11	12	11	12	12	12
Storage Length (II) Storage Lanes		150		0	0		0	0		125	2		0
Taper Length (ft)		25		0	25		0	25			25		0
Lane Util. Factor	0.95	1.00	0.95	1.00	1.00	0.95	0.95	0.95	0.95	1.00	0.97	1.00	1.00
Ped Bike Factor Frt						0.97			0.97	0.94	0.95	0.53	
Flt Protected		0.950				0.704			0.968	0.000	0.950	0.000	
Satd. Flow (prot)	0	1624	2925	0	0	2940	0	0	3145	1391	3090	0	0
Fit Permitted	0	0.188	2025	0	0	2040	0	0	0.968	1212	0.950	0	0
Right Turn on Red	0	321	2720	Yes	U	2740	Yes	U	3003	Yes	2921	U	Yes
Satd. Flow (RTOR)						14				69		169	
Link Speed (mph)			30			30			30			30	
LINK DISTANCE (ft) Travel Time (s)			243			3/6			812			338	
Confl. Peds. (#/hr)	35	132	0.0	180	180	0.0	132	35	10.5	30	30	1.1	35
Confl. Bikes (#/hr)							33						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.98	0.98	0.98	0.95	0.95	0.95	0.94	0.94	0.94
Heavy venicles (%) Parking (#/hr)	0%	0%	2%	0%	0%	2%	0%	0%	0%	1%	2%	0%	1%
Adj. Flow (vph)	17	53	872	0	0	831	96	168	87	225	196	0	205
Shared Lane Traffic (%)				-	-								
Lane Group Flow (vph)	0	70	872	0	0	927	0	0	255	225	196	205	0
rum Type Protected Phases	U.P+P	U.P+P 6	NA 1.6			NA 1		Split 4	NA 4	CUSTOM	Prot 5		
Permitted Phases	1	1	10					4	4	4	J		
Detector Phase	6	6	16			1		4	4	4	5		
Switch Phase Minimum Initial (c)	0.0	0.0				10.0		10.0	10.0	10.0	0.0		
Minimum Split (s)	8.0	8.0				20.0		27.0	27.0	27.0	13.0		
Total Split (s)	15.0	15.0				50.0		30.0	30.0	30.0	15.0		
Total Split (%)	13.6%	13.6%				45.5%		27.3%	27.3%	27.3%	13.6%		
Yellow Time (s) All-Red Time (s)	3.0	3.0				3.0		3.0	3.0	3.0	3.0		
Lost Time Adjust (s)	2.0	0.0				-2.0		2.0	0.0	-2.0	0.0		
Total Lost Time (s)		5.0				3.0			5.0	3.0	5.0		
Lead/Lag								Lead	Lead	Lead	Lag		
Recall Mode	None	None				C-Max		None	None	None	None		
Act Effct Green (s)		64.8	71.8			50.8			13.7	33.8	11.5	0.0	
Actuated g/C Ratio		0.59	0.65			0.46			0.12	0.31	0.10	0.00	
V/C Ratio		0.19	0.46			0.68			0.65	0.49	0.61	1.21	
Queue Delay		0.0	9.0 0.5			1.3			0.0	0.0	0.0	0.0	
Total Delay		11.8	10.3			32.6			71.0	14.0	58.0	0.0	
LOS Approach Dolou		В	B			C 22 (E	В	E	A	
Approach LOS			10.5 R			32.6 C			44.3 D			28.3	
Stops (vph)		21	228			1204			233	111	176	117	
Fuel Used(gal)		0	4			15			6	3	4	1	
CU Emissions (g/hr)		27	306			1056			442	180	254	81	
VOC Emissions (g/III)		6	71			205			102	42	49	10	
Dilemma Vehicles (#)		0	0			0			0	0	0	0	
Queue Length 50th (ft)		15	84			313			98	42	72	0	
Queue Length 95th (ft)		44	1/5			263			133	97	108	258	
Turn Bay Length (ft)		150	105			270			132	125		200	
Base Capacity (vph)		378	1909			1364			714	597	333	169	
Starvation Cap Reductn		0	582			232			0	0	0	0	
Storage Can Reductn		0	0			0			0	0	0	0	
Reduced v/c Ratio		0.19	0.66			0.82			0.36	0.38	0.59	1.21	
Intersection Summarv													
Area Type:	CBD												
Cycle Length: 110													
Actuated Cycle Length: 110			(0)										
Uttset: 0 (0%), Referenced t	to phase 1:El	3WB, Start	of Green										
Control Type: Actuated-Con	ordinated												
Maximum v/c Ratio: 1.21													
Intersection Signal Delay: 20	6.4			In	tersection	LOS: C							
Intersection Capacity Utiliza Analysis Period (min) 15	IIION EIT%			10	U Level o	I Service H	1						
miaiysis renua (IIIII) 15													
Splits and Phases: 9: Eas	st Service Ro	ad & Seap	ort Bouleva	ard									
± (n)										- *			
50 s										404 30 s			

	-	\mathbf{r}	4	-	٩	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>	007		4 †	<u>ካካ</u>	107
Future Volume (vph)	976	237	84	637	273	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	13	11	12
Storage Length (tt)		0	0		125	125
Taper Length (ft)		0	25		25	U
Lane Util. Factor	0.95	0.95	0.95	0.95	0.97	1.00
Ped Bike Factor	0.94				0.90	0.050
FIL Fit Protected	0.971			0 994	0.950	0.850
Satd. Flow (prot)	2884	0	0	3059	3046	1439
Flt Permitted				0.671	0.950	
Satd. Flow (perm) Bight Turn on Pod	2884	0	0	2065	2755	1439 No
Satd. Flow (RTOR)		NU				NU
Link Speed (mph)	30			30	30	
Link Distance (ft)	392			533	498	
Travel Time (s) Confl. Peds. (#/br)	8.9	275	275	12.1	11.3	63
Confl. Bikes (#/hr)		12	275		40	05
Peak Hour Factor	0.96	0.96	0.96	0.96	0.97	0.97
Heavy Vehicles (%)	3%	0%	1%	4%	0%	1%
Parking (#/hr) Adi Elow (vpb)	1017	247	88	0	201	121
Shared Lane Traffic (%)	1017	247	00	004	201	131
Lane Group Flow (vph)	1264	0	0	752	281	131
Turn Type	NA		Perm	NA	Prot	Prot
Protected Phases Permitted Phases	1		1	1	4	4
Detector Phase	1		1	1	4	4
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	8.0	8.0
Total Split (s)	28.0		28.0 60.0	28.0	28.0 50.0	28.0 50.0
Total Split (%)	54.5%		54.5%	54.5%	45.5%	45.5%
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0
All-Red Lime (s)	2.0		2.0	2.0	2.0	2.0
Total Lost Time (s)	-2.0			-2.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?	C 14-11		C M	C M-	h.41-a	h 41-
Act Effet Green (s)	C-Max 86.7		C-IVIAX	C-IVIAX	1/1IN 15 3	Min 15 2
Actuated g/C Ratio	0.79			0.79	0.14	0.14
v/c Ratio	0.56			0.46	0.66	0.66
Control Delay	3.0			5.4	38.0	44.7
Queue Delay Total Delay	0.1			0.1	0.0 38.0	0.0
LOS	3.1 A			5.0 A		44.7 D
Approach Delay	3.1			5.6	40.1	
Approach LOS	A			A	D	100
Stops (vpn) Fuel Used(gal)	307			229	221	108
CO Emissions (g/hr)	430			380	309	157
NOx Emissions (g/hr)	84			74	60	31
VUC Emissions (g/hr) Dilemma Vehicles (#)	100			88	72	36
Queue Length 50th (ft)	16			72	76	68
Queue Length 95th (ft)	101			138	110	m115
Internal Link Dist (ft)	312			453	418	405
Base Capacity (vnh)	2273			1627	125	588
Starvation Cap Reductn	107			0	0	0
Spillback Cap Reductn	0			210	29	0
Storage Cap Reductn	0			0.52	0 22	0 22
Reduced WC Rallo	0.58			0.53	0.23	0.22
Intersection Summary	CPD					
Area Type: Cycle Length: 110	CRD					
Actuated Cycle Length: 110	0					
Offset: 0 (0%), Referenced	to phase 1:EB	WB, Start	of Green			
Natural Cycle: 60 Control Type: Actuated Con	ordinated					
Maximum v/c Ratio: 0.66	ordinateu					
Intersection Signal Delay: 1	10.1			In	tersection	LOS: B
Intersection Capacity Utiliza	ation 91.0%			IC	CU Level o	f Service
Analysis Period (min) 15 m Volume for 95th percer	ntile queue is m	netered by	/ Unstream	n signal		
			, aponodi	orginal.		
Splits and Phases: 10: B	Street & Seap	ort Boule	vard			

	٠	→	\rightarrow	1	-	•	▲	1.	1	1	Ŧ	-			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2		
Lane Configurations		4î»			4î îr		٦		1		\$				
Traffic Volume (vph)	24	394	483	71	544 544	24	199	0	28	15	27	31			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00			
Ped Bike Factor		0.92			0.99		0.96		0.850		0.91				
Flt Protected		0.999			0.994		0.950		0.050		0.990				
Satd. Flow (prot)	0	3017	0	0	3436	0	1787	0	1615	0	1680	0			
Fit Permitted Satd. Flow (perm)	0	0.926	0	0	0.742 2557	0	0.950	0	1615	0	0.990	0			
Right Turn on Red	0	2175	Yes	0	2007	Yes	1700	0	Yes	0	1010	Yes			
Satd. Flow (RTOR)		371			5			00	109		28				
Link Speed (mpn) Link Distance (ft)		30			30			30			30				
Travel Time (s)		8.5			7.4			8.5			8.3				
Confl. Peds. (#/hr)	52		181	181		52	23		41	41		23			
Peak Hour Factor	0.95	0.95	0.95	0.97	0.97	0.97	0.95	0.95	0.95	0.94	0.94	0.94			
Heavy Vehicles (%)	0%	4%	0%	0%	4%	0%	1%	0%	0%	0%	0%	0%			
Adj. Flow (vph)	25	415	508	73	561	25	209	0	29	16	29	33			
Lane Group Flow (vph)	0	948	0	0	659	0	209	0	29	0	78	0			
Turn Type	Perm	NA		Perm	NA		Prot		Prot	Split	NA				
Protected Phases	1	1		1	1		7		7	8	8		2		
Detector Phase	1	1		1	1		7		7	8	8				
Switch Phase															
Minimum Initial (s)	16.0	16.0		16.0	16.0		6.0		6.0	6.0	6.0		4.0		
Total Split (s)	49.0	49.0		49.0	49.0		19.0		19.0	11.0	11.0		21.0		
Total Split (%)	49.0%	49.0%		49.0%	49.0%		19.0%		19.0%	11.0%	11.0%		21%		
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0		3.0		
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		0.0		0.0	2.0	0.0		0.0		
Total Lost Time (s)		5.0			5.0		5.0		5.0		5.0				
Lead/Lag Lead/Lag Ontimize?	Lead	Lead		Lead	Lead		Lead		Lead	Lag	Lag		Lag		
Recall Mode	C-Max	C-Max		C-Max	C-Max		None		None	None	None		None		
Act Effct Green (s)		62.3			62.3		16.8		16.8		8.1				
v/c Ratio		0.62			0.62		0.17		0.17		0.08				
Control Delay		8.1			12.2		51.2		0.4		39.5				
Queue Delay Total Delay		0.0			0.0		0.0		0.0		0.0				
LOS		A			12.2 B		D		0.4 A		39.5 D				
Approach Delay		8.1			12.2			45.0			39.5				
Approach LOS Stops (vph)		A 310			323		183	D	0		D 46				
Fuel Used(gal)		6			5		4		0		1				
CO Emissions (g/hr)		408			349		256		6		73				
NOX Emissions (g/hr) VOC Emissions (g/hr)		/9 95			68 81		50		1		14				
Dilemma Vehicles (#)		0			0		0		0		0				
Queue Length 50th (ft)		96			109		126		0		31				
Internal Link Dist (ft)		296			245		194	292	U		286				
Turn Bay Length (ft)															
Base Capacity (vph) Stanuation Can Reducto		1880			1593		310		370		162				
Spillback Cap Reductn		0			0		0		0		0				
Storage Cap Reductn		0			0		0		0		0				
Reduced V/C Ratio		0.50			0.41		0.67		0.08		U.48				
Intersection Summary	Othor														
Cycle Length: 100	51101														
Actuated Cycle Length: 100	4														
Natural Cycle: 80	io pnase 1:	EBWB, St	ait of Gre	en											
Control Type: Actuated-Coord	inated														
Maximum v/c Ratio: 0.70)			1-	torcostion	IOC. D									
Intersection Capacity Utilizatio	n 78.5%			In	itersection	Service I	D								
Analysis Period (min) 15															
Solits and Phases 12- D St	reet & Nort	hern Δven	ue												
a1 (D)														▲№ 27	
49 s											21 s			19 s	ەש ד 11s

	•	-	\rightarrow	1	-	•	▲	Ť	1	>	Ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	02
Lane Configurations		44	1	۲	4Î			र्भ	1		4>		
Traffic Volume (vph)	1	437	142	195	395	10	143	30	2/3	16	41	8	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	11	11	11	11	12	12	16	12	12	16	12	
Storage Length (tt) Storage Lanes	100		100	0		0	0		100	0		0	
Taper Length (ft)	25			25		0	25		U	25		0	
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor		1.00	0.80	0.94	1.00			0.60	0.950		0.88		
Fit Protected			0.650	0.950	0.990			0.960	0.830		0.988		
Satd. Flow (prot)	0	3110	1252	1570	1624	0	0	1860	1454	0	1739	0	
Fit Permitted	0	0.814	1005	0.421	1624	0	0	0.960	1454	0	0.988	0	
Right Turn on Red	0	2331	No	000	1024	Yes	0	1113	Yes	0	1004	Yes	
Satd. Flow (RTOR)					2				281		5		
Link Speed (mph)		30			30			30			30		
Travel Time (s)		4.3			10.9			4.8			10.4		
Confl. Peds. (#/hr)	130		99	99		130	137		56	56		137	
Confl. Bikes (#/hr)	0.07	0.07	15	0.00	0.00	17	0.07	0.07	0.07	0.02	0.02	2	
Heavy Vehicles (%)	0.97	1%	1%	0.98	1%	0.98	0.97	0.97	0.97	0.92	0.92	0.92	
Parking (#/hr)			0										
Adj. Flow (vph)	1	451	146	199	403	10	147	31	281	17	45	9	
Lane Group Flow (vph)	0	452	146	199	413	0	0	178	281	0	71	0	
Turn Type	Perm	NA	Perm	D.P+P	NA	Ū	Prot	NA	custom	Split	NA	0	
Protected Phases		1		5	15		3		3 5	4	4		2
Permitted Phases	1	1	1	1	15		3		35	Д	4		
Switch Phase				5	15		5		55	-1	4		
Minimum Initial (s)	10.0	10.0	10.0	6.0			8.0			6.0	6.0		8.0
Minimum Split (s)	19.0	19.0	19.0	14.0			14.0			12.0	12.0		24.0
Total Split (%)	36.4%	36.4%	36.4%	17.3%			13.6%			10.9%	10.9%		22%
Yellow Time (s)	3.0	3.0	3.0	3.0			3.0			3.0	3.0		4.0
All-Red Time (s)	4.0	4.0	4.0	4.0			2.0			2.0	2.0		0.0
Total Lost Time (s)		7.0	7.0	7.0							4.0		
Lead/Lag	Lead	Lead	Lead				Lead			Lag	Lag		Lag
Lead-Lag Optimize?	C May	C May	C Max	None			Mov			May	Mox		Nana
Act Effct Green (s)	C-IVIdX	33.0	33.0	45.0	52.0		IVIdX	12.0	24.0	IVIdX	8.0		NOILE
Actuated g/C Ratio		0.30	0.30	0.41	0.47			0.11	0.22		0.07		
v/c Ratio		0.60	0.49	0.54	0.54			0.88	0.52		0.54		
Oueue Delay		36.1	37.7	23.5	21.8			87.8	0.0		0.0		
Total Delay		36.1	37.7	23.5	22.2			87.8	6.7		83.6		
LOS Approach Dolay		D 24 5	D	С	C			F	A		F		
Approach Delay Approach LOS		30.5 D			22.6 C			38.2 D			83.6 F		
Stops (vph)		308	94	111	222			151	29		60		
Fuel Used(gal)		200	107	2	217			205	1		2		
NOx Emissions (g/hr)		309	25	31	62			295	13		26		
VOC Emissions (g/hr)		90	29	37	73			68	16		31		
Dilemma Vehicles (#)		0	0	0	0			0	0		0		
Queue Length Soln (II)		164	124	127	236			#254	54		48 m#96		
Internal Link Dist (ft)		111			398			133			377		
Turn Bay Length (ft)		750	100	0/7	7/0			000	100		404		
Base Capacity (vpn) Starvation Can Reductn		/59	301	367	/68			202	536		131		
Spillback Cap Reductn		0	0	0	0			0	0		0		
Storage Cap Reductn		0	0	0	0			0	0		0		
Reduced v/c Ratio		0.60	0.49	0.54	0.61			0.88	0.52		0.54		
Intersection Summary	CDD												
Area Type: Cycle Length: 110	CRD												
Actuated Cycle Length: 110													
Offset: 91 (83%), Reference	d to phase 1	EBWB, S	tart of Gre	en									
Natural Cycle: 85 Control Type: Actuated-Coor	rdinated												
Maximum v/c Ratio: 0.88	unateu												
Intersection Signal Delay: 34	1.0			In	tersection	LOS: C							
Intersection Capacity Utilizat	tion 69.6%			IC	U Level of	f Service (2						
# 95th percentile volume e	xceeds cana	icity, queu	ie mav be	longer.									
Queue shown is maximur	m after two c	ycles.											
m Volume for 95th percent	tile queue is	metered b	y upstrea	m signal.									
Splits and Phases: 15: A S	Street/Thom	son St & C	Congress S	Street									
(R)),	1 02					₩ 03 ₩ 04 ₩ 05

		٠	-	\rightarrow	F	1	-	•	1	1 T	1	1	ŧ	-	
	ane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
processor ····································	ane Configurations	AE	410	242	10	150	*	40	1	} →	41	71	4 204	160	
tied Flow open 1 100 100 100 100 100 100 100 100 100	Future Volume (vph)	45	418	343	19	150	330	47	40	20	41	71	284	160	
Same number G U <thu< th=""> U U <t< td=""><td>deal Flow (vphpl)</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td>1900</td><td></td></t<></thu<>	deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Stange Lung: 0 1 1 0 0 0 1 Stange Lung: 0 0.00 1.0	Lane width (ft) Storage Length (ft)	12	12	12	12	12	12	12	16	11	12	12	11	11	
The function of the function	Storage Lanes	Ő		1		1		0	1		0	0		1	
No. 1 No. 0 <	Taper Length (ft)	25	1.00	1.00	0.05	25	0.05	0.05	25	1.00	1.00	25	1.00	1.00	
ni ne mone na	Ped Bike Factor	1.00	0.99	0.72	0.95	1.00	0.95	0.95	0.92	0.96	1.00	1.00	0.99	1.00	
si se nome in a serie de la	rt			0.850			0.981			0.900				0.850	
File Normality 0.938 <td>-It Protected Satd. Flow (prot)</td> <td>0</td> <td>0.995</td> <td>1454</td> <td>0</td> <td>0.950</td> <td>2936</td> <td>0</td> <td>0.950</td> <td>1347</td> <td>0</td> <td>0</td> <td>0.990</td> <td>1405</td> <td></td>	-It Protected Satd. Flow (prot)	0	0.995	1454	0	0.950	2936	0	0.950	1347	0	0	0.990	1405	
Sale File (approver) 0 155 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fit Permitted	Ū	0.925	1101		0.358	2700	0	0.950	1017	Ŭ	0	0.990	1100	
Sale file (1700) Sale file (Satd. Flow (perm) Pight Turn on Red	0	1551	1052 Vos	0	607	2936	0 Vos	1661	1347	0 Vos	0	1582	1405 Vos	
Lis Speed oppin) 101 Speed oppin) 101 Speed oppin) 101 Speed oppin) 101 Speed oppin (m) 101 Speed oppin (m)	Satd. Flow (RTOR)			354			16	103		42	163			116	
Link Legizardo (n) 121 m 33 33 31 11 12 12 12 12 12 12 12 12 12 12 12 12	ink Speed (mph)		30				30			30			30		
Carle Ass. (Ma) Carle Ass.	LINK DISTANCE (IT) Fravel Time (s)		4/8				521			204			20.7		
Care: Bise: (MP) 0.71 0.70 0.71 0.	Confl. Peds. (#/hr)	121		83	38	83		121	82		38	38		82	
heavy Verhales Phi 1 or N 1 N 0 N 0 0 19 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Confl. Bikes (#/hr) Ceak Hour Factor	0.07	0.07	10	0.03	0.03	0.03	8	0.07	0.07	0.07	0.04	0.04	0.04	
Parking (mh) 1 54 2 0 16 1 355 2 0 17 10 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 1 1 1 1	Heavy Vehicles (%)	0%	1%	0.77	0%	1%	0%	0.75	2%	17%	0%	0.74	3%	0%	
reg. Incl. yourg. Book Park Park Park Park Park Park Park Par	Parking (#/hr)	47	401	25.4	20	1/1	0	0	17	21	40	7/	202	170	
Lane Coord Plave April 0 0 477 334 0 181 406 0 47 63 0 0 378 770 Protected Plaves 1 1 1 1 1 1 1 Protected Plaves 1 1 1 1 1 1 1 Protected Plaves 1 1 1 1 1 1 1 Protected Plaves 1 1 1 1 1 1 1 1 Protected Plaves 1 1 1 1 1 1 1 1 Protected Plaves 1 1 1 1 1 1 1 1 1 1 Protected Plaves 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Shared Lane Traffic (%)	46	431	354	20	161	355	53	47	21	42	/6	302	170	
um ige per visit in the perm is not perm is not spate in the perm is not spate in the permitted of periods of	ane Group Flow (vph)	0	477	354	0	181	408	0	47	63	0	0	378	170	
Densities in the set of the set	rum Type Protected Phases	Perm	NA 1	Perm	Perm	Perm	NA 1		Split 2	NA 2		Split 3	NA 3	Prot 3	
beleader Phanes 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 Minimum Sigi (S) 100 100 100 100 100 100 100 100 80 80 80 80 80 80 80 80 80 100 10	Permitted Phases	1		1	1	1			2	2		5	J	J	
Markan mulai Markan mulai <t< td=""><td>Detector Phase</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td>2</td><td>2</td><td></td><td>3</td><td>3</td><td>3</td><td></td></t<>	Detector Phase	1	1	1	1	1	1		2	2		3	3	3	
Minimum Spit (s) 290 290 290 290 290 290 300 300 330 330 330 Total Spit (s) 391% 301% 30	Swiich Phase Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0		8.0	8.0		8.0	8.0	8.0	
took spin (s) 430 430 430 430 430 430 430 300 300 30 370 370 370 370 Took spin (s) 391 53 18 391 30 30 30 30 30 30 30 30 30 30 30 30 30	Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	29.0		30.0	30.0		33.0	33.0	33.0	
Value Disc 0	rotal Split (s) Fotal Split (%)	43.0 39.1%	43.0 39.1%	43.0 39.1%	43.0 39.1%	43.0 39.1%	43.0 39.1%		30.0 27.3%	30.0 27.3%		37.0 33.6%	37.0 33.6%	37.0 33.6%	
All-Red Time (s) 3.0 3.0 3.0 3.0 3.0 9.0 9.0 9.0 Lead-Lag Optimize? Exad-Lag Optimize? Exad-Lag Optimize? Lag Lag Lag	Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	
Look num regent (y) 1-10 1-10 1-10 1-10 1-10 1-10 1-10 1-1	All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		9.0	9.0	9.0	
Leadta g Leadta Leadta None N	Lost Time Adjust (s)		-1.0	-1.0		-1.0	-1.0		-1.0	-1.0			-1.0	-1.0	
Lead-Lag Optimize? Recail Mode Recail Mode Act Effet Green (s) 5c1 5c1 5c1 5c1 97 9.7 9.7 2c0 2c0 Act Leffet Green (s) 5c1 5c1 051 051 057 09 0.09 0.09 0.09 0.04 0.24 w Ratio 0 66 0.50 0.50 0.59 0.27 0.30 0.40 1.00 0.40 Control Delay 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	_ead/Lag								Lead	Lead		Lag	Lag	Lag	
Act Effic Green (s) 561 561 561 677 677 77 77 26.0 26.0 Actabade of Cherne (s) 0.51	_ead-Lag Optimize? Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max		None	None		None	None	None	
Actualed giC Relio 0.51 0.51 0.51 0.51 0.51 0.09 0.09 0.24 0.24 0.24 vic Raio 0.60 0.50 0.59 0.27 0.30 0.40 1.00 0.40 Control Delay 11.0 3.2 196 8.4 51.7 29.1 74.1 12.5 Docue Delay 11.0 3.5 196 8.4 51.7 29.1 74.1 12.5 Docue Delay 7.8 11.8 38.8 55.0 Approach Delay 7.8 11.8 38.8 55.0 Approach Delay 7.8 11.8 38.8 55.0 Approach Delay 7.8 11.8 38.8 55.0 D D D Stops (wh) 142 37 85 135 44 26 290 116 Evel Usar(ga) 4 2 2 3 1 1 9 2 2 OC Emissions (ghr) 248 119 127 205 56 42 663 153 VOC Emissions (ghr) 57 28 30 47 13 10 154 35 Docue Length Stop (h) 152 25 84 70 68 55 m442 832 UOC Emissions (ghr) 152 25 84 70 68 55 m442 832 UOC Emissions (ghr) 179 79 309 1505 410 338 377 420 Docue Length Stop (h) 99 1 799 309 1505 410 338 377 420 Storage Cap Reducin 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 11 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 71 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducin 1 0 Other Stop Reducin 10 Storage Cap Reducin 10 Stora	Act Effct Green (s)	0 Mux	56.1	56.1	0 mux	56.1	56.1		9.7	9.7			26.0	26.0	
The second	Actuated g/C Ratio		0.51	0.51		0.51	0.51		0.09	0.09			0.24	0.24	
One belay O.0 O.3 O.0 O.0 <tho.0< th=""> O.0 <tho.0< th=""></tho.0<></tho.0<>	Control Delay		11.0	3.2		19.6	8.4		51.7	29.1			74.1	12.5	
total usary 11.0 3.3 19.0 0.4 51.7 27.1 14.1 12.5 Approach Delay 7.8 11.8 38.8 55.0 - Approach Delay 7.8 11.8 38.8 55.0 Stops (ph) 14.2 37 85 135 44 26 290 116 C0 Emissions (ghr) 24.8 119 127 205 56 42 66.3 153 OXE Emissions (ghr) 48 23 25 40 11 8 129 30 VOC Emissions (ghr) 57 28 30 47 13 10 154 35 Dilemma Vehicles (P) 0 0 0 0 0 0 0 OraceL ength Ston (ti) 152 25 84 70 66 55 m#462 m81 Itemat Link Dist (ti) 398 441 124 82 25 83 83 77 400 Stavation Cap Reductin 1 71 0 0 0 0 <t< td=""><td>Queue Delay</td><td></td><td>0.0</td><td>0.3</td><td></td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td></td><td></td><td>0.0</td><td>0.0</td><td></td></t<>	Queue Delay		0.0	0.3		0.0	0.0		0.0	0.0			0.0	0.0	
Approach Delay 7.8 11.8 38.8 55.0 - Approach LOS A B D D D Stops (ph) 142 37 85 135 44 20 290 116 Fuel Used(al) 4 2 2 3 1 9 2 CO OC Emissions (ph) 248 119 127 205 56 42 663 153 NOX Emissions (ghn) 57 28 30 47 13 10 154 35 Dilema Vehicles (e) 0 0 0 0 0 0 0 Queue Length Softh (ft) 152 25 84 70 66 56 m#462 m81 Itemat Link Dit (ft) 398 441 124 832 125 58 58 58 56 10 50 <	LOS		11.0 B	3.5 A		19.6 B	8.4 A		51.7 D	29.1 C			74.1 E	12.5 B	
Approach LUS A A B B D D Fuel Used(gal) 142 37 85 135 44 26 290 116 Co Emissions (ght) 248 119 127 205 56 42 663 153 NOX Emissions (ght) 48 23 25 40 11 8 129 30 VOC Emissions (ght) 57 28 30 47 13 10 154 35 Dimma Vehicles (r) 0 0 0 0 0 0 0 0 0 0 0 0 0 Cueue Length 50h (ft) 92 14 43 35 32 14 -2464 22 Cueue Length 50h (ft) 92 14 43 35 32 14 -2464 22 Cueue Length 50h (ft) 92 152 25 84 70 66 56 m#462 m81 Internal Link Dist (ft) 398 4411 124 832 Tur Bay Length 50h (ft) 91 52 25 844 70 66 56 m#462 m81 Internal Link Dist (ft) 398 4411 124 832 Staration Cap Reduct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reduct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reduct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reduct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reduct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Approach Delay		7.8				11.8			38.8			55.0		
Let Used(ga) 4 2 2 3 1 1 9 2 CO Emissions (ghr) 248 119 127 205 56 42 663 153 NOX Emissions (ghr) 57 28 30 47 13 10 154 35 Diemar Vehicles (P) 0 0 0 0 0 0 0 Dueue Length Sth (ft) 92 14 43 35 32 14 -264 22 Queue Length Sth (ft) 92 14 43 35 32 14 -264 22 Queue Length Sth (ft) 152 25 84 70 68 56 m#462 m81 Itemat Link Dit (ft) 398 441 124 832 15 15 160 150 160 </td <td>Approach LOS Stops (vph)</td> <td></td> <td>A 142</td> <td>37</td> <td></td> <td>85</td> <td>B 135</td> <td></td> <td>44</td> <td>D 26</td> <td></td> <td></td> <td>290</td> <td>116</td> <td></td>	Approach LOS Stops (vph)		A 142	37		85	B 135		44	D 26			290	116	
C0 Emissions (ghr) 248 119 127 205 56 42 663 153 NOE Emissions (ghr) 48 23 25 40 111 8 129 30 V0C Emissions (ghr) 57 28 30 47 13 10 154 35 Dilemma Vehicles (r) 0 0 0 0 0 0 0 0 0 0 0 Cueue Length 95h (f) 152 25 84 70 68 56 mr#462 m81 Internal Link Dist (f) 398 441 124 832 Turn Bay Length (f) 50 125 410 338 377 420 Starvation Cap Reductin 1 71 0 0 0 0 0 0 0 0 0 Starvation Cap Reductin 1 71 0 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 Reduced vic Ratio 0.60 0.55 0.59 0.27 0.11 0.19 100 0.40 Intersection Summary Area Type: CBD Cycle Length : 10 Area Type: CBD Cycle Length : 10 Offset 97 (88%), Referenced to phase 1:EBWB, Start of Green Natural Cycle Inf5 Curue Schwide Jeage J J Length IIO Autional Cycle Inf5 Curue Schwide J Coordinated Maximum Vic Ratio 1.00 Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. # 93th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. # 93th percentile queue is metered by upstream signal. Splits and Phases: 16: Bostom Wharf Road (WSR) & Congress Street Splits and Phases: 16: Bostom Wharf Road (WSR) & Congress Street Splits and Phases: 16: Bostom Wharf Road (WSR) & Congress Street	uel Used(gal)		4	2		2	3		1	1			9	2	
Nume Linearding (gm/n) TO LO TO	CO Emissions (g/hr)		248	119		127	205		56	42			663	153	
Dilema Vehicles (#) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/OC Emissions (g/hr)		57	23		30	40		13	10			154	35	
Succes Length SUM (10) 152 25 84 70 68 56 mr4462 m81 Internal Link Dist (11) 398 441 124 832 Turn Bay Length (11) 171 00 0 0 0 0 0 0 0 Starvation Cap Reductin 1 71 00 0 0 0 0 0 0 0 Starvation Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.60 0.55 0.59 0.27 0.11 0.19 1.00 0.40 Intersection Summary Area Type: CBD Cycle Length Starvation Starvatin Starvation Starvation Starvation Starva	Dilemma Vehicles (#)		0	0		0	0		0	0			0	0	
Internal Link Dist (ft) 398 441 124 832 Turn Bay Length (ft) 150 125 Base Capacity (wph) 791 709 309 1505 410 338 377 420 Starvation Cap Reductn 1 71 0 0 0 0 0 0 0 SpitBack Cap Reductn 0	Queue Length 95th (ft)		92 152	14		43 84	35 70		32 68	14 56			~204 m#462	22 m81	
1um say Lengin (tr) 150 125 Base Capacity (wph) 791 709 309 1505 410 338 377 420 Starvation Cap Reductin 0	nternal Link Dist (ft)		398				441			124			832		
Starvation Cap Reductin 1 11 01 0 <td>i urn Bay Length (ft) Base Capacity (vnh)</td> <td></td> <td>791</td> <td>709</td> <td></td> <td>150 309</td> <td>1505</td> <td></td> <td>410</td> <td>338</td> <td></td> <td></td> <td>377</td> <td>125</td> <td></td>	i urn Bay Length (ft) Base Capacity (vnh)		791	709		150 309	1505		410	338			377	125	
Spillaek Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Starvation Cap Reductn		1	71		0	0		0	0			0	0	
Storage cap reduction 0 <th0< th=""></th0<>	Spillback Cap Reductn		0	0		0	0		0	0			0	0	
Intersection Summary Area Type: CBD Cycle Length: 110 Actuated Cycle Length: 110 Offset: 97 (88%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 115 Control Type: Actuated Cycle condinated Maximum Vic Ratio: 1.00 Intersection Signal Delay: 23.0 Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharl Road (WSR) & Congress Street	Reduced v/c Ratio		0.60	0.55		0.59	0.27		0.11	0.19			1.00	0.40	
Area Type: CBD Cycle Length: 110 Acturated Cycle: Length: 110 Offset: 97 (88%), Referenced to phase 1:EBWB, Start of Green Naturat Cycle: 115 Control Type: Actuated -Coordinated Control Type: Actuated -Coordinated Maximum vic Ratio: 1.00 Intersection LOS: C Intersection Signal Delay: 23.0 Intersection LOS: C Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Cueue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Cueue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street	ntersection Summarv														
Cycle Length: 110 Actualed Cycle Length: 110 Offset: 97 (88%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 115 Control Type: Actualed -Coordinated Maximum vic Ratio: 1.00 Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.	Area Type: C	CBD													
Natural Cycle: 115 Control Type: Actuated-Coordinated Maximum vic Ratio: 1.00 Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Wolume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street	Cycle Length: 110 Actuated Cycle Length: 110														
Natural Cycle: 115 Control Type: Actuated-Coordinated Maximum vic Ratio: 1.00 Intersection Signal Delay: 23.0 Intersection LOS: C Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. # Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street # 01 Proceedings Street	Offset: 97 (88%), Referenced to	o phase 1:	EBWB, St	tart of Gre	en										
Control type: Actuated-Coordinated Maximum vice Natio: 1.00 Intersection Signal Delay: 23.0 Intersection LOS: C Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 - Volume exceeds capacity, queue is theoretically infinite. Cueue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Cueue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street	Natural Cycle: 115														
Intersection Signal Delay: 23.0 Intersection LOS: C Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Oucee shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Oucee shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street \$\sum_{\veel{eq:1}} \sum_{\veel{eq:2}} \sum_{\veel{eq:2}} \sum_{\veel{eq:2}} \sum_{\veel{eq:2}} \sum_{\veel{eq:2}} \sum_{\veel{eq:3}} \sum_{\veel{eq:4}} \sum_	Jonirol Type: Actuated-Coordii Maximum v/c Ratio: 1.00	nated													
Intersection Capacity Utilization 97.2% ICU Level of Service F Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Ouceue shown is maximum after two cycles. # 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ntersection Signal Delay: 23.0				In	tersection	LOS: C								
Volume exceeds capacity, queue is theoretically infinite. Oucue shown is maximum after two cycles.	ntersection Capacity Utilization	n 97.2%			IC	CU Level o	f Service F								
Oucue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Oucue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street Image: Point (R) Image: Point (R)	 Volume exceeds capacity, 	queue is th	neoreticall	y infinite.											
Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street	Queue shown is maximum a	after two c	ycles.	o may bo	longer										
m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Queue shown is maximum a	after two c	ycles.	e may be	ionger.										
Splits and Phases: 16: Boston Wharf Road (WSR) & Congress Street ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	m Volume for 95th percentile	queue is r	metered by	y upstrear	m signal.										
\$¢_1(R) ↑ _{∅2}	Splits and Phases: 16: Bostr	on Wharf R	load (WSF	R) & Cono	iress Stree	et									
1/2	\$ (A)		(1.5)	,						a2					1. a.
43 5 43 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	43 s								30 s	02					₹ 203 37 s

L

	٠	-	-	•	1	T.	1	•	•	/
ane Group	EBL	EBT	WBT	WBR	NBL	NBT	NBR	NEL2	NEL	NER
ane Configurations	۲	††	≜ †⊅			-4†	1		۲Y	
ramic Volume (vph)	61	541 541	418 418	28	67	111	55	45	128	68 68
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft)	12	12	13	16	12	12	12	12	12	12
torage Length (ft)	175			50	0		0		0	0
aner Length (ff)	25			0	25		1		25	0
ane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.97	0.95
ed Bike Factor	0.93		0.99			0.99	0.050		0.95	
IL It Protected	0.950		0.991			0 083	0.850		0.957	
atd. Flow (prot)	1624	3249	3263	0	0	3171	1454	0	3000	0
It Permitted	0.462	5247	0200	v		0.982	. 104	0	0.965	0
atd. Flow (perm)	738	3249	3263	0	0	3137	1454	0	2909	0
ignt Turn on Red			7	Yes			Yes			
ink Speed (mph)		30	30			30	44		30	
ink Distance (ft)		521	509			178			200	
ravel Time (s)		11.8	11.6			4.0			4.5	
onfl. Peds. (#/hr)	100			100	20		17	20		17
ontl. Bikes (#/hr)	0.06	0.96	0.02	3	0.92	0.92	0.92	0.05	0.05	0.05
eavy Vehicles (%)	0.98	0.98	1%	0.92	0.92	1%	0.92	0.95	1%	0.95
dj. Flow (vph)	64	564	454	30	73	121	60	47	135	72
hared Lane Traffic (%)										
ane Group Flow (vph)	64	564	484	0	0	194	60	0	254	0
urn Type Intected Phases	Perm	NA 1	NA 1		Split 2	NA 2	Prot 2	Perm	Prot 3	
ermitted Phases	1				2	2	2	3	5	
etector Phase	1	1	1		2	2	2	3	3	
witch Phase										
finimum Initial (s)	8.0	8.0	8.0		8.0	8.0	8.0	8.0	8.0	
otal Split (s)	47.0	47.0	47.0		30.0	30.0	30.0	33.0	33.0	
otal Split (%)	42.7%	42.7%	42.7%		27.3%	27.3%	27.3%	30.0%	30.0%	
ellow Time (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
II-Red Time (s)	4.0	4.0	4.0		3.0	3.0	3.0	3.0	3.0	
ost Time Aujust (s)	-2.0	-2.0	-2.0			-2.0	-2.0		-2.0	
ead/Lag	5.0	5.0	3.0		Lead	Lead	Lead	Lag	Lag	
ead-Lag Optimize?										
ecall Mode	C-Max	C-Max	C-Max		None	None	None	None	None	
ctuated g/C Ratio	67.8	07.8	07.8			0.12	0.12		0.15	
/c Ratio	0.02	0.28	0.24			0.51	0.23		0.60	
ontrol Delay	5.3	4.9	12.6			49.8	4.5		49.7	
lueue Delay	0.0	0.0	0.0			0.0	0.0		0.0	
otal Delay	5.3	4.9	12.6			49.8	4.5		49.7	
pproach Delav	A	4.9	12.6			39.1	А		49.7	
pproach LOS		A	B			D			D	
tops (vph)	10	105	223			162	3		219	
uel Used(gal)	0	3	4			3	0		4	
U EMISSIONS (g/hr)	26	232	289			206	10		281	
OC Emissions (g/hr)	6	45	67			40	2		65	
ilemma Vehicles (#)	0	0	0			0	0		0	
ueue Length 50th (ft)	8	40	96			68	0		87	
lueue Length 95th (ft)	m16	m57	127			103	13		124	
urn Bay Length (ft)	175	441	429			98			120	
ase Capacity (vph)	454	2002	2013			749	419		766	
tarvation Cap Reductn	0	0	0			0	0		0	
pillback Cap Reductn	0	0	0			0	0		0	
torage Cap Reductn	0 14	0.20	0.24			0.24	0 14		0 22	
euuleu wi Kallo	U.14	υ.28	U.24			U.20	U.14		U.33	
tersection Summary	CRD									
vcle Length: 110	CRD									
ctuated Cycle Length: 110										
ffset: 1 (1%), Referenced to	o phase 1:EE	8WB, Star	t of Green							
atural Cycle: 95	rdinata d									
laximum v/c Ratio: 0.60	runateu									
tersection Signal Delay: 19	9.6			In	tersection	LOS: B				
tersection Capacity Utilizat	tion 66.2%			IC	CU Level o	of Service	С			
halysis Period (min) 15	ilo guerra i	motor-d'	u un dias.	o olar -l						
volume for april herceur	and queue is f	netereu D	y upstredf	n siyridi.						
plits and Phases: 17: Co	ngress Stree	t & East S	Service Ro	ad						
1 (P)										12
- @1(K) 7s									30 s	14
L ñ

	٦	-	\mathbf{F}	1	←	•	٩	Ť	۲	1	ţ	-∢
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations raffic Volume (vph)	134	41 323	208	485	41> 172	126	204	234	331	25	230	69
uture Volume (vph)	134	323	208	485	172	126	204	234	331	25	230	69
ieal Flow (vphpl) ane Width (ft)	1900	1900 12	1900 12	1900 12	1900 12	1900 12	1900 16	1900 14	1900 12	1900 12	1900	1900 11
torage Length (ft)	0		200	250		0	0		0	0		125
aper Length (ft)	25		1	25		U	25		1	25		1
ane Util. Factor	0.95	0.95	1.00	0.91	0.91	0.95	1.00	1.00	1.00	0.95	0.95	1.00
ed Bike Factor rt		0.98	0.850	0.97	0.96		0.95		0.850		0.99	0.92
It Protected		0.986		0.950	0.978		0.950	4000		-	0.995	
atd. Flow (prot) It Permitted	0	3150 0.986	1454	1464 0.950	2785 0.978	0	1841 0.950	1824	1439	0	3097 0.890	1405
atd. Flow (perm)	0	3102	1454	1416	2744	0	1753	1824	1439	0	2730	1293
agni Turn on Red atd. Flow (RTOR)			No		33	Yes			Yes 341			Yes 109
ink Speed (mph)		30			30			30			30	
ravel Time (s)		509 11.6			22.6			220 5.0			498 11.3	
onfl. Peds. (#/hr)	71		21	21		71	23		70	70		23
onti. Bikes (#/hr) leak Hour Factor	0.97	0.97	0.97	0.97	0.97	8 0.97	0.97	0.97	0.97	0.96	0.96	0.96
eavy Vehicles (%)	1%	2%	0%	1%	6%	0%	0%	0%	1%	0%	1%	0%
dj. Flow (vph) hared Lane Traffic (%)	138	333	214	500 50%	177	130	210	241	341	26	240	72
ane Group Flow (vph)	0	471	214	250	557	0	210	241	341	0	266	72
urn Type rotected Phases	Split 2	NA 2	Prot 2	Split 1	NA 1		Prot 3	NA 3.4	Prot 3 4	Perm	NA 4	custom 4
ermitted Phases	2	2	2	1			5	54	54	4	4	2
etector Phase witch Phase	2	2	2	1	1		3	34	34	4	4	4
linimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0	8.0
linimum Split (s) otal Split (s)	19.0	19.0	19.0	31.0	31.0		16.0			19.0	19.0	19.0
otal Split (%)	27.3%	27.3%	27.3%	31.8%	31.8%		22.7%			18.2%	18.2%	18.2%
ellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0	3.0
ost Time Adjust (s)	4.0	-2.0	-2.0	-2.0	-2.0		-2.0			4.0	-2.0	-2.0
otal Lost Time (s)	heal	5.0	5.0	5.0	5.0		5.0				5.0	5.0
ead-Lag Optimize?	Lead	Leau	Ledu				Lay					
ecall Mode	Max	Max	Max	C-Max	C-Max		Max	20 5	20 5	None	None	None
ctuated g/C Ratio		0.23	25.0	0.28	0.28		20.0	0.36	59.5 0.36		0.13	0.36
c Ratio		0.66	0.65	0.62	0.70		0.63	0.37	0.46		0.74	0.13
onirol Delay Jueue Delay		30.1	35.0 0.0	29.5 0.0	27.6		50.9 0.0	27.9	4.9		69.4 0.0	4.2
otal Delay		30.1	35.0	29.5	27.6		50.9	27.9	4.9		69.4	4.2
us pproach Delav		C 31.7	D	С	C 28.2		D	C 24.1	A		E 55.5	A
pproach LOS		С			С			С			E	
tops (vph) uel Used(gal)		394 7	182	197	435 10		187	168	29		253	19
O Emissions (g/hr)		, 475	232	309	673		245	186	74		419	30
IOx Emissions (g/hr)		92 110	45 54	60 72	131		48	36	14 17		81 97	6
ilemma Vehicles (#)		0	0	0	0		0	+3 0	0		0	0
Queue Length 50th (ft)		146	125	135	156 m72		138	123	0		106	3
nternal Link Dist (ft)		429	212	11101	915		210	140	00		418	11123
urn Bay Length (ft)		710	200	250	704		224	643	740		272	125
tarvation Cap Reductn		0	330	406	0		0	003	0		372	0
pillback Cap Reductn		0	0	0	0		0	0	0		0	0
educed v/c Ratio		0.66	0.65	0.62	0.70		0.63	0.36	0.46		0.72	0.13
itersection Summary												
rea Type:	CBD											
ctuated Cycle Length: 110												
ffset: 93 (85%), Referenced	to phase 1:	WBTL, St	art of Gre	en								
atural Cycle: 85 ontrol Type: Actuated-Coord	dinated											
aximum v/c Ratio: 0.74	aniatou											
tersection Signal Delay: 31.	.4 on 70.9%			In	itersection	LOS: C Service C						
nalysis Period (min) 15	0.1 70.770			IC.		JUNCE C						
95th percentile volume ex	ceeds capa	city, queu	e may be	longer.								
Volume for 95th percentil	le queue is r	netered b	y upstrear	n signal.								
- In												
piits and Phases: 18: B Si	areet & Con	yress Stre	et			J.						
♥ Ø1 (R)						÷ € ∎20	02					

Synchro 9 Report Lanes, Volumes, Timings

	≤	٦	-+	\mathbf{r}	1	-	•	₹Ĩ	1	Ť	1	L	1	Ŧ	-
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations			ፋጉ	1		ፋጉ			ሻሻ	4				ፋፑ	
Traffic Volume (vph)	24	113	185	289	145	191	80	6	325	175	48	10	27	554	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	13	12	13	12	12	11	12	12	12	12	14	12
Storage Length (II) Storage Lanes		0		150	0		0		2		0		0		0
Taper Length (ft)		25			25				25		Ŭ		25		Ŭ
Lane Util. Factor	0.95	0.95	0.91	0.91	0.95	0.95	0.95	1.00	0.97	1.00	1.00	0.95	0.95	0.95	0.95
Ped Bike Factor Frt			0.92	0.850		0.94				0.97				0.986	
Flt Protected			0.984			0.983			0.950					0.997	
Satd. Flow (prot)	0	0	2775	1327	0	3073	0	0	2988	1574	0	0	0	3330	0
Satd. Flow (perm)	0	0	2647	1327	0	2973	0	0	629	1574	0	0	0	3302	0
Right Turn on Red				No			Yes				Yes				Yes
Satd. Flow (RTOR)			20			21				11				9	
Link Speed (mpn) Link Distance (ft)			30 995			319				317				372	
Travel Time (s)			22.6			7.3				7.2				8.5	
Confl. Peds. (#/hr)	37	50		57	57		50	57	37		57	50	57		37
Peak Hour Factor	0.95	0.95	0.95	0.95	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	4%	3%	0%	2%	0%	0%	2%	3%	0%	0%	0%	1%	0%
Parking (#/hr)	25	110	105	204	150	200	07	7	253	100	0	10	20	F/F	40
Auj. Flow (vpn) Shared Lane Traffic (%)	25	119	195	304 31%	158	208	87	1	353	190	52	10	28	202	62
Lane Group Flow (vph)	0	0	433	210	0	453	0	0	360	242	0	0	0	665	0
Turn Type	Perm	Split	NA	Prot	Split	NA		Perm	Split	NA		Perm	Split	NA	
Protected Phases Permitted Phases	1	1	1	1	4	4		2	2	2		3	3	3	
Detector Phase	1	1	1	1	4	4		2	2	2		3	3	3	
Switch Phase															
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0		8.0	8.0	8.0		8.0	8.0	8.0	
Total Split (s)	38.0	38.0	38.0	38.0	17.0	17.0		27.0	27.0	27.0		28.0	28.0	28.0	
Total Split (%)	34.5%	34.5%	34.5%	34.5%	15.5%	15.5%		24.5%	24.5%	24.5%		25.5%	25.5%	25.5%	
Yellow Time (s)	3.0	3.0 E.O	3.0	3.0	3.0	3.0		4.0	4.0	4.0		3.0	3.0	3.0	
Lost Time Adjust (s)	5.0	0.C	-2.0	-2.0	0.C	-2.0		0.C	-2.0	-2.0		0.C	0.C	-2.0	
Total Lost Time (s)			6.0	6.0		6.0			7.0	7.0				6.0	
Lead/Lag								Lead	Lead	Lead		Lag	Lag	Lag	
Lead-Lag Optimize? Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None		Max	Max	Max		Max	Max	Max	
Act Effct Green (s)	0.ingy	O MIGA	32.0	32.0	HOLE	11.0		WOA	20.0	20.0		MOX	INGV	22.0	
Actuated g/C Ratio			0.29	0.29		0.10			0.18	0.18				0.20	
V/c Ratio Control Delay			0.54	0.54		1.39			3.16	0.82				0.99	
Queue Delay			21.0	0.0		0.0			0.0	0.0				0.0	
Total Delay			21.0	23.9		229.3			1010.0	55.3				75.8	
LUS Approach Delay			C 22.0	С		220.2			F	626.2				75 0	
Approach LOS			22.0 C			227.3 F				020.2				75.0 E	
Stops (vph)			176	90		303			230	262				576	
Fuel Used(gal)			6	3		22			70	215				1059	
NOx Emissions (g/III)			414	41		302			4904 954	61				206	
VOC Emissions (g/hr)			96	49		359			1136	73				245	
Dilemma Vehicles (#)			0	0		210			0	120				0	
Queue Length Soln (II)			105	09 m116		~218 #325			~224 #323	#282				245 #371	
Internal Link Dist (ft)			915			239				237				292	
Turn Bay Length (ft)				150											
Base Capacity (vph) Starvation Can Reductn			807	386		326			114	295				6/3	
Spillback Cap Reductin			0	0		0			0	0				0	
Storage Cap Reductn			0	0		0			0	0				0	
Reduced v/c Ratio			0.54	0.54		1.39			3.16	0.82				0.99	
Intersection Summary															
Area Type: Cyclo Longth: 110	CBD														
Actuated Cycle Length: 110															
Offset: 32 (29%), Referenced	d to phase 1	EBTL, Sta	art of Gree	en											
Natural Cycle: 85															
Control Type: Actuated-Coor Maximum v/c Patio: 3.16	dinated														
Intersection Signal Delay: 23	0.8			In	tersection	LOS: F									
Intersection Capacity Utilizati	ion 87.7%			IC	CU Level o	f Service E									
Analysis Period (min) 15	v nueve is t	henretical	v infinito												
Queue shown is maximun	n after two c	ycles.	y numme.												
# 95th percentile volume ex	xceeds capa	icity, queu	e may be	longer.											
Uueue shown is maximun Wolume for 95th percenti	n atter two c	ycles. meterod b	vunetroo	m signal											
···· volume for your percenti	all queue is		, apsued	signai.											
Splits and Phases: 19: D S	Street & Con	gress Stre	eet												
🗸 🎝 Ø1 (R)							N Ø2							Ø3	

	٠	-+	\mathbf{r}	1	←	•	•	Ť	~	5	Ŧ	1			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2		
Lane Configurations		4			ب ا			*††			11				
Traffic Volume (vph)	0	31	0	4	28	1	0	555	0	0	993	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width (ft)	12	14	12	12	14	12	12	13	12	12	13	12			
Lane Util. Factor Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00			
Frt					0.996										
Fit Protected	0	012	0	0	0.994	0	0	4776	0	0	2201	0			
Fit Permitted	0	912	U	U	972	U	U	4//0	0	U	3291	0			
Satd. Flow (perm)	0	912	0	0	940	0	0	4776	0	0	3291	0			
Right Turn on Red			Yes		1	Yes			Yes			Yes			
Link Speed (mph)		30			30			30			30				
Link Distance (ft)		368			292			293			317				
Confl Peds (#/hr)		8.4			6.6			6./	67		7.2				
Confl. Bikes (#/hr)									4						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.95	0.95	0.98	0.98	0.98			
Parking (#/hr)	0%	100%	0%	0%	100%	0%	0%	1%	0%	0%	2%	0%			
Adj. Flow (vph)	0	34	0	4	30	1	0	584	0	0	1013	0			
Shared Lane Traffic (%)	0	24	0	0	25	0	0	504	0	0	1012	0			
Lane Group Flow (vpn) Turn Type	U	34 NA	U	Perm	35 NA	U	U	584 NA	U	U	NA	U			
Protected Phases		3			3			1			12		2		
Permitted Phases		2		3	2			1			10				
Switch Phase		3		3	3			1			12				
Minimum Initial (s)		8.0		8.0	8.0			20.0					4.0		
Minimum Split (s)		15.0		15.0	15.0			27.0					10.0		
Total Split (%)		22.7%		22.7%	22.7%			67.3%					10%		
Yellow Time (s)		3.0		3.0	3.0			4.0					4.0		
All-Red Time (s)		3.0		3.0	3.0			1.0					1.0		
Total Lost Time (s)		5.0			5.0			4.0							
Lead/Lag								Lead					Lag		
Lead-Lag Optimize?		None		None	None			C.Max					May		
Act Effct Green (s)		10.7		None	10.7			82.1			93.9		WIGA		
Actuated g/C Ratio		0.10			0.10			0.75			0.85				
V/C Katio Control Delay		0.38			0.38			0.16			0.36				
Queue Delay		0.0			0.0			0.2			0.7				
Total Delay		58.4			56.6			5.6			3.1				
LUS Approach Delay		58.4			56.6			5.6			A 3.1				
Approach LOS		E			E			A			A				
Stops (vph)		30			30			182			200				
CO Emissions (a/hr)		44			42			202			283				
NOx Emissions (g/hr)		8			8			39			55				
VOC Emissions (g/hr) Dilemma Vehicles (#)		10			10			47			66				
Queue Length 50th (ft)		23			23			58			60				
Queue Length 95th (ft)		54			55			38			m81				
Internal Link Dist (ft)		288			212			213			237				
Base Capacity (vph)		165			171			3562			2808				
Starvation Cap Reductn		0			0			1923			1335				
Spillback Cap Reductn Storage Cap Reductn		0			0			66			0				
Reduced v/c Ratio		0.21			0.20			0.36			0.69				
Intersection Summarv															
Area Type: C	BD														
Cycle Length: 110															
Offset: 48 (44%). Referenced to	o phase 1:	NBSB, Sta	art of Gree	en											
Natural Cycle: 55		,													
Control Type: Actuated-Coordii Maximum v/c Patio: 0.29	nated														
Intersection Signal Delay: 6.3				In	tersection	LOS: A									
Intersection Capacity Utilization	n 44.7%			IC	CU Level of	Service A									
Analysis Period (min) 15 m. Volume for 95th percentile	dilelle is r	meterod by	unstroop	n signal											
m volume for your percentile	queue is f	netereu D)	upstredfi	n siyridi.											
Splits and Phases: 20: D Str	eet & Tran	isitway													
↓ ¶ Ø1 (R)															Ø2
74 s														11	5

	≯	\mathbf{r}	1	Ť	ŧ	-		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø2	
Lane Configurations	0	0	100	††	≜î ≽	4/ 4		
Future Volume (vph)	0	0	439	555	534 534	464		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width (ft) Storage Length (ft)	12	12	200	12	13	12		
Storage Lanes	0	0	1			0		
Taper Length (ft)	25	1.00	25	0.05	0.05	0.05		
Ped Bike Factor	1.00	1.00	0.98	0.95	0.95	0.95		
Frt					0.930			
Fit Protected Satd, Flow (prot)	0	0	0.950	3217	2916	0		
Flt Permitted			0.950					
Satd. Flow (perm) Right Turn on Red	0	0 Yes	1645	3217	2916	0 Yes		
Satd. Flow (RTOR)					223			
Link Speed (mph)	30			30 207	30			
Travel Time (s)	7.9			6.8	6.7			
Confl. Peds. (#/hr)			49			49		
Peak Hour Factor	0.25	0.25	0.96	0.96	0.97	0.97		
Heavy Vehicles (%)	0%	0%	0%	1%	3%	1%		
Adj. Flow (vph) Shared Lane Traffic (%)	0	0	457	578	551	478		
Lane Group Flow (vph)	0	0	457	578	1029	0		
Turn Type Protected Phases			Prot 3	NA 13	NA 1		2	
Permitted Phases			J	13	ı		2	
Detector Phase Switch Phase			3	13	1			
Minimum Initial (s)			8.0		15.0		8.0	
Minimum Split (s)			15.0		23.0		28.0	
Total Split (S) Total Split (%)			37.0		45.0		28.0	
Yellow Time (s)			4.0		4.0		4.0	
All-Red Time (s)			-1.0		2.0		0.0	
Total Lost Time (s)			5.0		5.0			
Lead/Lag					Lead		Lag	
Recall Mode			Max		C-Max		None	
Act Effct Green (s)			32.0	103.4	62.4			
v/c Ratio			0.29	0.19	0.59			
Control Delay			60.1	1.9	11.7			
Total Delay			88.3	1.9	12.8			
LOS			F	A	B			
Approach LOS				40.0 D	12.8 B			
Stops (vph)			399	53	271			
CO Emissions (g/hr)			600	125	431			
NOx Emissions (g/hr)			117	24	84			
VOC Emissions (g/hr) Dilemma Vehicles (#)			139	29	100			
Queue Length 50th (ft)			342	0	80			
Queue Length 95th (ft) Internal Link Dist (ft)	266		m#473	m87 217	193 213			
Turn Bay Length (ft)			200					
Base Capacity (vph) Starvation Can Peducto			488	3024	1750			
Spillback Cap Reductn			0	0	3			
Storage Cap Reductn			0	0 22	0 70			
Intersection Summary			1.00	0.22	0.77			
Area Type: (CBD							
Cycle Length: 110								
Offset: 94 (85%), Referenced	to phase 1:	VBSB, St	art of Gree	en				
Natural Cycle: 90 Control Type: Actuated Coord	inated							
Maximum v/c Ratio: 0.94	mateu							
Intersection Signal Delay: 26.4	n 70 10/			In	tersection	LOS: C		
Analysis Period (min) 15				IC	O LEVEI UI	JEIVILE C		
# 95th percentile volume exe	ceeds capa	city, queu	e may be l	longer.				
m Volume for 95th percentile	e queue is n	netered b	y upstrear	n signal.				
Solits and Phases 21. D.St	reet & L.Q.O. I	Ramp						
		p						

	45 -	20 -	27 -
ļ	↓ ↓ Ø1 (R)		√ _{Ø3}

	•	-	\rightarrow	1	-	•	▲	1 î	1	1	ŧ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	270	≜ ↑	100	10	1	1	77	↑	20	215	4	120
ranic volume (vpn) future Volume (vph)	270	590 590	120	29	349	447	77	278	28	215	188	130
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
_ane Width (ft) Storage Length (ft)	11	13	12	12	16	16	12	16	12	200	13	12
Storage Lanes	1		0	1		1	130		0	1		0
Taper Length (ft)	25	0.05	0.05	25	1.00	1.00	25	0.05	0.05	25	0.01	0.05
ane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.91	0.91	0.95
-rt	0.70	0.975				0.92	0.75	0.986		0.70	0.96	
It Protected	0.950			0.950			0.950			0.950	0.993	
Satd. Flow (prot)	1555	3032	0	1464	1730	1599	1593	3337	0	1401	2746	0
Satd. Flow (perm)	430	3032	0	211	1730	1473	1516	3337	0	1340	2728	0
Right Turn on Red			Yes	2		No			Yes	. 5 . 0	2.20	Yes
Satd. Flow (RTOR)		27						8			71	
ink Speed (mph)		30 635			30 580			30 659			30 297	
Travel Time (s)		14.4			13.2			15.0			6.8	
Confl. Peds. (#/hr)	37		54	54		37	51		40	40		51
Contil. Bikes (#/hr)	0.05	0.05	12	0.02	0.02	16	0.02	0.02	2	0.02	0.02	9
Heavy Vehicles (%)	0.95	0.95	0.95	0.92	12%	0.92	2%	0.92	18%	2%	12%	0.92
Parking (#/hr)			0			0.0	2.00		0	2.00		5.0
Adj. Flow (vph)	284	621	126	32	379	486	84	302	30	234	204	141
ane Group Flow (upb)	284	747	0	22	270	494	84	333	0	26%	106	0
Furn Type	D.P+P	NA	0	Perm	NA	pm+ov	Split	NA	0	Split	NA	0
Protected Phases	4	14			1	2	3	3		2	2	
Permitted Phases	1	1.4		1	1	1	2	2		2	2	
Switch Phase	4	14		1	1	2	3	3		2	2	
Vinimum Initial (s)	6.0			8.0	8.0	8.0	8.0	8.0		8.0	8.0	
Vinimum Split (s)	15.0			30.0	30.0	28.0	27.0	27.0		28.0	28.0	
Total Split (s)	19.0			35.0	35.0	29.0	27.0	27.0		29.0	29.0	
Yellow Time (s)	4.0			31.8% 4.0	31.8% 4.0	20.4%	24.3% 3.0	24.3% 3.0		20.4% 3.0	20.4%	
All-Red Time (s)	4.0			4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
ead/Lag	7.0			7.0	7.0	6.0 Lead	0.0 an	6.0 Lan		0.0 Lead	6.0 Lead	
ead-Lag Optimize?						Leau	Lay	Lay		Leau	Leau	
Recall Mode	Max			C-Max	C-Max	Ped	Max	Max		Ped	Ped	
Act Effct Green (s)	41.2	48.2		29.2	29.2	52.0	21.0	21.0		21.8	21.8	
Actuated g/C Ratio	0.37	0.44		0.27	0.27	0.47	0.19	0.19		0.20	0.20	
Control Delay	74.6	11.6		75.8	51.4	17.8	40.9	42.2		42.5	31.5	
Queue Delay	2.9	0.0		0.0	0.0	4.9	0.0	0.5		0.4	0.2	
Total Delay	77.5	11.6		75.8	51.4	22.8	40.9	42.8		42.9	31.6	
LUS Annroach Delay	E	20 S		E	D 36.9	С	D	D		D	25.0	
Approach LOS		29.0 C			30.0 D			42.4 D			33.0 D	
Stops (vph)	158	398		18	230	248	65	261		146	351	
Fuel Used(gal)	6	7		1	7	5	1	6		3	5	
O EMISSIONS (g/hr)	441	517		4/ Q	455	351	98	394		1/8	364 71	
OC Emissions (g/hr)	102	120		11	105	81	23	91		41	84	
Dilemma Vehicles (#)	0	0		0	0	0	0	0		0	0	
Queue Length 50th (ft)	73	77		15	179	139	51	108		129	129	
Jueue Length 95th (ft)	#286	140		m#67	#396	227	98	156		219	217	
Furn Bay Length (ft)	155	222			000		150	5/9		200	217	
Base Capacity (vph)	283	1343		55	459	738	304	643		292	630	
Starvation Cap Reductn	0	0		0	0	0	0	0		12	16	
Spillback Cap Reductn	3	0		0	0	185	0	88		0	0	
Solutinge Cap Reduction	1 01	0.56		0 58	0.83	0 88	0.28	0.60		0.62	0.66	
ntersection Summany	1.01	0.00		0.00	0.00	0.00	0.20	0.00		0.02	0.00	
Area Type:	CBD											
Cycle Length: 110	500											
ctuated Cycle Length: 110												
Offset: 109 (99%), Reference	ed to phase 1	1:EBWB, S	Start of G	reen								
Vatural Cycle: 100	rdinated											
Jonitor Type: Actuated-Coo Jaximum v/c Ratio: 1.00	rumated											
ntersection Signal Delay: 3	4.8			In	tersection	LOS: C						
ntersection Capacity Utiliza	tion 91.2%			IC	U Level o	of Service I	-					
Analysis Period (min) 15		-14.		lana.								
95th percentile volume e	exceeds capa m after two c	city, queue	e may be	ionger.								
Volume for 95th percen	tile queue is r	netered hy	/ upstrea	m signal.								
	- 42500.51		,	<u>9</u>								
oplits and Phases: 22: D	Street & Sum	mer Street	t									
\$ (R)						1	a2					

	٦	-+	\mathbf{i}	1	-	•	•	Ť	~	1	ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	≜ î≽			≜ î≽			4			4		
Traffic Volume (vph)	39	997	1	0	883	88	9	13	0	81	45	189	
Future Volume (vph)	39	997	1000	1000	883	88	1000	13	1000	81	45	189	
Storage Length (ft)	1900	1900	1900	1900	1900	1900	1900	1900	1900	0,41	1900	1900	
Storage Lanes	1		0	0		0	0		0	0		0	
Taper Length (ft)	25			25			25			25			
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frt Fit Drotostad	0.050				0.986			0.000			0.919		
Satd. Flow (prot)	1805	3610	0	0	3559	0	0	1862	0	0	1723	0	
Flt Permitted	0.136							0.727			0.910		
Satd. Flow (perm)	258	3610	0	0	3559	0	0	1381	0	0	1589	0	
Right Turn on Red			Yes		40	Yes			Yes			Yes	
Satd. Flow (RTOR)		20			12			20			20		
Link Distance (ft)		290			225			430			328		
Travel Time (s)		6.6			5.1			9.8			7.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	42	1084	1	0	960	96	10	14	0	88	49	205	
Snared Lane Traffic (%)	42	1095	0	0	1056	0	0	24	0	0	342	0	
Turn Type	42 D.P+P	NA	0	U	NA	0	Perm	NA	U	D.P+P	542 NA	0	
Protected Phases	6	16			1			5		4	4 5		
Permitted Phases	1						5			5			
Detector Phase	6	16			1		5	5		4	45		
Switch Phase Minimum Initial (s)	4.0				8.0		8.0	8.0		8.0			
Minimum Split (s)	9.0				22.0		20.0	20.0		27.0			
Total Split (s)	10.0				50.0		20.0	20.0		30.0			
Total Split (%)	9.1%				45.5%		18.2%	18.2%		27.3%			
Yellow Lime (s)	3.0				3.0		3.0	3.0		3.0			
All-Red Time (s)	2.0				2.0		2.0	2.0		2.0			
Total Lost Time (s)	5.0				5.0			5.0					
Lead/Lag							Lag	Lag		Lead			
Lead-Lag Optimize?								••					
Recall Mode	None	67.6			C-Max		None	None 0 1		None	27.4		
Actuated g/C Ratio	0.57	0.61			0.42			0.07			0.25		
v/c Ratio	0.11	0.49			0.70			0.24			0.72		
Control Delay	9.3	9.3			25.1			29.7			33.9		
Queue Delay	0.0	0.3			1.3			0.0			0.0		
10tal Delay	9.S A	9.0 A			20.4			29.1			33.9		
Approach Delay		9.6			26.4			29.7			33.9		
Approach LOS		A			С			С			С		
Stops (vph)	11	272			535			25			211		
Fuel Used(gal)	0	305			673			30			200		
NOx Emissions (g/hr)	3	77			131			6			56		
VOC Emissions (g/hr)	4	92			156			7			67		
Dilemma Vehicles (#)	0	0			0			0			0		
Queue Length 50th (ft)	10	134			221			11			160		
Internal Link Dist (ff)	11119	210			145			350			231		
Turn Bay Length (ft)	125	2.0						500			2.0		
Base Capacity (vph)	371	2219			1515			188			624		
Starvation Cap Reductn	0	503			254			0			0		
Spillback Cap Reductn	0	0			0			0			0		
Reduced v/c Ratio	0.11	0.63			0.84			0.13			0.55		
Intersection Summary	0.11	2.00			2.01						2.00		
Area Type	Other												
Cycle Length: 110	Other												
Actuated Cycle Length: 110 Offset: 0 (0%), Referenced t	to phase 1:EE	BWB, Start	of Green										
Control Type: Actuated-Coo	ordinated												
Maximum v/c Ratio: 0.72													
Intersection Signal Delay: 20	0.0			In	tersection	LOS: C							
Intersection Capacity Utiliza Analysis Period (min) 15	1110N 61.7%			IC	U Level o	I Service E	5						
m Volume for 95th percen	ntile queue is r	netered by	/ upstrean	n signal.									
Solits and Phases 24. Se	eanort Roulev	ard & Fan	Pier Roui	evard									
+ 20. 30	saport Douiev	uru oti dil	, ICI DUUI	orard						N			4
Ø1 (R)										▼ Ø4			▼1 05

	→	\mathbf{F}	⋤	1	+	₹I	٩	1
Movement	FBT	FBR	WBU	WBI	WBT	NBU	NBI	NBR
Lane Configurations	î.				1		M	
Traffic Volume (veh/h)	3	12	5	394	9	1	8	80
Future Volume (Veh/h)	3	12	5	30/	0	1	8	80
Sign Control	Free	12	5	374	Free		Stop	00
Crado	0%				00/		00/	
Dook Hour Easter	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00
Feak Hour Faciol	0.92	0.92	0.92	0.93	0.93	0.90	0.90	0.90
nouny now rate (vpn)	3	13	U	424	10	U	8	82
Pedesirians	213						83	
Lane Width (ft)	11.0						11.0	
Walking Speed (ft/s)	4.0						4.0	
Percent Blockage	16						6	
Right turn flare (veh)								
Median type	None				None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked			0.00			0.00		
vC, conflicting volume			0	99		0	1164	92
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol			0	99		0	1164	92
tC. single (s)			0.0	4.1		0.0	6.4	6.2
tC 2 stage (s)			5.0			5.0	5.1	5.2
tF (s)			0.0	2.2		0.0	3.5	3.3
n0 queue free %			0.0	70		0.0	03	91
cM capacity (yeb/b)			0	1/11		0	110	906
	FD 1	WD 1	U ND 1	1411		U	117	700
Direction, Lane #	EBI	WB I	NR I					
Volume Total	16	434	90					
Volume Left	0	424	8					
Volume Right	13	0	82					
cSH	1700	1411	571					
Volume to Capacity	0.01	0.30	0.16					
Queue Length 95th (ft)	0	32	14					
Control Delay (s)	0.0	8.5	12.5					
Lane LOS		А	В					
Approach Delay (s)	0.0	8.5	12.5					
Approach LOS			В					
Intersection Summary								
Average Delay			0.0		_			
Intersection Conacity Utilization			0.9	10		Sonice		
Analysis Daried (min)			44.370	IC	- Level 0	Service		
Analysis Period (min)			15					

	٦	-	F	+	•	1	~
Movement	FBI	FRT	WBU	WRT	WRD	SBI	SBD
Lane Configurations	LDL	1	1100	1	WDIX	M	301
Traffic Volume (volume)	25	5 4	1	260	24	10	1/0
Future Volume (Veh/h)	30	54	1	200	24	10	140
Future volume (ven/n)	35	54	I	260	24	18 Chan	148
Sign Control		Free		Free		Stop	
Grade		0%		0%		0%	
Peak Hour Factor	0.93	0.93	0.92	0.92	0.92	0.97	0.97
Hourly flow rate (vph)	38	58	0	283	26	19	153
Pedestrians						407	
Lane Width (ft)						11.0	
Walking Speed (ft/s)						4.0	
Percent Blockage						31	
Right turn flare (veh)							
Median type		None		None			
Median storane veh)		NOTIC		NOTIC			
Linstroom signal (ff)				1160			
nV platoon upblockod			0.00	1100			
PA, platoon unblocked	71/		0.00			027	702
vc, connicting volume	/10		U			837	703
vC1, stage 1 cont vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	716		0			837	703
tC, single (s)	4.1		0.0			6.4	6.2
tC, 2 stage (s)							
tF (s)	2.2		0.0			3.5	3.3
p0 queue free %	94		0			91	50
cM capacity (veh/h)	616		0			219	304
Direction. Lane #	FB 1	WB 1	SB 1				
Volume Total	96	309	172				
Volume Left	38	0	10				
Volumo Dight		26	152				
	616	1700	100				
LON Volume to Connelity	010	0.10	292				
Ourse Longth OFth (9)	0.06	U.18	0.59				
Queue Length 95th (ft)	5	0	8/				
Control Delay (s)	4.9	0.0	33.7				
Lane LOS	A		D				
Approach Delay (s)	4.9	0.0	33.7				
Approach LOS			D				
Intersection Summary							
Average Delay			10.9				
Intersection Capacity Utilization			44.2%	10	U Level of	f Service	
Analysis Period (min)			15			2011100	
Analysis Feriod (IIIII)			10				

	≤	۶		\mathbf{i}	1	+	۰.	1	Ť	1	1	Ŧ	-
Movement	FBU	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Lane Configurations	200	202	4.	2.510		4			4		2.02	4	2.511
Traffic Volume (veh/h)	1	0	73	0	10	159	0	0	27	0	40	171	125
Future Volume (Veh/h)	1	0	73	0	10	159	0	0	27	0	40	171	125
Sign Control		0	Free	0	10	Free	0	0	Stop	0	40	Stop	125
Grade			0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.90
Hourly flow rate (yph)	0.72	0.72	79	0.72	11	173	0.72	0.72	29	0.72	43	186	139
Dodostrians	0	0		0		175	0	0	27	0	45	363	157
Lane Width (ft)												12.0	
Walking Spood (ft/s)												12.0	
Dercont Plackage												4.0	
Dight turn floro (voh)												30	
Right turn hare (ven)			News			Ninga							
wedian type			None			None							
ivieulari storage ven)						056							
Upstream signal (ft)	0.00					858							
pX, platoon unblocked	0.00												
vC, conflicting volume	0	536			79			506	637	79	652	637	536
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	0	536			79			506	637	79	652	637	536
tC, single (s)	0.0	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)													
tF (s)	0.0	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	0	100			99			100	89	100	77	32	63
cM capacity (veh/h)	0	727			1532			109	275	987	188	275	376
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	79	184	29	368									
Volume Left	0	11	0	43									
Volume Pight	0	0	0	120									
cSH	727	1532	275	280									
Volumo to Conacity	0.00	0.01	0.11	1 07									
Quoue Longth 05th (ft)	0.00	0.01	0.11	1.27									
Captrol Dolou (a)	0.0	0.5	7	102.0									
Control Delay (s)	0.0	0.5	19.0	183.9									
Lane LUS	0.0	A	10 (102.0									
Approach Delay (s)	0.0	0.5	19.6	183.9									
Approach LOS			С	F									
Intersection Summary													
Average Delay			103.5										
Intersection Capacity Utilization			50.2%	IC	U Level o	f Service			A				
Analysis Period (min)			15										
			10										

	≤	٦	-+	\mathbf{r}	1	-	•	1	Ť	1	1	Ŧ	1
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	200	202	4	2011		1.01			4.		5		2.510
Traffic Volume (veh/h)	3	12	105	0	0	149	25	0	83	0	90	0	13
Future Volume (Veh/h)	3	12	105	0	0	149	25	0	83	0	90	0	13
Sign Control			Free			Free		-	Stop	-		Stop	
Grade			0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vnh)	0	13	113	0	0	162	27	0	90	0	98	0	14
Pedestrians		10	110			15	2.7	0	,,,		,0	285	
Lane Width (ft)						12.0						12.0	
Walking Speed (ff/s)						12.0						4.0	
Dercont Plockago						4.0						4.0	
Dight turn flore (vob)						1						24	
Kight turn hare (Ven)			Nonc			Nonc							
Median type			ivone			None							
wedian storage ven)						(55							
Upstream signal (ft)	0.00					655							
px, platoon unblocked	0.00	47.6			440			0.00	(40	400	(10	(00	1/0
vc, conflicting volume	0	4/4			113			328	613	128	660	600	460
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	0	474			113			328	613	128	660	600	460
tC, single (s)	0.0	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)													
tF (s)	0.0	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	0	98			100			100	71	100	46	100	97
cM capacity (veh/h)	0	838			1489			492	308	916	181	314	461
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	126	189	90	112									
Volume Left	13	0	0	98									
Volume Right	0	27	0	14									
rSH	838	1700	308	196									
Volume to Canacity	0.02	0.11	0.29	0.57									
Queue Length 95th (ft)	1	0.11	30	78									
Control Delay (s)	11	0.0	21 /	15.6									
Lang LOS	Λ.	0.0	21.4	4J.0									
Ldile LUS Approach Dolou (c)	A 1.1	0.0	21.4	4E 4									
Approach LOC	1.1	0.0	21.4	43.0									
Approach LUS			C	E									
Intersection Summary													
Average Delay			13.9										
Intersection Capacity Utilization			Err%	IC	U Level o	f Service			Н				
Analysis Period (min)			15										

	€	٦		\mathbf{r}	F	∢	-	•	•	Ť	۴	1	Ŧ	∢
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			4				4			4			4	
Traffic Volume (veh/h)	1	11	190	0	14	0	163	31	0	0	0	51	0	10
Future Volume (Veh/h)	1	11	190	0	14	0	163	31	0	0	0	51	0	10
Sign Control			Free				Free			Stop			Stop	
Grade			0%				0%			0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.92	0.95
Hourly flow rate (vph)	0	11	194	0	0	0	177	34	0	0	0	54	0	11
Pedestrians			70				45						140	
Lane Width (ft)			12.0				12.0						12.0	
Walking Speed (ft/s)			4.0				4.0						4.0	
Percent Blockage			6				4						12	
Right turn flare (veh)														
Median type			None				None							
Median storage veh)														
Upstream signal (ft)							278							
pX, platoon unblocked	0.00				0.00									
vC, conflicting volume	0	351			0	194			491	567	239	595	550	404
vC1, stage 1 conf vol														
vC2, stage 2 conf vol														
vCu, unblocked vol	0	351			0	194			491	567	239	595	550	404
tC, single (s)	0.0	4.1			0.0	4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)														
tF (s)	0.0	2.2			0.0	2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	0	99			0	100			100	100	100	83	100	98
cM capacity (veh/h)	0	1077			0	1391			409	381	775	322	390	541
Direction, Lane #	EB 1	WB 1	NB 1	SB 1										
Volume Total	205	211	0	65										
Volume Left	11	0	0	54										
Volume Right	0	34	0	11										
cSH	1077	1391	1700	346										
Volume to Capacity	0.01	0.00	0.00	0.19										
Queue Length 95th (ft)	1	0	0	17										
Control Delay (s)	0.5	0.0	0.0	17.8										
LaneLOS	A		A	С										
Approach Delay (s)	0.5	0.0	0.0	17.8										
Approach LOS	2.5	2.5	A	С										
Intersection Summary														
Average Delay			2.6											
Intersection Capacity Utilization			35.0%	IC	U Level o	f Service			A					
Analysis Period (min)			15	10	2 201010									
			15											

	≤	→	\rightarrow	⊾	1	-	1	1
Movement	FBU	FBT	FBR	WBU	WBI	WBT	NBI	NBR
Lane Configurations	200	A 1	2011			41		
Traffic Volume (veh/h)	5	899	190	2	56	715	0	0
Future Volume (Veh/h)	5	800	100	2	56	715	0	0
Sign Control	5	077 Eroo	177	2	50	Froo	Stop	U
Crado		0%				0%	00/	
Book Hour Eactor	0.05	0.05	0.05	0.07	0.07	0.07	0.25	0.25
Hourty flow rate (uph)	0.95	0.93	200	0.97	0.97	0.77	0.25	0.25
Podrate (vpr)	0	940	209	0	00	131	101	U
Peuesilians							191	
Lane widin (ii)							0.0	
waiking Speed (ft/s)							4.0	
Percent Blockage							0	
Right turn flare (ven)								
Median type		None				None		
Median storage veh)								
Upstream signal (ft)		600				376		
pX, platoon unblocked	0.00			0.00	0.90		0.93	0.90
vC, conflicting volume	0			0	1346		1726	768
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	0			0	1157		1286	513
tC, single (s)	0.0			0.0	4.1		6.8	6.9
tC, 2 stage (s)								
tF (s)	0.0			0.0	2.2		3.5	3.3
p0 queue free %	0			0	89		100	100
cM capacity (veh/h)	0			0	549		133	459
Direction Lane #	FB 1	FB 2	WB 1	WB 2				
Volume Total	631	524	30/	<u>401</u>				
Volume Left	0.01	0	58	471				
Volumo Dight	0	200	- 50	0				
cSH	1700	1700	540	1700				
Volumo to Conacitu	0.27	0.21	0.11	0.20				
Oucue Length 05th (ft)	0.37	0.31	0.11	0.29				
Control Dolay (s)	0.0	0.0	2.6	0.0				
	0.0	0.0	3.0	0.0				
Lane LUS	0.0		A					
Approach Delay (s)	0.0		1.4					
Approach LUS								
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Utilization			60.8%	IC	U Level o	f Service		
Analysis Period (min)			15					

	۶	-	\mathbf{r}	4	←	•	٩	Ť	۲	6	Ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	75	432	0	6	388	157	4	0	5	85	0	3
Future Volume (Veh/h)	75	432	0	6	388	157	4	0	5	85	0	3
Sian Control		Free		0	Free	. 57		Stop	0	00	Stop	0
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	79	455	0	6	400	162	4	0	5	92	0	3
Pedestrians		100		0	.00	. 52		0	0	12	547	0
Lane Width (ft)											12.0	
Walking Speed (ft/s)											4.0	
Percent Blockage											46	
Right turn flare (veh)											10	
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		789			496							
pX, platoon unblocked	0.84	, , , ,		0.82			0.90	0.90	0.82	0.90	0.90	0.84
vC, conflicting volume	1109			455			1109	1734	455	1658	1653	1028
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1035			219			663	1361	219	1276	1271	939
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	75			99			98	100	99	0	100	98
cM capacity (veh/h)	311			1111			174	54	674	37	61	148
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	534	568	9	95								
Volume Left	79	6	4	92								
Volume Right	0	162	5	3								
cSH	311	1111	296	38								
Volume to Canacity	0.25	0.01	0.03	2 52								
Oueue Length 95th (ft)	25	0.01	2	264								
Control Delay (s)	91	0.2	17.6	918.3								
Lane LOS	A	A	C	F								
Approach Delay (s)	91	0.2	17.6	918.3								
Approach LOS	,	0.2	C	F								
Intersection Summary												
Average Delay			76.6									
Intersection Canacity Litilization			79.5%	IC	ULL evel of	Service			D			
Analysis Period (min)			15	10	0 2010101	00.100			U			
			13									

	۶	-+	+	•	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	î.		M	
Traffic Volume (veh/h)	14	508	503	43	71	48
Future Volume (Veh/h)	14	508	503	43	71	48
Sign Control	14	Free	Free	45	Ston	40
Grade		0%	0%		0%	
Peak Hour Factor	0.08	0.08	0.07	0.07	0.06	0.06
Hourly flow rate (upb)	1.4	510	510	0.77	7.4	50
Dedestrians	14	510	317	44	202	50
Lano Width (ft)					12.0	
Lane width (it)					12.0	
waiking Speed (IVS)					4.0	
Percent Diockage					33	
Right turn hare (Ven)						
Median type		None	None			
weulan storage ven)		1007	100			
Upstream signal (ft)	0.00	1094	191		0.00	0.00
px, platoon unblocked	0.82				0.88	0.82
vC, conflicting volume	956				1480	934
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	841				1214	814
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	97				36	76
cM capacity (veh/h)	446				116	208
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	532	563	124			
Volume Left	14	0	74			
Volume Right	0	44	50			
cSH	446	1700	141			
Volume to Capacity	0.03	0.33	0.88			
Queue Length 95th (ft)	2	0	146			
Control Delay (s)	0.9	0.0	107.8			
LaneLOS	A	0.0	F			
Approach Delay (s)	0.9	0.0	107.8			
Approach LOS	0.7	0.0	F			
Intersection Summary						
Average Delay			11 /			
Intersection Canacity Utilization			51.5%	10		f Sonvico
Analysis Daried (min)			JT.J/0 15	IC	- Level 0	JEIVICE
Analysis Period (min)			15			

	≯	→	\rightarrow	1	+	•	٩	1 T	1	1	Ŧ	<				
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR				
ane Configurations		र्भ	1		4		٦.	¢Î			4					
Traffic Volume (vph)	7	4	127	29	5	0	351	132	11	0	20	4				
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	4				
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Ped Bike Factor		0.93	0.97		0.98			0.99			0.077					
-rt -It Protected		0.968	0.850		0.959		0.950	0.988			0.977					
Satd. Flow (prot)	0	1839	1417	0	1776	0	1719	1860	0	0	1856	0				
Flt Permitted		0.816			0.746		0.950									
Sata. Flow (perm) Right Turn on Red	0	1439	1373 Ves	0	1359	Ves	1719	1860	Ves	0	1856	Ves				
Satd. Flow (RTOR)			138			105		12	105		8	105				
ink Speed (mph)		30			30			30			30					
LINK DISTANCE (ft)		2/8			1/2			335			2/5					
Confl. Peds. (#/hr)	35	0.5	10	10	3.7	35		7.0	31	31	0.5					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.95	0.95	0.38	0.38	0.38				
Heavy Vehicles (%)	0%	0%	14%	3%	0%	0%	5%	0%	0%	0%	0%	0%				
Shared Lane Traffic (%)	0	4	130	32	5	U	309	137	12	0	- 33	- 11				
ane Group Flow (vph)	0	12	138	0	37	0	369	151	0	0	64	0				
Furn Type Protected Phaces	Perm	NA	pm+ov	Perm	NA		Prot	NA 1.4			NA					
Permitted Phases	5	3	5	5	3			14		4	4					
Detector Phase	5	5	1	5	5		1	14		4	4					
Switch Phase	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0					
Vinimum mitial (S) Vinimum Split (S)	22.0	8.0	22.0	8.0 22.0	22.0		8.0			8.0 22.0	8.0					
Total Split (s)	22.0	22.0	63.0	22.0	22.0		63.0			25.0	25.0					
Fotal Split (%)	20.0%	20.0%	57.3%	20.0%	20.0%		57.3%			22.7%	22.7%					
vlaximum Green (s)	3.0	17.0	58.0	17.0	3.0		58.0			20.0	20.0					
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0			2.0	2.0					
ost Time Adjust (s)		0.0	0.0		0.0		0.0				0.0					
ead/Lag	Lan	5.0 Lag	5.0	Lan	5.0 Lag		5.0			Lead	5.0 Lead					
_ead-Lag Optimize?	Lug	Lug		Lug	Lug					Louu	LCCU					
/ehicle Extension (s)	2.0	2.0	2.0	2.0	2.0		2.0			2.0	2.0					
Recall Mode Nalk Time (s)	None 7 0	None 7.0	C-Max	None 7.0	None 7.0		C-Max 7.0			None 7.0	None 7.0					
Flash Dont Walk (s)	10.0	10.0	10.0	10.0	10.0		10.0			10.0	10.0					
Pedestrian Calls (#/hr)	0	0	0	0	0		0	00.5		0	0					
Act Effet Green (s) Actuated a/C Ratio		8.7	88.1		8.7		82.7	98.5			8.9					
//c Ratio		0.11	0.12		0.35		0.29	0.09			0.41					
Control Delay		48.6	0.6		56.9		4.2	1.3			50.1					
Jueue Delay Total Delay		48.6	0.0		0.0		0.5	0.0			0.0					
_OS		D	A		E		A	A			D					
Approach Delay		4.4			56.9			3.7			50.1					
Approach LOS Stops (unb)		A 12	5		22 22		86	A 15			20					
Fuel Used(gal)		0	0		1		2	0			0					
CO Emissions (g/hr)		14	22		43		118	35			28					
VOX Emissions (g/hr)		3	4		8		23	7			6					
Dilemma Vehicles (#)		0	0		0		0	0			0					
Queue Length 50th (ft)		8	0		25		69	13			39					
ueue Length 95th (ft)		27 198	10		59		96	m20 255			30 195					
Furn Bay Length (ft)		170			12			200			.75					
Base Capacity (vph)		222	1160		210		1291	1773			344					
Starvation Cap Reductn		0	0		0		535	0			0					
Storage Cap Reductn		0	0		0		0	0			0					
Reduced v/c Ratio		0.05	0.12		0.18		0.49	0.09			0.19					
ntersection Summary																
Area Type:	Other															
Sycie Length: 110 Actuated Cycle Length: 110																
Offset: 20 (18%), Referenced	d to phase 1:	NBTL, St	art of Gree	en												
Natural Cycle: 70	dia ata 1															
Control Type: Actuated-Coor Maximum v/c Ratio: 0.41	unated															
ntersection Signal Delay: 10	.3			In	tersection	LOS: B										
ntersection Capacity Utilizati	ion 46.9%			IC	CU Level of	Service A	1									
analysis Period (min) 15 m Volume for 95th percenti	ile queue is r	netered h	v upstrear	m signal												
	94040131		, apsucai	orginal.												
Splits and Phases: 6: Nort	hern Avenue	& Pier 4	Boulevard	i										-		
🔊 Ø1 (R)													↓ ¶ _{Ø4}	-	Ø5	

ñ

	٦	-	\mathbf{F}	∢	+	*	٩	Ť	۲	⋟	ŧ	~
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	162	1102	104	10	41»	22	70	4 9	41	22	4	70
uture Volume (vph)	163	1102	106	18	712	33	79	68 68	41	33	42	79
leal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft)	12	11	12	12	12	12	12	11	12	12	11	11
storage Lanes	1		0	0		0	0		0	0		0
aper Length (ft)	25	0.05	0.55	25	0.05	0.55	25	4		25		
ane Util. Factor Ped Bike Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
rt		0.987			0.994			0.92			0.74	0.850
It Protected	0.950	0007	-		0.999	-	-	0.979		-	0.979	40==
ata. Flow (prot) It Permitted	1533 0 256	2827	0	0	2939	0	0	1290	0	0	1403	1255
atd. Flow (perm)	413	2827	0	0	2033	0	0	1078	0	0	1105	1153
Right Turn on Red			Yes			Yes			Yes			Yes
atu. FIOW (RTOR) ink Speed (mph)		30			5 30			14 30			30	85
ink Distance (ft)		1029			308			511			339	
ravel Time (s)	400	23.4	(0	(0)	7.0	400		11.6	457	457	7.7	
Confl. Bikes (#/hr)	130		69 29	69		130	46		157	157		46
Peak Hour Factor	0.96	0.96	0.96	0.97	0.97	0.97	0.92	0.92	0.92	0.93	0.93	0.93
leavy Vehicles (%)	6%	7%	0%	0%	6%	38%	7%	2%	0%	35%	0%	12%
arking (#/hr) di, Flow (vph)	170	1148	110	19	734	0 34	86	0 74	0 45	35	45	85
hared Lane Traffic (%)	170	1140	110	17	7.34	34	00	/4	40	33	40	00
ane Group Flow (vph)	170	1258	0	0	787	0	0	205	0	0	80	85
urn Type Indected Phases	D.P+P	NA 1.6		Perm	NA 1		Perm	NA 5		Perm	NA 5	Perm
ermitted Phases	1	10		1			5	3		5	3	5
etector Phase	6	16		1	1		5	5		5	5	5
witch Phase	4.0			10.0	10.0		0.0	20		20	0.0	0.0
Ainimum Split (s)	4.0			23.0	23.0		29.0	29.0		29.0	29.0	29.0
otal Split (s)	20.0			50.0	50.0		40.0	40.0		40.0	40.0	40.0
otal Split (%)	18.2%			45.5%	45.5%		36.4%	36.4%		36.4%	36.4%	36.4%
raximum Green (s) 'ellow Time (s)	15.0			45.0	45.0		35.0	35.0 3.0		35.0	35.0 3.0	35.0
II-Red Time (s)	2.0			2.0	2.0		2.0	2.0		2.0	2.0	2.0
ost Time Adjust (s)	-2.0				-2.0			-2.0			-2.0	-2.0
otai Lost Time (s) ead/Lag	3.0 Lan				3.0		Lead	3.0 Lead		Lead	3.0 Lead	3.0 Lead
ead-Lag Optimize?	Lay						Ledu	LEdu		Ledu	Leau	Leau
ehicle Extension (s)	2.0			2.0	2.0		2.0	2.0		2.0	2.0	2.0
Recall Mode	None			C-Max	C-Max		None	None		None	None	None
lash Dont Walk (s)				5.0	5.0		15.0	15.0		15.0	15.0	15.0
edestrian Calls (#/hr)				0	0		0	0		0	0	0
ct Effct Green (s)	75.0	78.0			52.0			26.0			26.0	26.0
iciuated g/C Ratio	0.68	0.71			0.47			0.24			0.24	0.24
Control Delay	6.0	5.1			21.7			51.9			44.7	16.9
Queue Delay	0.0	0.1			0.0			0.0			0.0	0.0
otal Delay OS	6.0 A	5.3 A			21.7			51.9 D			44.7	16.9 P
pproach Delay		5.3			21.7			51.9			30.4	U
pproach LOS		А			С			D			С	
itops (vph)	45	340			260			301			59	46
CO Emissions (q/hr)	123	897			464			343			84	51
IOx Emissions (g/hr)	24	174			90			67			16	10
OC Emissions (g/hr)	28	208			108			79			19	12
Queue Length 50th (ft)	18	68			61			113			51	13
Queue Length 95th (ft)	m15	m55			#321			142			87	43
nternal Link Dist (ft)		949			228			431			259	
urn Bay Length (ft) lase Canacity (upb)	80 515	2008			963			371			271	100
starvation Cap Reductn	0	2000			703			0			0	444
pillback Cap Reductn	0	135			0			0			0	0
storage Cap Reductn	0	0 67			0			0 55			0	0 10
toreaction Summers	U.33	0.07			U.02			0.00			0.22	U. 19
itersection Summary	CBD											
cycle Length: 110	000											
ctuated Cycle Length: 110		-										
Offset: 75 (68%), Reference	d to phase 1:	EBWB, St	art of Gre	en								
atural Cycle: 70	rdinated											
Actualed-Cool Aaximum v/c Ratio: 0.82	anacu											
ntersection Signal Delay: 15	5.6			In	tersection	LOS: B	-					
ntersection Capacity Utilizat	tion 91.8%			IC	U Level of	Service F	-					
95th percentile volume e	exceeds capa	city, queue	e may be	longer.								
Queue shown is maximu	m after two cy	cles.	,	,								
Volume for 95th percent	tile queue is n	netered by	/ upstrear	n signal.								
plits and Phases: 7: Slee	eper Street &	Seaport F	Soulevard									
		aport								• :		
-⊤=®01(R) i0 s										▼1005 40 s		

Lac Edop 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	\mathbf{r}	F	1	-	1	1
Lan Carl Quarter 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
same seame equity 4.12 and 4.20 a 10 a 100 are 200 a 100 are 200 are	Lane Configurations	≜t ≯	000		٦	††	٦	1
Note Number Note Note Note Note Note Note Note Note	Traffic Volume (vph) Future Volume (vph)	733 733	302 302	15 15	90 90	839 839	155 155	49 49
Life vice n n n 1 1 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Simple from 0 1 1 1 Due to from 0.90 0.90 0.90 0.90 Pite from 0.90 0.90 0.90 0.90 Pite from 0.90 0.90 0.90 0.90 Pite from from 0.90 0.90 0.90 0.90 Stafe from from 0.90 0.90 0.90 0.90 Stafe from from 0.90 0.90 0.90 0.90 Stafe from from 0.90 0.90 0.90 0.90 The other from 0.90 0.90 0.90 0.90 The other from 0.90 0.90 0.90 0.90 0.90 The other from 0.90 0.90 0.90 0.90 0.90 0.90 Stafe from from 0.90 0.90 1.90 0.90 0.90 0.90 Stafe from from 0.90 0.90 1.90 0.90 0.90 0.90 Stafe from from 0.90 0.90 0.90 <td>Lane Width (ft) Storage Length (ft)</td> <td>11</td> <td>11</td> <td>12</td> <td>12 100</td> <td>11</td> <td>12</td> <td>12 100</td>	Lane Width (ft) Storage Length (ft)	11	11	12	12 100	11	12	12 100
Start Leg (N) I U S S S NI 0.95 0.95 1.00 0.060 NI 0.950 0.990 0.900 Sult fu (n) 2.71 0 0.93 0.990 Sult fu (n) 2.71 0 0.93 1.80 1.64 Sult fu (n) 2.71 0 0.93 1.80 1.64 Sult fu (n) 1.71 0 0.9 1.84 1.64 Sult fu (n) 1.71 0 0.9 1.64 1.64 Sult fu (n) 1.7 2.55 9.12 1.64 1.64 Sult fu (n) 1.7 2.55 9.12 1.64 5 Sult fu (n) 1.7 2.8 9.9 7.2 1.64 5 Sult fu (n) 1.7 2.8 1.8 1.8 1.8 1.8 1.8 Sult fu (n) 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Storage Lanes		0		1		1	1
Open Specification Open Specification Open Specification Open Specification Specification 0.000 1358 200 1540 Specification 0.000 1358 200 154 Specification 130 0.000 138 200 Specification 130 1.000 1.000 1.000 Specification 1.000 1.000 1.000 1.000 Specification 1.000 1.000	Taper Length (ft)	0.95	0.95	0.95	25 1 00	0.95	25	1.00
ft 0	Ped Bike Factor	0.99	0.75	0.75	1.00	0.75	1.00	1.00
s de l'anna de	Frt Fit Destanted	0.956			0.050		0.050	0.850
R Hermini 0.71 0.78 0.786 0.786 Mage Inter Off Origin 77 vs 0 31 Lin Decome (1) 39 255 72 1 Lin Decome (1) 39 255 72 1 Trand Inter (1) 39 255 72 1 Trand Inter (1) 32 20 022 022 020 020 Pace Mand Takar 0 20 022 022 020 030 1 Ref Mand (1) 10 1 1 1 5 1 Ref Mand (1) 10 1 1 1 5 1 Partitied Phanes 1 1 1 5 4 4 Partitied Phanes 1 1 1 5 4 4 Minnes (1) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	Satd. Flow (prot)	2774	0	0	1520	2935	1608	1454
See I and graph g	Flt Permitted				0.196		0.950	
Sale for (2016) 13 C 2017 14 C	Satd. Flow (perm) Right Turn on Red	2//4	0 Yes	0	314	2935	1608	1454 Yes
Life Social (profin) 130	Satd. Flow (RTOR)	77						51
Tased Tased Size	Link Speed (mph) Link Distance (ft)	30 139				30 255	30 912	
Cand Back Mar 2 20 Mail Service Mar 2 20 Mar 2 20 M	Travel Time (s)	3.2				5.8	20.7	
incomposition 1% 1% 1% 1% 1% Shard Law 178 18 19<	Confl. Bikes (#/hr) Peak Hour Factor	0.92	20	0.92	0.92	0.92	0.96	0.96
Add, Flow (rph) T/2 28 16 98 912 161 51 Land Cano Tarl (V) 0 0 0 1 1 5 5 Decided Frances 1 1 1 5 5 1 4 4 Decided Frances 1 1 1 5 5 1 4 4 Decided Frances 1 1 5 5 1 4 4 Decided Frances 1 1 5 5 1 4 4 Decided Frances 1 1 1 5 5 1 50 1 100 <td>Heavy Vehicles (%)</td> <td>8%</td> <td>5%</td> <td>0%</td> <td>8%</td> <td>7%</td> <td>1%</td> <td>0%</td>	Heavy Vehicles (%)	8%	5%	0%	8%	7%	1%	0%
time to serve the serve to serve to set the serve to set the set to se	Adj. Flow (vph) Shared Lane Traffic (%)	797	328	16	98	912	161	51
Tum Tipe NA D.P.0 D.P.0 NA P.Prof. actaom Permited Phases 1 1 5 15 4 4 Permited Phases 1 1 5 15 4 4 Permited Phases 1 1 5 15 4 4 Minimum Spit (A) 100 8:0 150 4:00 3:00 700 Total Spit (A) 55:0 15:0 15:0 3:00 3:00 700 Minimum Spit (A) 50:0 10:0 3:00 3:00 3:00 700 Minimum Spit (A) 0:0 0:0 0:0 70 70 70 Minimum Spit (A) 0:0 0:0 70 70 70 70 Total Spit (A) 70:0 10:0 18:0 70 70 70 Florid Cark (Min (O) 0:0 0:0 0:0 70 70 70 Florid Cark (Min (O) 0:0 0:0 70 70	Lane Group Flow (vph)	1125	0	0	114	912	161	51
relaced are intended 1 5 5 1 5 Solid Phase 1 5 5 1 5 4 4 Minimum Nial (0) 10 80 80 80 80 80 80 Minimum Nial (0) 100 80 80 80 80 80 80 Minimum Nial (0) 100 100 30.0 30.0 30.0 30.0 100 10.0<	Turn Type	NA		D.P+P	D.P+P	NA	Prot	custom
Decision Phase Minimum Staff (2) 100 80 80 80 80 80 80 80 100 100 80 80 80 80 80 80 100 10	Protected Phases Permitted Phases	1		5	5	15	4	4
Switch Tubba Minimum Nalia (s) 10.0 8.0 8.0 8.0 Minimum Nalia (s) 5.0 15.0 3.00 3.00 Minimum Nalia (s) 5.0 15.0 3.00 3.00 Minimum Nalia (Sen (s) 5.00 15.0 3.00 3.00 Manama Cheen (s) 5.00 10.0 10.0 3.00 All Red Time (s) 2.0 2.0 2.0 2.0 Load Time (s) 2.0 2.0 2.0 2.0 Valoa Time (s) 3.0 4.0 5.0 Lead Lag (primut?	Detector Phase	1		5	5	15	4	4
Minimum Spail (c) 24.0 15.0 15.0 30.0 Total Spail (c) 50.0% 13.0% 13.0% 30.4% 34.4% Minimum Cener (c) 50.0% 13.0% 13.0% 30.0 44.0 Velow Time (c) 3.0 3.0 3.0 3.0 30.0 Keed Time (c) 2.0 2.0 2.0 2.0 2.0 Lead Time Adjust (c) -2.0 -1.0 -1.0 0.0 Total Same (c) 3.0 4.0 4.0 5.0 Kealt Mode (c) 0.0 7.0 7.0 7.0 Recall Mode (c) 7.0 7.0 7.0 7.0 Recall Mode (c) 0.0 7.0 7.0 7.0 Recall Mode (c) 0.0 0.0 0.0 0.0 Actimetic (c) 7.0 9.0 0.0 0.0 Concers Advance (C) 0.0 0.0 0.0 0.0 Actimetic (c) 7.0 9.0 0.5 0.4 Actimetic (c) 0.0 0.0 0.0 0.0 Actimetic (c)	Switch Phase Minimum Initial (s)	10.0		8.0	8.0		8.0	8.0
Total Sgl (V) 50.0 Ta Swl 15.0 15.0 40.0 40.0 Maximum Green (s) 50.0 110.0 10.0 35.0 25.0 Yelvon Time (s) 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Minimum Split (s)	24.0		15.0	15.0		30.0	30.0
Vacantar Dečan (s) 900 100 100 2050 350 Valen Tine (s) 20 20 20 20 20 20 Alk Ref Tine (s) 20 20 20 20 20 Lead Lag Optimizer Vehice Extension (s) 20 20 20 20 Total Lost Tine (s) 30 40 40 50 Lead Lag Optimizer Vehice Extension (s) 20 20 20 20 20 Recal Mode C.Alaex None None None None Nach Tine (s) 70 70 Field Dot Nack (s) 80 Tiso 100 100 70 Recal Mode C.Alaex None None None None None Nach Tiso 110 Alk Ref (s) 70 Field Dot Nack (s) 80 Tiso 100 100 70 Recal Mode C.Alaex None None None None None Nach Tiso 110 Alk Time (s) 70 Recal Mode C.Alaex None None None None Nach Tiso 110 Recal Mode C.Alaex None None None None Nach Tiso 110 Recal Mode C.Alaex None None Nach Tiso 110 Recal Mode C.Alaex None None None Nach Tiso 110 Recal Mode C.Alaex None None None Nach Tiso 110 Recal Mode C.Alaex None None Nach Tiso 110 Recal Mode C.Alaex None None Nach Tiso 110 Recal Mode C.Alaex None	Total Split (s) Total Split (%)	55.0 50.0%		15.0	15.0		40.0	40.0
Yellow Time (s) 3.0 3.0 3.0 3.0 Lost Time Aglus (s) 2.0 2.0 2.0 1.0 Land Less Time (s) 3.0 4.0 4.0 5.0 Land Lag CAMex None None None Vehick Extension (s) 2.0 2.0 2.0 2.0 Vehick Extension (s) 2.0 2.0 2.0 2.0 Fash Deck Times (s) 0.0 None None None Vehick Extension (s) 7.0 2.0 2.0 2.0 Fash Deck Times (s) 0.0 0.0 0.0 0.0 Act Eff Green (s) 7.1 8.15 8.5 7.5 8.4 Ouese Delay 0.0 0.0 0.0 0.0 0.0 0.0 Tatal Dets Time (s) 7.1 4.2 5.5 8.4 A A Ouese Delay 0.0 0.0 0.0 0.0 1.0 1.0 1.0 Desc Engly Shy (h) 3.16 2.8 1.9 2.7 1.4 1.1 1.4 1.1 1.0	Maximum Green (s)	50.0		10.0	10.0		35.0	35.0
action market 2.0 2.0 2.0 2.0 2.0 Total Last Time (k) 3.0 4.0 4.0 5.0 Total Last Time (k) 3.0 4.0 4.0 5.0 Total Last Time (k) 3.0 4.0 4.0 5.0 Total Last Time (k) 3.0 4.0 5.0 2.0 Weik Time (k) 7.0 7.0 7.0 7.0 Fesh Dom Wak Time (k) 7.0 0 0 0 Actiated (C) 7.15 8.15 8.05 0.0 Actiated (C) Ratio 0.67 0.10 0.0 0.0 Actiated (C) Ratio 0.67 0.7 0.0 0.0 Oblice Delay 5.6 7.7 3.0 0.0 0.0 Oblice Delay 5.6 7.7 4.2 5.7 8.4 DOS A A A E A Approach Delay 5.6 7.7 4.0 5.7 7.8 Color Bolay 5.6 7.7 4.6 5.7 7.8 1.0 1.0 1.0	Yellow Time (s)	3.0		3.0	3.0		3.0	3.0
Tala Lost Time (s) 3.0 4.0 4.0 5.0 Lead-Lag Optimize? Vehice Extension (s) 2.0 2.0 2.0 2.0 2.0 Recall Mode (C-Max None None None None Wark Time (s) 7.0 Recall Mode (C-Max None	Lost Time Adjust (s)	-2.0		2.0	-1.0		-1.0	2.0
Lean ang Lean ang Lean ang Lean Ang Read Mude C Alkak Read Mude C Alkak Read Mude C Alkak Bash Cont Valks (\$) 10 10 Pedestin Cals (Mn) 0 Pedestin Cals (Mn) 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Lost Time (s)	3.0			4.0		4.0	5.0
Vehice Zehrsson (s) 2.0 2.0 2.0 2.0 Wak Tme (s) 7.0 7.0 7.0 Fish Dorn Vak (s) 0.0 7.0 7.0 Fish Dorn Vak (s) 0.0 0.0 0.0 Az HErd Creen (s) 7.15 B.15 B.5.165 3.05 Aztuałd gC Raio 0.65 0.74 0.79 0.15 0.28 Owae Delay 5.6 7.7 3.9 5.7 8.4 Owae Delay 5.6 7.7 4.2 5.7 8.4 Approach Delay 5.6 7.7 4.2 5.7 8.4 Oto S A A A D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Lead/Lag Lead-Lag Optimize?							
Recal Mode C-Max None None None None Flash Don Walk (s) 8.0 18.0 7.0 7.0 Flash Don Walk (s) 8.0 0 0 0 Act Eff Green (s) 7.1.5 81.5 86.5 16.5 30.5 Actabed gC Ratio 0.6.5 0.74 0.79 0.75 0.28 vic Ratio 0.6.1 0.32 0.40 0.67 0.12 Control Delay 5.6 7.7 3.9 55.7 8.4 OBese Delay 0.0 0.0 0.0 0.0 10.28 LOS A A A E A Approach DLOS A A D Steps (uph) 31.6 28 155 57 Steps (uph) 3.6 2.8 155 59 9 D	Vehicle Extension (s)	2.0		2.0	2.0		2.0	2.0
Piesh Davi Walk (c) 80 180 180 Pedestrian Calls (#hr) 0 0 0 Pedestrian Calls (#hr) 0 0 0 Acthated QC Ratio 0.65 0.74 0.79 0.15 0.28 Vice Ratio 0.61 0.32 0.40 0.67 0.12 Control Delay 5.6 7.7 39 55.7 8.4 Queue Delay 5.6 7.7 42 55.7 8.4 Approach Delay 5.6 7.7 42 55.7 8.4 Approach Delay 5.6 7.7 42 55.7 8.4 Approach Delay 5.6 7.7 42 55.7 8.4 LOS A A A D </td <td>Recall Mode Walk Time (s)</td> <td>C-Max 7.0</td> <td></td> <td>None</td> <td>None</td> <td></td> <td>None 7.0</td> <td>None 7.0</td>	Recall Mode Walk Time (s)	C-Max 7.0		None	None		None 7.0	None 7.0
Pedestina Calls (<i>III</i> n) 0 0 0 0 Act LEft Green (c) 71.5 81.5 86.5 16.5 30.5 Actualet gC Ralo 0.65 0.74 0.79 0.15 0.28 vice Ralo 0.61 0.32 0.40 0.67 0.12 Control Delay 5.6 7.7 3.9 55.7 8.4 Queue Delay 0.0 0 00 0.3 0.0 0.0 Total Delay 5.6 7.7 4.2 55.7 8.4 LOS A A A A E A Approach Delay 5.6 4.6 44.4 Approach Delay 5.6 4.6 44.4 Approach Delay 5.6 4.6 44.4 Approach Delay 5.6 4.6 44.4 Control Delay 5.6 4.6 44.4 Approach Delay 5.6 4.6 44.4 D Stops (v/n) 31.6 28 195 14.2 17 Fuel Used(a) 4 1 3 4 1 Co Emissions (g/n') 25.7 4.6 50 7 VOC Emissions (g/n') 55 7 4.6 50 7 VOC Emissions (g/n') 55 7 4.6 50 7 VOC Emissions (g/n') 43 54 108 m162 m162 Dilemma Vehicles (*) 0 0 0 0 0 0 Dueue Length 50h (n) 31 15 82 108 4 Dueue Length 50h (n) 43 54 108 m162 m162 Turn Bay Length (n) 83 332 229 526 502 Stanvalin Cap Reducin 8 0 674 0 0 Storage Cap Reducin 0 0 0 0 0 0 Storage Cap Reducin 0 0.0 18 0 0 Storage Cap Reducin 0 0.0 18 0 0 Storage Cap Reducin 0 0.0 0 0 Reduced vic Ralio 0.62 0.32 0.56 0.31 0.10 Herescelin Summary Ara Type: CBD Control Type: Audied Coordinated Mainum Vic Ralio 0.57 Itterssee Reteriou 10 phase 1:EBWB, Start of Green Natural Cycle: Bay Reteriou 10 phase 1:EBWB, Start of Green Natural Cycle: 80 Control Type: Audied Coordinated Mainum Vic Ralio 0.67 Itterssee Chapter Ullization 59.5% Itter Length 51.6 M Arabase Period (fun) 15 To Volume To 59.5% Itter CBD Cycle Length: 110 Control Type: Audied Coordinated Mainum Vic Ralio 0.67 Itterssee Chapter Ullization 59.5% Itter CBD Cycle Length: 10 Arabase Period (fun) 15 To Volume To 59.5% Itter CBD Cycle Length: 10 Arabase Period (fun) 15 To Volume To 59.5% Itter CBD Cycle Length: 10 Control Type: Audied Cordinated Mainum Vic Ralio 0.67 Itterssee Cap Reducin 0 0.75 Itterssee C	Flash Dont Walk (s)	8.0					18.0	18.0
Challed of Calleo O 13 OL3 OL3 <thd1< th=""> <thd1< th=""> <thd1< th=""></thd1<></thd1<></thd1<>	Pedestrian Calls (#/hr)	0			Q1 E	94 E	0 14 F	30 F
wic Rato 0.61 0.32 0.40 0.67 0.12 Control Delay 5.6 7.7 3.9 55.7 8.4 Queue Delay 5.6 7.7 4.2 55.7 8.4 LOS A A A E A Approach LOS A A A Delay 5.6 7.7 Approach LOS A A A Delay 5.6 7.7 4.2 5.7 Stops (rph) 316 2.8 195 142 17 Total Delay 5.6 7 4.6 5.0 7 VOC Emissions (ghr) 283 3.3 238 255 37 NOXE missions (ghr) 6.6 9 5.5 7 9 Dilemary Lein(ket (r) 0	Actuated g/C Ratio	0.65			01.5	00.5	0.15	0.28
Control Leagy 3.0 1.7 5.7 8.4 Control Lobs 0.0 0.0 0.0 0.0 Total Delay 5.6 7.7 4.2 55.7 8.4 Appraach Delay 5.6 4.6 44.4 4.4 Appraach Delay 5.6 4.6 44.4 Appraach LOS A A E A De Control Loss A A Image Leagt And And A A Control Loss A A A Image Leagt And And A A Control Loss A A A Image Leagt And And A A Image Leagt And And A A Control Loss A A A A Image Leagt And And A A Image Leagt And And A A Image Leagt And And And And A Image Leagt And And And And A Image Leagt And And And And And And A	v/c Ratio	0.61			0.32	0.40	0.67	0.12
Total Delay 5.6 7.7 4.2 55.7 8.4 LOS A A A E A Approach Delay 5.6 4.6 4.4.4 Approach LOS A A D Stops (rph) 316 28 17 Fuel Used(gan) 4 1 3 4 1 O E missions (ghr) 55 7 46 50 7 VOC Emissions (ghr) 55 7 46 50 7 O Core Length Stoth (ft) 31 15 82 108 Queue Length Stoth (ft) 31 15 82 108 Queue Length Stoth (ft) 13 15 82 108 Datemath Vehicles (ft) 0 0 0 0 0 Queue Length Stoth (ft) 31 15 82 108 m12 Internal Link Dis (ft) 59 175 832 100 0 Sparation Cap Reduct 130 158 229 526 502 Sparation Cap Reduct 0 <td>Queue Delay</td> <td>5.6 0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.3</td> <td>55.7 0.0</td> <td>8.4 0.0</td>	Queue Delay	5.6 0.0			0.0	0.3	55.7 0.0	8.4 0.0
LUS A A A A E A Aproach LOS A A A D Stops (vph) 316 28 195 142 17 Fuel Used(gal) 4 1 3 4 1 CO Emissions (ghr) 283 37 238 255 37 VOC Emissions (ghr) 65 7 46 50 7 VOC Emissions (ghr) 66 9 55 59 9 Dilemar Vehicles (θ) 0 0 0 0 0 Oueue Length 50h (ft) 31 15 82 108 4 Queue Length 50h (ft) 43 54 108 m162 m12 Itemar Link 10t (ft) 59 175 832 Turn Bay Length (ft) 43 54 108 m162 m12 Itemar Link 10t (ft) 59 175 832 Turn Bay Length (ft) 10 10 100 Storage Cap Reductn 8 0 674 0 0 Storage Cap Reductn 0 0 0 128 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 110 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 10 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 10 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 10 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 10 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 10 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle Length: 10 Offset: 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle In 75 (68%), Referenced to phase 1: EBWB, Start of Green Natural Cycle I	Total Delay	5.6			7.7	4.2	55.7	8.4
Approach LOS A A D Stops (vph) 316 28 195 142 17 Fuel Used(gal) 4 1 3 4 1 CO Emissions (ghr) 283 37 238 255 37 NOXE missions (ghr) 66 9 55 59 9 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length Sthi (tt) 31 15 82 108 4 Queue Length Sthi (tt) 43 54 108 m162 m12 Internal Link Dis (tt) 59 175 82 100 Base Capacity (vph) 130 158 22 100 Base Capacity (vph) 130 353 2292 256 502 53 53 53 100 <t< td=""><td>LOS Approach Delay</td><td>A</td><td></td><td></td><td>A</td><td>A 4.6</td><td>44 4</td><td>A</td></t<>	LOS Approach Delay	A			A	A 4.6	44 4	A
Stops (ph) 316 28 195 142 17 Fuel Used(gal) 4 1 3 4 1 CO Emissions (ghr) 283 37 238 255 37 NOX Emissions (ghr) 55 7 46 50 7 VOC Emissions (ghr) 55 7 46 50 7 VOC Emissions (ghr) 66 9 55 59 9 Dilemma Vehicles (#) 0 0 0 0 0 Oucue Length 95th (th) 31 15 82 m12 Internal Link Dis (th) 59 175 832 m12 Internal Link Dis (th) 59 175 832 502 Stanation Cap Reductn 0 0 0 0 Spliback Cap Reductn 0 0.25 502 502 Stanation Cap Reductn 0 0.23 0.56 0.31 0.10 Intersection Summary	Approach LOS	3.0 A				A	D	
Note Enclosions (g/hr) 283 37 23 255 37 NOX Emissions (g/hr) 55 7 46 50 7 VOC Emissions (g/hr) 66 9 55 59 9 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) 31 15 82 108 4 Queue Length 95th (ft) 43 54 108 m162 m12 Internal Link Dist (ft) 59 175 832 100 Base Capacity (vph) 1830 353 252 526 502 Stavation Cap Reductn 8 0 674 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 10 Storage Cap Reductn 0 0 0 0 0 0 0 0 <t< td=""><td>Stops (vph) Fuel Used(gal)</td><td>316</td><td></td><td></td><td>28</td><td>195</td><td>142</td><td>17</td></t<>	Stops (vph) Fuel Used(gal)	316			28	195	142	17
NOX Emissions (g/hr) 55 7 46 50 7 VOC Emissions (g/hr) 66 9 55 59 9 Diterma Vehicles (#) 0 0 0 0 0 Queue Length S0h (ft) 31 15 82 108 4 Queue Length S0h (ft) 33 54 108 m12 Internal Link Dist (ft) 59 175 832 Turn Bay Length (ft) 100 100 Base Capacity (wh) 1830 353 2292 526 502 Starvation Cap Reductn 8 0 674 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0	CO Emissions (g/hr)	283			37	238	4 255	37
v0.0 y	NOx Emissions (g/hr)	55			7	46	50	7
Queue Length 50th (th) 31 15 82 108 4 Queue Length 95th (th) 43 54 108 m162 m12 Internal Link Dist (th) 59 175 832 Tum Bay Length (th) 100 100 Base Capacity (vph) 1830 353 2292 526 502 Starvation Cap Reductin 8 0 674 0 0 Spillback Cap Reductin 0 0 128 0 0 Storage Cap Reductin 0 0 0 0 0 Reduced vic Ratio 0.62 0.32 0.56 0.31 0.10 Intersection Summary	Dilemma Vehicles (#)	66 0			9	55	59	9
Cueue Lengin Youn (u) 4.3 54 108 m162 m12 Internal Link Dist (ft) 59 175 832 100 Base Capacity (vph) 1830 353 2292 526 502 Stavation Cap Reductin 8 0 674 0 0 Spillback Cap Reductin 0 0 128 0 0 Spillback Cap Reductin 0 0 128 0 0 Spillback Cap Reductin 0 0 0 0 0 Spillback Cap Reductin 0 0.62 0.32 0.56 0.31 0.10 Intersection Summary	Queue Length 50th (ft)	31			15	82	108	4
Turn Bay Length (t) 100 100 Base Capacity (vph) 1830 353 2292 526 Stavation Cap Reducth 8 0 674 0 Spillback Cap Reducth 0 0 128 0 Storage Cap Reducth 0 0 0 0 Reduced vic Ratio 0.62 0.32 0.56 0.31 0.10 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Area Type: CBD Cycle Length: 110 Actuated Cycle Length: 110 Offset: 75 (68%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 80 Control Type: Katuated-Coordinated Maximum vic Ratio: 0.67 Intersection LOS: A Intersection LOS: A Intersection Gapacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Queue Length 95th (ft) Internal Link Dist (ft)	43 59			54	108 175	m162 832	m12
Base Capacity (vph) 1830 353 2292 526 502 Starvation Cap Reductin 8 0 674 0 0 Storage Cap Reductin 0 0 128 0 0 Storage Cap Reductin 0 0 0 128 0 0 Reduced v/c Ratio 0.62 0.32 0.56 0.31 0.10 Intersection Summary Area Type: CBD Cycle Length: 110 Actuated Cycle Length: 110 Offset: 75 (68%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.67 Intersection Coordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay: 8.6 Intersection LOS: A Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Turn Bay Length (ft)	J7			100	173	002	100
Spillaak Cap Reductin 0 0 0 128 0 0 Storage Cap Reductin 0 0 0 28 0 0 Reduced vic Ratio 0.62 0.32 0.56 0.31 0.10 Intersection Summary Area Type: CBD Cycle Length: 110 Actuated Cycle Length: 110 Offset: 75 (6%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.67 Intersection Capacity Utilization 59:5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentille queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Base Capacity (vph) Starvation Cap Reducts	1830			353	2292	526	502
Storage Cap Reductin 0 0 0 0 0 Reduced vic Ratio 0.62 0.32 0.56 0.31 0.10 Intersection Summary	Spillback Cap Reductin	0			0	128	0	0
Network Vic Nativ 0.02 0.32 0.30 0.10	Storage Cap Reductn	0			0	0 54	0.21	0
Area Type: CBD Cycle Length: 110 Actuated Cycle: Length: 110 Control Type: Actuated-Coordinated Maximum Vic Ratio: 0.67 Intersection Clignal Delay: 8.6 Intersection LOS: A Intersection Signal Delay: 8.8 Intersection Signal Delay: 8.6 Intersection LOS: A Intersection LOS: 8.6 Intersection LOS: 8.6 Intersection LOS:	Reduced V/C Ratio	U.62			0.32	U.56	U.31	U. IU
Cycle Ength: 110 Actuated Cycle Length: 110 Offset: 75 (68%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay: 8.6 Intersection LOS: A Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Area Type:	CBD						
Actuated Cycle Length: 110 Offset: 75 (68%), Referenced to phase 1:EBWB, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.67 Intersection Signal Delay: 8.6 Intersection LOS: A Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Cycle Length: 110	000						
Shatar (Cycle 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay: 8.6 Intersection LOS: A Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Actuated Cycle Length: 110 Offset: 75 (68%) Referenced	to phase 1.	FRWR S	tart of Gre	en			
Control Type: Actuated-Coordinated Maximum vic Ratio: 0.67 Intersection Signal Delay: 8.6 Intersection LOS: A Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard Splits (R)	Natural Cycle: 80	no pridoc 1.	-0110, 3					
Intersection Signal Delay: 8.6 Intersection LOS: A Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard Splits and Phases: 01 (R)	Control Type: Actuated-Coord	dinated						
Intersection Capacity Utilization 59.5% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Intersection Signal Delay: 8.6				In	tersection	LOS: A	
Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	Intersection Capacity Utilizati	on 59.5%			IC	CU Level o	f Service	В
Splits and Phases: 8: Boston Wharf Road (WSR) & Seaport Boulevard	m Volume for 95th percenti	le queue is r	netered b	y upstrea	m signal.			
Spills and Priases: δ: Boston what κοασ (WSK) & Seaport Boulevard \$	Collin and Di Collin							
1 → 01 (R) → 04	Splits and Phases: 8: Bost	on Wharf Ro	ad (WSR) & Seapo	ort Bouleva	ard		
	● ●Ø1 (R)							

↓ - ✓
SBT SBR
0 00
0 80
1900 1900
12 12
0
1.00 1.00
0.46
).850
0 0
0 0
0 0
169 Yes
30
335
7.6
0.92 0.92
570 1570
0 87
87 0
0, 0
0.0
0.00
0.51
0.0
0.0
A 21.4
C C
44
0
6
7
0
0
255
169
0
0
0.51
_

	→	\mathbf{i}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	≜t ≯			41	ካካ	1
Trattic Volume (vph)	845	111	49	373	393	133
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	13	11	12
Storage Length (ft) Storage Lanes		0	0		125	125
Taper Length (ft)		0	25		25	U
Lane Util. Factor	0.95	0.95	0.95	0.95	0.97	1.00
Ped Bike Factor Frt	1.00					0.850
Flt Protected	0.705			0.994	0.950	0.050
Satd. Flow (prot)	2888	0	0	2486	2901	1358
Fit Permitted Satd_Elow (perm)	2888	0	0	0.757	0.950	1358
Right Turn on Red	2000	No	U	1073	2701	No
Satd. Flow (RTOR)						
LINK Speed (mph)	30			30 591	30 498	
Travel Time (s)	8.9			13.4	11.3	
Confl. Bikes (#/hr)	0.00	23		0.00	0.00	0.00
Peak Hour Factor Heavy Vehicles (%)	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)	1170	J /0	2470	2070	-J /0	1 /0
Adj. Flow (vph)	918	121	53	405	427	145
Shared Lane Traffic (%)	1030	0	0	459	107	145
Turn Type	NA	0	Perm	408 NA	Prot	Prot
Protected Phases	1			1	4	4
Permitted Phases	1		1	1	A	4
Switch Phase	1		1	1	4	4
Minimum Initial (s)	10.0		10.0	10.0	8.0	8.0
Minimum Split (s)	28.0		28.0	28.0	28.0	28.0
Total Split (%)	65.0 59.1%		65.0 59.1%	59.1%	45.0 40.9%	45.0 40.9%
Maximum Green (s)	60.0		60.0	60.0	40.0	40.0
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0
Lost Time Adjust (s)	-2.0		2.0	-2.0	2.0	2.0 0.0
Total Lost Time (s)	3.0			3.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize? Vehicle Extension (s)	2.0		2.0	2.0	2.0	2.0
Recall Mode	C-Max		C-Max	C-Max	Min	Min
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s) Pedestrian Calls (#/br)	16.0		16.0	16.0	16.0	16.0
Act Effct Green (s)	80.9		0	80.9	21.1	21.1
Actuated g/C Ratio	0.74			0.74	0.19	0.19
v/c Ratio Control Delay	0.49			0.33	0.77	0.56
Queue Delay	13.0			0.4	47.3	44.0 0.0
Total Delay	14.9			6.4	47.4	44.6
LOS Approach Dolair	B			A	D	D
Approach Delay Approach LOS	14.9 B			6.4 A	40.7 D	
Stops (vph)	683			142	284	90
Fuel Used(gal)	9			3	7	2
NOx Emissions (g/hr)	654 127			229	481 94	155
VOC Emissions (g/hr)	151			53	111	36
Dilemma Vehicles (#)	0			0	0	0
Queue Length 50th (ft) Queue Length 95th (ft)	304			50 93	108 m137	m102
Internal Link Dist (ft)	312			511	418	
Turn Bay Length (ft)	0404			1000	125	125
Starvation Cap Reducto	2124			1392	1054	493
Spillback Cap Reductn	0			0	89	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.78			0.33	0.44	0.29
Intersection Summary	000					
Area Type: (Cycle Length: 110	CBD					
Actuated Cycle Length: 110						
Offset: 0 (0%), Referenced to	phase 1:EE	BWB, Sta	art of Gree	n		
Natural Cycle: 60	lin atau!					
Control Type: Actuated-Coord Maximum v/c Ratio: 0.77	linated					
Intersection Signal Delay: 21.8	8			Ir	ntersection	LOS: C
Intersection Capacity Utilizatio	on 66.2%			10	CU Level o	f Service
Analysis Period (min) 15		motorod	by unstra-	am cianal		
m volume for your percentile	e queue is r	metered	ny uhattes	un signaí.		
Splits and Phases: 10: B St	treet & Sear	port Boul	evard			
501 (P)						
65 s						
						_

	الحر	-+	\mathbf{r}	4	-	•	•	Ť	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2
Lane Configurations		ፋጉ			4î»		۲		1		4		
Traffic Volume (vph)	23	558	318	48	178	28	253	0	43	36	16	16	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Fed bike Factor Frt		0.95			0.99		0.94	0.57	0.850		0.88		
Flt Protected		0.999			0.991		0.950				0.974		
Satd. Flow (prot) Elt Permitted	0	2805	0	0	2500	0	1626	0	1615	0	1325	0	
Satd. Flow (perm)	0	2641	0	0	1745	0	1532	0	1615	0	1216	0	
Right Turn on Red			Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)		129			16 30			164 30	109		12 30		
Link Distance (ft)		372			296			334			515		
Travel Time (s)	20	8.5	170	170	6.7	20	22	7.6	21	21	11.7	22	
Confl. Peas. (#/hr)	29		1/3	1/3		29	32		31	31		32	
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.95	0.95	0.95	0.92	0.92	0.92	
Heavy Vehicles (%)	26%	17%	13%	0%	49%	50%	11%	0%	0%	24%	67%	7%	
Shared Lane Traffic (%)	25	000	34Z	JZ	175	30	200	U	10%	37	17	17	
Lane Group Flow (vph)	0	967	0	0	275	0	266	5	40	0	73	0	
Turn Type Protected Phases	Perm	NA 1		Perm	NA 1		Prot 7		Prot 7	Split 8	NA 8		2
Permitted Phases	1			1			/		/	0	0		2
Detector Phase	1	1		1	1		7		7	8	8		
Switch Phase Minimum Initial (s)	16.0	16.0		16.0	16.0		6.0		6.0	6.0	6.0		4.0
Minimum Split (s)	21.0	21.0		21.0	21.0		11.0		11.0	11.0	11.0		21.0
Total Split (s)	48.0	48.0		48.0	48.0		20.0		20.0	11.0	11.0		21.0
Total Split (%) Maximum Green (s)	48.0%	48.0%		48.0%	48.0%		20.0%		20.0%	11.0%	11.0%		21%
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0		3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0		2.0	2.0	2.0		0.0
Total Lost Time (s)		5.0			5.0		5.0		5.0		5.0		
Lead/Lag	Lead	Lead		Lead	Lead		Lead		Lead	Lag	Lag		Lag
Lead-Lag Optimize?	2.0	2.0		20	2.0		2.0		2.0	2.0	2.0		2.0
Recall Mode	C-Max	C-Max		C-Max	C-Max		None		None	None	None		None
Walk Time (s)													7.0
Flash Dont Walk (s) Pedestrian Calls (#/hr)													6.0
Act Effct Green (s)		49.2			49.2		25.5	0.0	25.5		10.3		0
Actuated g/C Ratio		0.49			0.49		0.26	0.00	0.26		0.10		
V/c Ratio Control Delay		0.71			0.32		0.64	0.03	0.08		0.50 46.8		
Queue Delay		0.0			0.0		0.0	0.0	0.0		0.0		
Total Delay		21.1			16.3		41.3	0.0	0.3		46.8		
Approach Delay		21.1			16.3		D	35.4	A		46.8		
Approach LOS		С			В			D			D		
Stops (vph)		613			142		223	0	0		51		
CO Emissions (g/hr)		689			154		281	1	7		83		
NOx Emissions (g/hr)		134			30		55	0	1		16		
VUC Emissions (g/hr) Dilemma Vehicles (#)		160			36		65	0	2		19		
Queue Length 50th (ft)		209			49		153	0	0		37		
Queue Length 95th (ft)		325			89		235	0	0		79		
Internal Link Dist (ft) Turn Bay Length (ft)		292			216			254			435		
Base Capacity (vph)		1365			867		414	164	492		146		
Starvation Cap Reductn		0			0		0	0	0		0		
Spillback Cap Reductn Storage Can Reductn		0			0		0	0	0		0		
Reduced v/c Ratio		0.71			0.32		0.64	0.03	0.08		0.50		
Intersection Summary													
Area Type:	Other												
Cycle Length: 100 Actuated Cycle Length: 1	100												
Offset: 19 (19%), Refere	nced to phase 1	:EBWB, S	tart of Gre	en									
Natural Cycle: 90	Coordinated												
Maximum v/c Ratio: 0.71	Loordinated												
Intersection Signal Delay	: 24.2			Ir	ntersection	LOS: C							
Intersection Capacity Uti Analysis Period (min) 15	lization 73.8%			10	CU Level o	t Service	U						
mayaa renou (min) 13													
Splits and Phases: 12	D Street & Sea	port Boule	vard										
💭 Ø1 (R)											l ø2		
48 s										2	1 s		

	٦	→	\mathbf{r}	4	←	•	٩	Ť	۲	6	ŧ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations Traffic Volume (vph)	4	41 375	140	352	₽ 458	7	153	র্ব 47	219	18	4 ⊅ 45	16		
Future Volume (vph)	4	375	140	352	458	7	153	47	219	18	45	16		
Lane Width (ft)	12	11	11	11	11	12	12	16	12	12	16	12		
Storage Length (tt) Storage Lanes	100		100	0		0	0		100	0		0		
Taper Length (ft)	25	0.95	1.00	25 1.00	1.00	1.00	25 1.00	1.00	1.00	25 1.00	1.00	1.00		
Ped Bike Factor	0.75	0.75	0.96	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Frt Flt Protected		0.999	0.850	0.950	0.998			0.963	0.850		0.973			
Satd. Flow (prot)	0	2990	1364	1570	1617	0	0	1775	1425	0	1728	0		
Satd. Flow (perm)	0	2846	1308	850	1617	0	0	1775	1425	0	1728	0		
Right Turn on Red Satd. Flow (RTOR)			No		1	Yes			Yes 226		10	Yes		
Link Speed (mph)		30 101			30			30 213			30 710			
Travel Time (s)		4.3			10.9			4.8			16.1			
Confl. Bikes (#/hr) Peak Hour Factor	0.97	0.97	14 0.97	0.92	0.92	8 0.92	0.97	0.97	2 0.97	0.92	0.92	0.92		
Heavy Vehicles (%)	0%	5%	3%	0%	2%	0%	4%	9%	2%	0%	0%	40%		
Shared Lane Traffic (%)	4	307	144	303	470	0	100	40	220	20	47	17		
Lane Group Flow (vph) Turn Type	0 Perm	391 NA	144 Perm	383 D.P+P	506 NA	0	0 Split	206 NA	226 pt+ov	0 Split	86 NA	0		
Protected Phases	1	1	1	6	16		5	5	56	4	4			
Detector Phase	1	1	1	6	16		5	5	56	4	4			
Switch Phase Minimum Initial (s)	10.0	10.0	10.0	4.0			4.0	4.0		8.0	8.0			
Minimum Split (s)	25.0	25.0	25.0	10.0			27.0	27.0		26.0	26.0			
Total Split (%)	34.0 30.9%	34.0 30.9%	34.0 30.9%	13.6%			35.0 31.8%	35.0 31.8%		26.0 23.6%	26.0			
Maximum Green (s) Yellow Time (s)	27.0	27.0 3.0	27.0	9.0 3.0			30.0 3.0	30.0 3.0		21.0 3.0	21.0			
All-Red Time (s)	4.0	4.0	4.0	3.0			2.0	2.0		2.0	2.0			
Total Lost Time (s)		7.0	7.0	6.0				-1.0			-1.0			
Lead/Lag Lead-Lag Ontimize?							Lag	Lag		Lead	Lead			
Vehicle Extension (s)	2.0	2.0	2.0	2.0			2.0	2.0		2.0	2.0			
Walk Time (s)	C-Max 7.0	C-Max 7.0	C-Max 7.0	None			None 7.0	None 7.0		Min 7.0	7.0			
Flash Dont Walk (s) Pedestrian Calls (#/hr)	11.0 0	11.0 0	11.0 0				14.0 0	14.0 0		14.0 0	14.0 0			
Act Effct Green (s)		50.8	50.8	60.8	65.8			18.2	32.2		11.0			
v/c Ratio		0.46	0.46	0.55	0.60			0.17	0.29		0.10			
Control Delay Queue Delay		17.6	18.5	24.7	16.6			55.7	5.5		45.4			
Total Delay		17.6	18.5	24.7	16.8			55.7	5.5		45.4			
Approach Delay		в 17.8	В	U	В 20.2			29.5	A		45.4			
Approach LOS Stops (vph)		B 162	60	199	C 206			C 183	21		D 66			
Fuel Used(gal)		3	1	4	4			4	1		2			
NOx Emissions (g/hr)		38	15	57	61			49	10		22			
VOC Emissions (g/hr) Dilemma Vehicles (#)		46 0	17 0	68 0	72			59 0	12		27			
Queue Length 50th (ft)		56	39	103	143			139	0		54 m101			
Internal Link Dist (ft)		108	72	#237	398			133	51		630			
Turn Bay Length (ft) Base Capacity (vph)		1314	100 604	529	967			500	100 587		353			
Starvation Cap Reductn		0	0	0	85			0	0		0			
Storage Cap Reductn		0	0	0	0			0	0		0			
Reduced v/c Ratio		0.30	0.24	0.72	0.57			0.41	0.39		0.24			
Area Type: (CBD													
Cycle Length: 110 Actuated Cycle Length: 110														
Offset: 25 (23%), Referenced t	to phase 1:	EBWB, S	tart of Gre	en										
Control Type: Actuated-Coordi	inated													
Maximum v/c Ratio: 0.72 Intersection Signal Delay: 22.7	1			Ini	ersection	LOS: C								
Intersection Capacity Utilizatio	n 72.7%			IC	U Level of	Service (2							
# 95th percentile volume exc	ceeds capa	city, queu	e may be	longer.										
Queue shown is maximum m Volume for 95th percentile	after two c e queue is i	ycles. netered b	y upstrear	n signal.										
Splits and Phases: 15: A Str	reet/Thoms	on St & C	ongress S	Street										4
Ø1 (R)						₩ø4							₩ ø5	¥126

	٠	-	\mathbf{r}	F	1	←	*	•	Ť	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	101	4	102	10	100	†	100	103	120	00	40	4	1
Future Volume (vph)	121	283	182	18	238	657	129	103	139	80	40	98 98	52 52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft) Storage Length (ft)	12	12	12	12	12 150	12	12	16	11	12	12	11	11 125
Storage Lanes	0		1		1		0	1		0	0		123
Taper Length (ft)	25	1.00	1.00	0.05	25	0.05	0.05	25	1.00	1.00	25	1.00	1.00
Ped Bike Factor	1.00	0.99	0.77	0.95	0.91	0.95	0.95	0.76	0.97	1.00	1.00	0.99	0.69
Frt Elt Danta sta d		0.005	0.850		0.050	0.975		0.050	0.945			0.007	0.850
Fit Protected Satd, Flow (prot)	0	0.985	1454	0	0.950	2697	0	0.950	1439	0	0	0.986	1405
Flt Permitted	J	0.537	1404	J	0.418	2071	U	0.662	1-137	U	U	0.835	1403
Satd. Flow (perm)	0	862	1115	0	648	2697	0	970	1439	0	0	1278	975
Satd. Flow (RTOR)			res 198			25	res		26	res			res 56
Link Speed (mph)		30				30			30			30	
Link Distance (ft) Travel Time (s)		478				521			204			912	
Confl. Peds. (#/hr)	103	10.9	69	36	69	11.0	103	64	4.0	36	36	20.7	64
Confl. Bikes (#/hr)			9	A 44		0.00	8	0.51	0.51	2	0.00	0.57	<i>.</i>
Peak Hour Factor Heavy Vehicles (%)	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.94 0%	0.94	0.94	0.92	0.92	0.92
Parking (#/hr)	070	170	070	070	070	0	0	070	170	270	1170	370	070
Adj. Flow (vph)	132	308	198	20	259	714	140	110	148	85	43	107	57
Shared Lane Traffic (%)	0	440	109	0	270	854	0	110	222	0	0	150	57
Turn Type	Perm	NA	Perm	Perm	Perm	NA	0	Perm	NA	0	D.P+P	NA	custom
Protected Phases		1				1		-	5		4	45	4
Permitted Phases	1	1	1	1	1	1		5	5		5	45	5
Switch Phase	- 1		1	1	1			5			4	40	4
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0		8.0	8.0		8.0		8.0
Minimum Split (s) Total Split (s)	23.0	23.0	23.0	23.0	23.0	23.0		21.0 35.0	21.0		13.0		13.0 25.0
Total Split (%)	45.5%	45.5%	45.5%	45.5%	45.5%	45.5%		31.8%	31.8%		22.7%		22.7%
Maximum Green (s)	45.0	45.0	45.0	45.0	45.0	45.0		30.0	30.0		20.0		20.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0		3.0
Lost Time Adjust (s)	2.0	-1.0	-1.0	2.0	-1.0	-1.0		-1.0	-1.0		2.0		-1.0
Total Lost Time (s)		4.0	4.0		4.0	4.0		4.0	4.0				4.0
Lead/Lag								Lag	Lag		Lead		Lead
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0		2.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max		Min	Min		Min		Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		0.0	0.0		7.0		7.0
Flash Dont Walk (s) Pedestrian Calls (#/hr)	11.0	11.0 0	11.0	11.0	11.0 0	11.0 0		16.0 0	16.0 0		0.0		0.0
Act Effct Green (s)	J	63.2	63.2	J	63.2	63.2		21.5	21.5		U	34.8	34.8
Actuated g/C Ratio		0.57	0.57		0.57	0.57		0.20	0.20			0.32	0.32
V/C Ratio Control Delay		0.89	0.27		0.75	0.55		0.58	0.77			0.35	0.14
Queue Delay		0.0	0.0		0.0	0.1		0.0	0.0			0.0	0.0
Total Delay		37.8	1.2		24.9	11.7		51.3	53.5			35.8	13.3
LUS Approach Delay		D 26 4	A		С	15.0		D	52 g			D 20 6	В
Approach LOS		20.4 C				B			52.0 D			27.0 C	
Stops (vph)		262	3		125	318		92	182			97	21
Fuel Used(gal)		6	1		3	7		2	4			3	1
NOx Emissions (g/hr)		420	52		41	475		24	201 51			34	44
VOC Emissions (g/hr)		98	12		49	110		28	61			41	10
Dilemma Vehicles (#)		0	0		0	0		0	0			0	0
Queue Length 50th (ft)		222 #563	0		94 m#317	126		120	209			82	13 m16
Internal Link Dist (ft)		398	5		111/ 517	441		120	124			832	iiiio
Turn Bay Length (ft)					150								125
Base Capacity (vph)		495	725		372	1560		273	424			608	462
Spillback Cap Reductn		0	0		0	0		0	0			0	0
Storage Cap Reductn		0	0		0	0		0	0			0	0
Reduced v/c Ratio		0.89	0.27		0.75	0.60		0.40	0.55			0.25	0.12
Intersection Summary													
Area Type: Cycle Length: 110	CBD												
Actuated Cycle Length: 110													
Offset: 25 (23%), Reference	d to phase 1:	EBWB, S	tart of Gre	een									
Natural Cycle: 80	rdinated												
Maximum v/c Ratio: 0.89	rumated												
Intersection Signal Delay: 25	5.0			Ir	ntersection	LOS: C							
Intersection Capacity Utilizat	tion 85.9%			10	CU Level o	f Service E							
Analysis Period (min) 15 # 95th percentile volume e	exceeds cana	city, queu	e mav be	longer.									
Queue shown is maximu	m after two c	ycles.											
m Volume for 95th percent	tile queue is i	metered b	y upstrea	m signal.									
Solits and Phases 14. Po	iston Wharf C	Suad UNC	R) & Conv	ILDES Stro	et								
Spins and FridSes: 10: BU	ision windil F	Juau (WS	iv) a cuni	ງເຮົາວ ວແຕ	51					A.			
Ø1 (R)										₩ Ø4			

	≯	-	+	•	1	t.	1	•	•	/	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	NBR	NEL2	NEL	NER	
Lane Configurations Traffic Volume (voh)	1 61	** 326	†1 > 608	210	190	4 ↑ 330	1 89	225	317	178	
Future Volume (vph)	61	326	608	219	190	330	89	225	317	178	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	175	12	15	50	0	12	0	12	0	0	
Storage Lanes	1			0	0		1		2	0	
Taper Length (ft) Lane Litil Factor	25 1.00	0.95	0.95	0.95	25 0.95	0.95	1.00	0.95	25 0 97	0.95	
Ped Bike Factor	1.00	0.70	0.96	0.70	0.70	0.93	1.00	0.70	0.92	0.70	
Frt Elt Protected	0.050		0.960			0.085	0.850		0.963		
Satd. Flow (prot)	1624	3094	2972	0	0	3170	1398	0	3001	0	
Fit Permitted	0.160	2004	2072	0	0	0.982	1200	0	0.964	0	
Right Turn on Red	274	3094	2912	Yes	U	2935	Yes	U	2110	0	
Satd. Flow (RTOR)		00	50			00	97		00		
Link Speed (mpn) Link Distance (ft)		30 521	30 509			30 178			200		
Travel Time (s)	00	11.8	11.6	00	40	4.0	10	40	4.5	40	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	82			82	43		12	43		12	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	0%	5% 354	5%	3%	0%	1%	4%	245	1%	4%	
Shared Lane Traffic (%)	UU	J:J4	001	230	201	JJ7	7/	24J	J4:J	173	
Lane Group Flow (vph)	66	354	899	0	0	566	97 Dret	0 Dest	783 Drot	0	
Protected Phases	Perm	NA 1	NA 1		Split 2	NA 2	2	P101 3	P101 3		
Permitted Phases	1	4	4		^	0	^	^	0		
Switch Phase	1	1	1		2	2	2	3	3		
Minimum Initial (s)	8.0	8.0	8.0		8.0	8.0	8.0	8.0	8.0		
Minimum Split (s) Total Split (s)	29.0	29.0 40.0	29.0		14.0 30.0	14.0 30.0	14.0 30.0	30.0	30.0		
Total Split (%)	36.4%	36.4%	36.4%		27.3%	27.3%	27.3%	36.4%	36.4%		
Maximum Green (s)	35.0	35.0	35.0		25.0	25.0	25.0	35.0	35.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	-2.0	-2.0	-2.0			-2.0	-2.0		-2.0		
Lead/Lag	3.0	3.0	3.0		Lead	Lead	Lead	Lag	Lag		
Lead-Lag Optimize?		0.0	0.0		0.0	0.0	0.0		0.0		
Recall Mode	2.0 C-Max	2.0 C-Max	2.0 C-Max		2.0 Min	2.0 Min	2.0 Min	2.0 Min	2.0 Min		
Walk Time (s)	7.0	7.0	7.0		7.0	7.0	7.0	0.0	0.0		
Flash Dont Walk (s) Pedestrian Calls (#/hr)	15.0	15.0	15.0		0.0	0.0	0.0	24.0	24.0		
Act Effct Green (s)	42.6	42.6	42.6		0	24.7	24.7	Ū	33.8		
Actuated g/C Ratio	0.39	0.39	0.39			0.22	0.22		0.31		
Control Delay	47.8	22.3	19.8			49.2	8.4		45.3		
Queue Delay Total Delay	0.0	0.0	0.0			0.0	0.0		0.0		
LOS	47.0 D	22.3 C	B			47.2 D	0.4 A		4J.5 D		
Approach Delay		26.3	19.8 P			43.3			45.3		
Stops (vph)	44	179	522			480	15		655		
Fuel Used(gal)	1	4	10			9	0		11		
NOx Emissions (g/hr)	/6	200	129			117	25		155		
VOC Emissions (g/hr)	18	61	154			139	6		184		
Queue Length 50th (ft)	30	67	183			196	0		262		
Queue Length 95th (ft)	m52	m96	#365			257	42		328		
Turn Bay Length (ft)	175	441	429			98			120		
Base Capacity (vph)	106	1197	1180			778	416		1009		
Starvation Cap Reductn Spillback Cap Reductn	0	0	0			0	0		0		
Storage Cap Reductn	0	0	0			0	0		0		
Reduced v/c Ratio	0.62	0.30	0.76			0.73	0.23		0.78		
Intersection Summary	CBD										
Cycle Length: 110	CBD										
Actuated Cycle Length: 110	I to ph 1		hart of C-								
Natural Cycle: 80	i io phase 1:	LDVVB, St	di i Ol Gle	511 							
Control Type: Actuated-Coord	dinated										
Maximum v/c Ratio: 0.85 Intersection Signal Delay: 33	.7			Ini	tersection	LOS: C					
Intersection Capacity Utilization	on 87.8%			IC	U Level o	f Service I	E				
Analysis Period (min) 15 # 95th percentile volume ex	(reeds cara	rity queue	e may he l	onder							
Queue shown is maximum	n after two c	/cles.	o may be l	ongot.							
m Volume for 95th percentil	le queue is r	netered by	y upstrean	n signal.							
Splits and Phases: 17: Cor	ngress Stree	t & East S	Service Ro	ad			-				
₩ Ø1(R)							_ ◄	102			1 ₀₃

	٦	-+	\mathbf{r}	1	←	۰.	•	Ť	1	1	Ŧ	∢
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	205	41	124	1	4 î •	.00	200	1	1	11	††	1
ranic volume (vph) future Volume (vph)	325	136 136	134	300	401	89 89	388 388	334 334	344 344	11	87	29
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft) Storage Length (ft)	12	12	200	250	12	12	16	14	12	12	11	11
Storage Lanes	0		1	1		0	1		1	0		1
aper Length (tt) ane Util. Factor	25	0.95	1.00	25 0.91	0.91	0.95	25 1.00	1.00	1.00	25 0.95	0.95	1.00
Ped Bike Factor		0.95		0.97	0.96						1.00	
rt It Protected		0,966	0.850	0.950	0.979		0.950		0.850		0,994	0.850
Satd. Flow (prot)	0	2954	1398	1382	2677	0	1770	1754	1346	0	3122	1232
It Permitted atd_Elow (perm)	0	0.966	1209	0.950	0.988	0	0.672	1754	13/4	0	0.890	1222
Right Turn on Red	0	2174	No	1341	2000	Yes	12.32	17.34	Yes	U	2704	Yes
satd. Flow (RTOR)		30			16			30	355		30	69
ink Distance (ft)		509			995			220			498	
ravel Time (s)	104	11.6	27	27	22.6	126		5.0		45	11.3	2
Confl. Bikes (#/hr)	120		57	57		120				40		1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.97	0.97	0.97	0.92	0.92	0.92
Adj. Flow (vph)	3%	14%	4%	319	9% 427	14% 95	4% 400	4% 344	8% 355	12	95	32
hared Lane Traffic (%)				50%			,					
ane Group Flow (vph)	0 Split	491 NA	143 pt+ov	159 Split	682 NA	0	400 D.P+P	344 NA	355 Prot	0 Perm	107 NA	32 pt+ov
Protected Phases	2	2	23	3pm 1	1		3	3 4	3 4	1 GIIII	4	2 4
Permitted Phases	2	2	22	1	1		4	3.4	3.4	4	Δ	2.4
witch Phase	2	2	23	-			3	34	34	4	4	24
Ainimum Initial (s)	8.0	8.0		8.0	8.0		8.0			8.0	8.0	
otal Split (s)	30.0	30.0		35.0	35.0		30.0			15.0	15.0	
otal Split (%)	27.3%	27.3%		31.8%	31.8%		27.3%			13.6%	13.6%	
ellow Time (s)	25.0 3.0	25.0		30.0	30.0		25.0			3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0			2.0	2.0	
otal Lost Time (s)		-2.0		-2.0	-2.0		-2.0				-2.0	
ead/Lag	Lead	Lead					Lag					
eau-Lag Optimize? /ehicle Extension (s)	2.0	2.0		2.0	2.0		2.0			2.0	2.0	
Recall Mode	Max	Max		C-Max	C-Max		Max			Min	Min	
lash Dont Walk (s)	7.0	7.0		7.0	7.0		7.0					
Pedestrian Calls (#/hr)	0	0		0	0		0	44.5				0.0.1
Act Effct Green (s)		27.0	57.0 0.52	32.9	32.9		38.1	41.1	41.1		11.1 0.10	38.1 0.35
/c Ratio		0.89dl	0.32	0.30	0.84		0.71	0.53	0.49		0.38	0.07
Control Delay		41.1	21.9	27.2	37.8		36.0	30.2	5.0		40.3	3.1
otal Delay		41.1	21.9	27.2	37.8		36.0	30.2	5.0		40.3	3.1
.OS		D 24.9	С	С	35 O		D	C	A		D 31.0	A
Approach LOS		30.8 D			30.8 D			24.2 C			51.8 C	
Stops (vph)		453	102	117	565		314	253	30		82	6
CO Emissions (g/hr)		8 574	118	3 184	911		367	4 281	77		115	11
IOx Emissions (g/hr)		112	23	36	177		71	55	15		22	2
VUC Emissions (g/hr) Dilemma Vehicles (#)		133	27	43	211		85 0	65 0	18		27	3
Queue Length 50th (ft)		190	79	104	229		224	186	0		30	2
Queue Length 95th (ft)		237 429	m126	m135	m#345 915		325	274 140	60		55 418	m6
urn Bay Length (ft)		427	200	250	/13			140			410	125
Base Capacity (vph)		725	724	413	811		561	669	733		303	481
Spillback Cap Reductn		0	0	0	0		0	0	0		0	0
Storage Cap Reductn		0	0	0	0		0 71	0 51	0 49		0.25	0
ntorsoction Summery		0.68	0.20	0.38	0.84		0.71	0.51	0.48		0.35	0.07
rea Type:	CBD											
ycle Length: 110												
ctuated Cycle Length: 110 Offset: 25 (23%) Reference	u ed to phase 1	WBTIS	tart of Gre	en								
latural Cycle: 95	ou to pridad 1											
Control Type: Actuated-Co	ordinated											
naximum v/c Ratio: 0.84 ntersection Signal Delav: 3	31.1			lr	ntersection	LOS: C						
ntersection Capacity Utiliza	ation 78.1%			10	CU Level of	Service	D					
95th percentile volume	exceeds capa	acity, queu	ue may be	longer.								
Queue shown is maximu	um after two c	ycles.										
 Volume for 95th percei Defacto Left Lane. Re 	nule queue is code with 1 th	metered b ough lane	e as a left	m signal. lane.								
pills and Phases: 18: B	street & Con	gress Stre	eet									
🕈 Ø1 (R)						- ¥ i	02					

Synchro 9 Report Lanes, Volumes, Timings

	≤	۶		\mathbf{r}	1	-	•	۰	•	Ť	1	L	5	Ļ	1		
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR		
Lane Configurations			4î»	1		ፋፑ			ኘካ	î,				ፋጉ			
Traffic Volume (vph)	10	105	270	387	68	135	20	2	471	205	24	2	20	283	42		
Ideal Flow (vphpl)	1900	1900	270	387 1900	68 1900	135	20 1900	1900	4/1	205 1900	24 1900	1900	20 1900	283 1900	42		
Lane Width (ft)	12	12	12	13	12	13	12	12	11	12	12	12	12	14	12		
Storage Length (ft)		0		150	0		0		0		0		0		0		
Storage Lanes		25		1	25		0		2		0		25		0		
Lane Util. Factor	0.95	0.95	0.91	0.91	0.95	0.95	0.95	1.00	0.97	1.00	1.00	0.95	0.95	0.95	0.95		
Ped Bike Factor			0.93			0.95			0.66	0.99				0.97			
Frt Fit Destanted			0.986	0.850		0.986			0.050	0.984				0.982			
Satd Flow (prot)	0	0	2832	1314	0	2824	0	0	2902	1523	0	0	0	3033	0		
Flt Permitted	0	U	0.987	1314	0	0.985	0	0	0.950	1525	0	0	0	0.997	0		
Satd. Flow (perm)	0	0	2698	1314	0	2698	0	0	1902	1523	0	0	0	3011	0		
Right Turn on Red Satd, Flow (PTOP)				No		8	Yes			5	Yes			11	Yes		
Link Speed (mph)			30			30				30				30			
Link Distance (ft)			995			319				317				334			
Travel Time (s)	57	01	22.6	00	00	7.3	0(00	F (7.2		01		7.6	57		
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	56	26		90	90		26	90	56		5/	26	57		56		
Peak Hour Factor	0.97	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93		
Heavy Vehicles (%)	0%	0%	6%	4%	2%	23%	0%	0%	5%	9%	9%	0%	0%	11%	0%		
Parking (#/hr)	10	100	070	200	74	147	22	2	E10	222	0	2	22	204	45		
Auj. Flow (vprl) Shared Lane Traffic (%)	10	108	278	399	/4	147	22	2	512	223	26	2	22	304	45		
Lane Group Flow (vph)	0	0	436	359	0	243	0	0	514	249	0	0	0	373	0		
Turn Type	Perm	Split	NA	Prot	Split	NA		Split	Split	NA		Split	Split	NA			
Protected Phases	1	1	1	1	4	4		2	2	2		3	3	3			
Detector Phase	1	1	1	1	4	4		2	2	2		3	3	3			
Switch Phase					т	7		2	2	2		5	5	5			
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0		8.0	8.0	8.0		8.0	8.0	8.0			
Minimum Split (s)	22.0	22.0	22.0	22.0	17.0	17.0		27.0	27.0	27.0		18.0	18.0	18.0			
Total Split (%)	39.0	35.5%	35.5%	35.5%	17.3%	17.3%		27.3%	27.3%	27.3%		22.0	22.0	22.0			
Maximum Green (s)	31.0	31.0	31.0	31.0	11.0	11.0		21.0	21.0	21.0		14.0	14.0	14.0			
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		4.0	4.0	4.0		3.0	3.0	3.0			
All-Red Time (s) Lost Time Adjust (s)	5.0	5.0	-2.0	-2.0	5.0	-2.0		5.0	-2.0	-2.0		5.0	5.0	-2.0			
Total Lost Time (s)			6.0	6.0		6.0			7.0	7.0				6.0			
Lead/Lag								Lead	Lead	Lead		Lag	Lag	Lag			
Lead-Lag Optimize?	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0		2.0	2.0	2.0			
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None		Max	Max	Max		Max	Max	Max			
Walk Time (s)	7.0	7.0	7.0	7.0				7.0	7.0	7.0		7.0	7.0	7.0			
Flash Dont Walk (s)	4.0	4.0	4.0	4.0				10.0	10.0	10.0		2.0	2.0	2.0			
Act Effet Green (s)	0	U	33.3	33.3		127		U	23.0	23.0		U	0	16.0			
Actuated g/C Ratio			0.30	0.30		0.12			0.21	0.21				0.15			
v/c Ratio			0.51	0.90		0.73			0.85	0.77				0.83			
Control Delay			39.6	68.8		59.2			45.3	46.2				60.9			
Total Delay			39.6	68.8		59.2			45.8	47.5				60.9			
LOS			D	E		E			D	D				E			
Approach Delay			52.8			59.2				46.3				60.9			
Approach LOS Stops (vnh)			363	308		204			439	263				308			
Fuel Used(gal)			9	9		4			8	4				7			
CO Emissions (g/hr)			608	649		307			556	292				483			
NOx Emissions (g/hr)			118	126		60			108	57				94			
Dilemma Vehicles (#)			141	0		0			129	68 0				0			
Queue Length 50th (ft)			149	275		85			187	173				132			
Queue Length 95th (ft)			210	#471		#137			#264	#284				#210			
Internal Link Dist (ft) Turn Bay Length (ft)			915	150		239				237				254			
Base Capacity (vph)			858	398		340			606	322				450			
Starvation Cap Reductn			0	0		0			8	13				0			
Spillback Cap Reductn			0	0		0			0	0				0			
Storage Cap Reductn			0.51	0 00		0 71			0 86	0 81				0.83			
			0.01	0.70		0.71			0.00	0.01				0.00			
Area Type:	CBD															 	
Cycle Length: 110	000																
Actuated Cycle Length: 110)																
Uttset: 37 (34%), Reference	ed to phase 1	:EBTL, St	art of Gre	en													
Control Type: Actuated-Coo	ordinated																
Maximum v/c Ratio: 0.90	. amatou																
Intersection Signal Delay: 5	2.6			In	tersection	LOS: D											
Intersection Capacity Utiliza	ation 77.9%			IC	U Level o	t Service [)										
# 95th percentile volume e	exceeds cana	icity, auei	e mav be	longer.													
Queue shown is maximu	um after two c	ycles.	,														
Solits and Phases 10. D	Street & Con	arese Str	of														
A	Succi & COII	9,000 011					•								4	 +-	
Ø1(R)							₹1	0 2							Ø3	∮ Ø4	

	≯		\mathbf{i}	∢	←	•	1	Ť	~	5	Ŧ	1					
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2				
Lane Configurations		ĥ			र्भ			<u></u> ↑↑↑			††						
Traffic Volume (vph)	0	45	0	0	34	0	0	702	0	0	740	0					
Ideal Flow (vphpl)	1900	45	1900	1900	34 1900	1900	1900	1900	1900	1900	1900	1900					
Lane Width (ft)	12	14	12	12	14	12	12	13	12	12	13	12					
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00					
Frt																	
Flt Protected																	
Satd. Flow (prot) Elt Permitted	0	912	0	0	912	0	0	4508	0	0	3109	0					
Satd. Flow (perm)	0	912	0	0	912	0	0	4508	0	0	3109	0					
Right Turn on Red			Yes			Yes			Yes			Yes					
Link Speed (mph)		30			30			30			30						
Link Distance (ft)		368			292			293			317						
Travel Time (s) Confl. Peds. (#/br)		8.4			6.6			6.7	85		7.2						
Confl. Bikes (#/hr)									39								
Peak Hour Factor	0.95	0.95	0.95	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96					
Parking (#/hr)	0%	100%	0%	0%	100%	0%	0%	7%	0%	0%	8%	0%					
Adj. Flow (vph)	0	47	0	0	37	0	0	763	0	0	771	0					
Shared Lane Traffic (%)	0	47	0	0	27	0	0	7(2	0	0	774	0					
Turn Type	0	47 NA	0	0	37 NA	0	0	763 NA	0	0	NA NA	0					
Protected Phases		3			3			1			12		2				
Permitted Phases		2		3	2			1			10						
Switch Phase		3		3	3			1			12						
Minimum Initial (s)		8.0		8.0	8.0			20.0					4.0				
Minimum Split (s) Total Split (s)		15.0 33.0		15.0 33.0	15.0 33.0			27.0					10.0				
Total Split (%)		30.0%		30.0%	30.0%			60.0%					10%				
Maximum Green (s)		27.0		27.0	27.0			61.0					6.0				
All-Red Time (s)		3.0		3.0	3.0			4.0					4.0				
Lost Time Adjust (s)		-1.0			-1.0			-1.0									
Total Lost Time (s)		5.0			5.0			4.0					Lag				
Lead-Lag Optimize?								Leau					Lay				
Vehicle Extension (s)		2.0		2.0	2.0			2.0					2.0				
Recall Mode Walk Time (s)		None		None	None			C-Max 7.0					Max				
Flash Dont Walk (s)								5.0									
Pedestrian Calls (#/hr)		12.0			12.0			0			02.6						
Actuated g/C Ratio		0.11			0.11			0.73			0.84						
v/c Ratio		0.47			0.37			0.23			0.29						
Queue Delay		61.0 0.0			55.2 0.0			7.3 0.2			3.0 0.8						
Total Delay		61.0			55.2			7.5			3.8						
LOS Approach Dolay		E 61.0			E 55.2			A 7.5			A 2.0						
Approach LOS		01.0 E			55.Z			7.5 A			3.0 A						
Stops (vph)		42			32			277			223						
Fuel Used(gal) CO Emissions (g/hr)		64			44			292			246						
NOx Emissions (g/hr)		13			9			57			48						
VOC Emissions (g/hr)		15			10			68			57						
Queue Length 50th (ft)		32			25			55			49						
Queue Length 95th (ft)		69			57			176			m142						
Internal Link Dist (ft) Turn Bay Length (ft)		288			212			213			237						
Base Capacity (vph)		232			232			3313			2618						
Starvation Cap Reductn		0			0			1661			1457						
Storage Cap Reductin		0			0			0			0						
Reduced v/c Ratio		0.20			0.16			0.46			0.66						
Intersection Summary																	
Area Type: Cl	BD																
Actuated Cycle Length: 110																	
Offset: 71 (65%), Referenced to	o phase 1:I	VBSB, Sta	art of Gree	en													
Natural Cycle: 55 Control Type: Actuated Coordin	nated																
Maximum v/c Ratio: 0.47	atou																
Intersection Signal Delay: 8.4	24.00/			In	tersection	LOS: A											
Analysis Period (min) 15	1 30.9%			IC.	O LEVEL 0	Service A											
m Volume for 95th percentile	queue is n	netered by	/ upstrean	n signal.													
Splits and Phases 20: D Stre	eet & Tran	sitway															
	- sta tidli													1	±		
▼ 101 (K)													_	▼ 1/012	TTT103		

	٨	\mathbf{F}	1	Ť	Ŧ	∢				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø2			
Lane Configurations			۳.	††	¥î≽					
Traffic Volume (vph)	0	0	242	702	496	244				
Future Volume (vph)	1900	1900	242	1900	496	244				
Lane Width (ft)	12	12	13	12	13	12				
Storage Length (ft)	0	0	200			0				
Storage Lanes	0	0	1			0				
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95				
Ped Bike Factor			0.96		0.96					
Frt Fit Destanted			0.050		0.951					
Satd. Flow (prot)	0	0	1584	3036	2834	0				
Flt Permitted			0.950							
Satd. Flow (perm)	0	0	1526	3036	2834	0				
Satd. Flow (RTOR)		162			86	162				
Link Speed (mph)	30			30	30					
Link Distance (ft)	346			297	293					
Confl. Peds. (#/hr)	1.9		62	0.8	0.7	62				
Confl. Bikes (#/hr)						4				
Peak Hour Factor	0.25	0.25	0.93	0.93	0.96	0.96				
Adi Flow (vph)	0%	0%	260	755	9% 517	8% 254				
Shared Lane Traffic (%)		Ū	200	100	017	201				
Lane Group Flow (vph)	0	0	260	755	771	0				
Protected Phases			Prot 3	NA 13	NA 1		2			
Permitted Phases			5	15			-			
Detector Phase			3	13	1					
Switch Phase Minimum Initial (s)			8.0		15.0		8.0			
Minimum Split (s)			15.0		23.0		28.0			
Total Split (s)			37.0		45.0		28.0			
Total Split (%) Maximum Green (s)			33.6%		40.9%		25%			
Yellow Time (s)			4.0		4.0		4.0			
All-Red Time (s)			2.0		2.0		0.0			
Lost Time Adjust (s) Total Lost Time (s)			-1.0		-1.0					
Lead/Lag			5.0		Lead		Lag			
Lead-Lag Optimize?										
Vehicle Extension (s)			2.0 Max		2.0 C.Max		2.0 None			
Walk Time (s)			IVICA		C-IVIAA		7.0			
Flash Dont Walk (s)							17.0			
Pedestrian Calls (#/hr) Act Effct Green (s)			32.0	103.4	62.4		5			
Actuated g/C Ratio			0.29	0.94	0.57					
v/c Ratio			0.57	0.26	0.47					
Control Delay			39.6	1.6	16.7					
Total Delay			44.2	1.7	17.0					
LOS			D	A	B					
Approach Delay Approach LOS				12.5 B	17.0 B					
Stops (vph)			191	58	583					
Fuel Used(gal)			4	2	7					
NOx Emissions (g/hr)			48	30	101					
VOC Emissions (g/hr)			58	35	120					
Dilemma Vehicles (#)			152	0	0					
Queue Length 95th (ft)			m233	98	143					
Internal Link Dist (ft)	266			217	213					
Lurn Bay Length (ft) Base Canacity (uph)			200	2854	1644					
Starvation Cap Reductn			134	331	334					
Spillback Cap Reductn			0	0	1					
Storage Cap Reductn			0 80	0 30	0 50					
Intersection Cummon			0.00	0.50	0.57					
Area Type:	CBD									
Cycle Length: 110	000									
Actuated Cycle Length: 110)			-						
Natural Cycle: 70	eu to priase 1:N	1030, 312	art ur Gréé							
Control Type: Actuated-Coc	ordinated									
Maximum v/c Ratio: 0.57	4.5			,		00.0				
Intersection Signal Delay: 1 Intersection Canacity Litiliza	4.5 ation 48.7%			In	tersection	LUS: B Service A				
Analysis Period (min) 15				10						
m Volume for 95th percer	ntile queue is m	etered by	/ upstream	n signal.						
Splits and Phases: 21: D	Street & I-90 F	Ramp							 	
							-	1 az	 ↑ ₀₃	
								28 c	27.6	

	٦	-	\mathbf{r}	1	-	•	1	Ť	1	>	Ŧ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	170	† ĵ»	71	1	104	FOO	147	†	45	244	4 1	144
ranic volume (vph)	170	564 564	71	34 34	406	520 520	147	253	45 45	246	106	144
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft)	11	13	12	12	16	16	12	16	12	200	13	12
Storage Lanes	100		0	1		1	150		0	200		0
Taper Length (ft)	25		-	25			25		-	25		-
ane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.91	0.91	0.95
Ped Bike Factor	0.98	0.99				0.93	0.97	0.98		0.96	0.97	
It Protected	0.950	0.700		0.950		0.000	0.950	0.777		0.950	0.988	
Satd. Flow (prot)	1555	2933	0	1577	1656	1584	1608	2783	0	1374	2576	0
It Permitted	0.263	2022	0	0.119	1454	1471	0.950	2702	0	0.950	0.988	0
Right Turn on Red	423	2733	Yes	140	0001	14/1 No	1007	2103	Yes	1317	2001	Yes
Satd. Flow (RTOR)		16						16			148	
ink Speed (mph)		30			30			30			30	
LINK DISTANCE (IT)		635 14.4			580 13.2			659 15.0			297	
Confl. Peds. (#/hr)	33	14.4	31	31	15.2	33	25	15.0	37	37	0.0	25
Confl. Bikes (#/hr)			9			15			32			2
Peak Hour Factor	0.97	0.97	0.97	0.96	0.96	0.96	0.95	0.95	0.95	0.97	0.97	0.97
Parking (#/hr)	1%	12%	9%	3%	17%	4%	1%	21%	20%	4%	30%	4%
dj. Flow (vph)	175	581	73	35	423	542	155	266	47	254	109	148
shared Lane Traffic (%)										31%		
ane Group Flow (vph)	175	654 NA	0	35 Dorm	423	542	155 Split	313	0	175 Split	336	0
Protected Phases	U.P+P 4	1.4		Felli	NA 1	piii+0v 2	Spiit 3	3		3piit 2	2	
Permitted Phases	1	14		1		1	5	5		2	2	
Detector Phase	4	14		1	1	2	3	3		2	2	
witch Phase	4.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
/inimum mittar (s) /inimum Split (s)	6.0 15.0			8.0 30.0	8.0 30.0	8.0 28.0	8.0 27.0	8.0 27.0		8.0 28.0	8.0 28.0	
Fotal Split (s)	15.0			40.0	40.0	28.0	27.0	27.0		28.0	28.0	
otal Split (%)	13.6%			36.4%	36.4%	25.5%	24.5%	24.5%		25.5%	25.5%	
Aaximum Green (s)	7.0			32.0	32.0	21.0	20.0	20.0		21.0	21.0	
renow rime (s) All-Red Time (s)	4.0			4.0	4.0	3.0	3.0	3.U 4.0		3.0	3.0	
ost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	7.0			7.0	7.0	6.0	6.0	6.0		6.0	6.0	
ead/Lag						Lead	Lag	Lag		Lead	Lead	
ead-Lag Optimize?	2.0			20	2.0	2.0	20	20		20	20	
Recall Mode	2.0 Max			C-Max	C-Max	2.0 Ped	Z.U Max	Z.U Max		2.0 Ped	2.0 Ped	
Valk Time (s)				7.0	7.0	7.0	7.0	7.0		7.0	7.0	
lash Dont Walk (s)				12.0	12.0	13.0	12.0	12.0		13.0	13.0	
edestrian Calls (#/hr)	41.6	10.4		32.4	0 32.4	54.0	21.0	21.0		21.4	21.4	
Actuated g/C Ratio	41.6	48.6		33.6 0.31	33.6 0.31	56.0 0.51	21.0	21.0		21.4	21.4	
/c Ratio	0.73	0.50		0.58	0.84	0.70	0.51	0.58		0.66	0.54	
Control Delay	47.6	20.6		62.9	43.7	14.0	46.5	43.1		25.5	7.7	
Queue Delay	2.6	0.0		0.0	0.0	0.0	0.0	0.3		0.0	0.3	
OS	50.2 D	20.6		62.9 F	43.7 D	14.0 R	46.5 D	43.4 D		25.5	8.0 A	
Approach Delav	U	26.8		E	28.3	D	D	44.4		C	14.0	
Approach LOS		C			C			D			В	
Stops (vph)	125	307		23	313	244	129	251		114	104	
uel Used(gal)	3	7		1	7	24.2	3	6 304		2	2	
O Emissions (g/nr)	43	524 102		50	502 98	502	200 39	აზნ 75		26	25	
/OC Emissions (g/hr)	52	121		12	116	84	46	89		31	30	
Dilemma Vehicles (#)	0	0		0	0	0	0	0		0	0	
Queue Length 50th (ft)	67	112		13	204	99	99	101		58	8	
Jueue Length 95th (tt)	#130	1/4		m#51	#435	1/8	167	148		137	217	
Furn Bay Length (ft)	155	J22			JUU		150	519		200	217	
Base Capacity (vph)	241	1304		60	505	779	306	544		274	633	
Starvation Cap Reductn	0	0		0	0	0	0	0		1	52	
Spillback Cap Reductn	19	0		0	0	0	0	27		0	0	
storage Cap Reductn	0	0 50		0 58	0 84	0 70	0 51	0.61		0 64	0 58	
reduced wit ridllu	0.19	0.00		00.00	U.04	0.70	0.01	0.01		0.04	0.00	
niersection Summary	CBD											
Cycle Length: 110	000											
ctuated Cycle Length: 110												
offset: 30 (27%), Reference	d to phase 1:	EBWB, St	art of Gre	en								
latural Cycle: 100	rdinated											
Jonator Type: Actuated-Coo Aaximum v/c Ratio: 0.84	rdinated											
ntersection Signal Delay: 2	7.9			In	tersection	LOS: C						
ntersection Capacity Utiliza	tion 88.4%			IC	U Level o	f Service I						
nalysis Period (min) 15												
95th percentile volume e	exceeds capa	city, queue	e may be	ionger.								
Volume for 95th percen	tile queue is n	netered h	v upstrear	n signal.								
clame for your percent			, apoulou	signai.								
plits and Phases: 22: D	Street & Sum	mer Stree	t									
401 (R)								(M)				
- 91 (N)							28	¥JZ				

	٦	+	*	1	ł	•	<	Ť	*	1	Ŧ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	154	† ĵ>	11	7	4 î •	174	0	4)	0	00	4	15		
Future Volume (vph)	154	1014	11	7	701	174	0	36	0	90	21	65		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Storage Length (ft) Storage Lanes	125		0	0		0	0		0	0		0		
Taper Length (ft)	25			25			25			25				
Lane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00		
Flt Protected	0.950	0.770			0.770						0.975			
Satd. Flow (prot)	1805	3603	0	0	3502	0	0	1900	0	0	1760	0		
Satd. Flow (perm)	344	3603	0	0	2682	0	0	1900	0	0	1478	0		
Right Turn on Red		1	Yes		22	Yes			Yes		20	Yes		
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		294			222			175			328			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	167	1102	12	8	762	189	0	39	0	98	23	71		
Lane Group Flow (vph)	167	1114	0	0	959	0	0	39	0	0	192	0		
Turn Type	D.P+P	NA		Perm	NA			NA		D.P+P	NA			
Permitted Phases	0	10		1	I		5	5		4	4 5			
Detector Phase	6	16		1	1		5	5		4	45			
Switch Phase Minimum Initial (s)	4.0			8.0	8.0		8.0	8.0		8.0				
Minimum Split (s)	9.0			22.0	22.0		20.0	20.0		27.0				
Total Split (s) Total Split (%)	10.0 9.1%			50.0 45.5%	50.0 45.5%		20.0 18.2%	20.0 18.2%		30.0 27.3%				
Maximum Green (s)	5.0			45.0	45.0		15.0	15.0		25.0				
Yellow Time (s) All-Red Time (s)	3.0			3.0	3.0		3.0	3.0		3.0				
Lost Time Adjust (s)	0.0			2.0	0.0		2.0	0.0		2.0				
Total Lost Time (s)	5.0				5.0		L an	5.0		heal				
Lead-Lag Optimize?							Lay	Lug		Leau				
Vehicle Extension (s)	2.0			2.0	2.0		2.0	2.0		2.0				
Walk Time (s)	NOTE			7.0	7.0		0.0	0.0		7.0				
Flash Dont Walk (s)				8.0	8.0		15.0	15.0		15.0				
Act Effct Green (s)	68.4	73.4		U	48.4		U	8.3		U	21.6			
Actuated g/C Ratio	0.62	0.67			0.44			0.08			0.20			
Control Delay	19.9	4.7			29.7			49.0			35.9			
Queue Delay	0.0	0.4			1.1			0.0			0.0			
LOS	19.9 B	5.2 A			30.7 C			49.0 D			35.9 D			
Approach Delay		7.1			30.7			49.0			35.9			
Approach LOS Stops (vph)	63	A 162			760			38			124			
Fuel Used(gal)	1	4			11			1			2			
CO Emissions (g/hr) NOx Emissions (a/hr)	93	296 58			150			5/			1/0			
VOC Emissions (g/hr)	21	69			179			13			39			
Dilemma Vehicles (#) Queue Length 50th (ft)	35	0 65			0 197			0 29			0 96			
Queue Length 95th (ft)	107	97			#337			m64			149			
Turn Bay Length (ft)	125	214			142			95			248			
Base Capacity (vph)	479	2403			1197			259			533			
Starvation Cap Reductn Spillback Cap Reductn	0	/19			83			0			0			
Storage Cap Reductn	0	0			0			0			0			
Reduced v/c Ratio	0.35	0.66			0.86			0.15			0.36			
Area Type: 0	Other													
Cycle Length: 110	54101													
Actuated Cycle Length: 110 Offset: 75 (68%), Referenced t	to phase 1:1	FBWB. Sta	art of Gree	en										
Natural Cycle: 90		, ou												
Control Type: Actuated-Coordi Maximum v/c Ratio: 0.80	nated													
Intersection Signal Delay: 19.2	2			In	tersection	LOS: B	-							
Intersection Capacity Utilization Analysis Period (min) 15	n 82.7%			IC	U Level of	Service E	-							
# 95th percentile volume exc	eeds capad	city, queue	may be l	longer.										
Queue shown is maximum m Volume for 95th percentile	after two cy e queue is n	rcles. netered by	upstream	n signal.										
Splits and Phases: 23: Seap	oort Bouleva	ard & Fan	Pier Boul	evard										
\$01 (R)										014			↓ ¶ø₅	4 ₀₆
F0 -										20 -			20.0	~~

	-	\mathbf{F}	1	+	▲	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĥ			ង	¥	
Traffic Volume (veh/h)	1	8	133	2	13	237
Future Volume (Veh/h)	1	8	133	2	13	237
Sian Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.67	0.67	0.92	0.92	0.92	0.92
Hourly flow rate (yph)	1	12	145	2	14	258
Pedestrians	183		110	115	137	200
Lane Width (ft)	11.0			11.0	11.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockade	4.0			4.0	4.0	
Dight turn flare (yeh)	14			,	10	
Modian type	Nono			Nono		
Median storage veh)	NOTIE			none		
Unstroam signal (ft)						
nY platoon unblocked						
vC conflicting volume			150		610	250
vC1, connicuity volume			150		019	209
VC1, stage 1 confive						
VC2, Stage 2 colli Voi			150		410	250
tC cipalo (c)			100		619	209
tC, Sillyle (S)			4.1		0.4	0.2
IC, Z Slaye (S)			2.2		2.5	2.2
IF (S)			2.2		3.D	3.3 E0
po queue free %			89		95	59
civi capacity (ven/n)			1281		311	637
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	13	147	272			
Volume Left	0	145	14			
Volume Right	12	0	258			
cSH	1700	1281	604			
Volume to Capacity	0.01	0.11	0.45			
Queue Length 95th (ft)	0	10	58			
Control Delay (s)	0.0	8.1	15.7			
Lane LOS		A	С			
Approach Delay (s)	0.0	8.1	15.7			
Approach LOS			С			
Intersection Summary						
Average Delay			12.7			
Intersection Capacity Utilization	1		44.8%	IC	U Level o	f Service
Analysis Period (min)			15	10		

	≯		-	•	1	-
Movement	FBI	FBT	WBT	WBR	SBI	SBR
Lane Configurations	LUL	1	1	mon	V	OBIC
Traffic Volume (veh/h)	142	95	98	43	6	33
Future Volume (Veh/h)	142	95	98	43	6	33
Sign Control	142	Free	Free	43	Stop	55
Crado		0%	0%		0%	
Dook Hour Easter	0.02	0.02	0.02	0.02	0.02	0.02
Peak nour racio	1.92	102	107	0.92	0.92	0.92
Houriy flow rate (vpn)	154	103	107	4/	/	30
Pedestrians					412	
Lane Width (ft)					11.0	
Walking Speed (ft/s)					4.0	
Percent Blockage					31	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			1145			
pX, platoon unblocked						
vC. conflicting volume	566				954	542
vC1_stage 1 conf vol	000					0.2
vC2_stage 2 conf vol						
vCz, stage z com vol	E / /				05.4	E 4 2
tC single (s)	300				734	J4Z
to, single (s)	4.1				0.4	0.4
IC, 2 stage (s)	0.0				0.5	0.5
tF (S)	2.2				3.5	3.5
p0 queue free %	11				95	90
cM capacity (veh/h)	683				154	346
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	257	154	43			
Volume Left	154	0	7			
Volume Right	0	47	36			
cSH	683	1700	287			
Volume to Capacity	0.23	0.09	0.15			
Queue Length 95th (ft)	22	0.07	13			
Control Delay (s)	8.2	0.0	19.7			
	0.2	0.0	17.7			
Approach Dolou (a)	A 0.2	0.0	10.7			
Approach Delay (S)	8.Z	0.0	19.7			
Approach LUS			C			
Intersection Summary						
Average Delay			6.5			
Intersection Capacity Utilization			41.0%	IC	CU Level of	f Service
Analysis Period (min)			15			
, , ,						

	≯	-	\mathbf{r}	1	←	•	▲	Ť	1	1	Ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4.			4			4	
Traffic Volume (veh/h)	0	101	0	13	139	0	0	103	8	0	103	0
Future Volume (Veh/h)	0	101	0	13	139	0	0	103	8	0	103	0
Sign Control	0	Free	0	10	Free	0	0	Stop	0		Stop	0
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0.72	110	0.72	14	151	0.72	0.72	112	9	0.72	112	0.72
Pedestrians	0	110	0		101	0	0		ŕ		291	0
Lane Width (ft)											12.0	
Walking Speed (ft/s)											4.0	
Percent Blockage											24	
Right turn flare (veh)											27	
Median type		None			None							
Median storage veh)		NUTC			NUTC							
Linstream signal (ft)					843							
nX platoon unblocked					040							
vC conflicting volume	442			110			345	580	110	645	580	442
vC1 stage 1 conf vol	442			110			343	300	110	040	300	442
vC2_stage 2 conf vol												
vCu, unblocked vol	112			110			345	580	110	645	580	112
tC single (s)	442			<u>110</u>			7 1	65	62	7.2	65	442
tC 2 stano (s)	4.1			4.1			7.1	0.5	0.2	1.2	0.0	0.2
tC, 2 stdyc (s)	2.2			2.2			2.5	4.0	2.2	2.6	4.0	2.2
nn queue free %	100			2.2			3.5	4.0	3.3	3.0	4.0	3.3
cM capacity (yob/b)	055			1/02			266	221	77	165	201	445
	600	110		1493			200	321	949	100	321	400
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
volume I otal	110	165	121	112								
volume Left	0	14	0	0								
Volume Right	0	0	9	0								
cSH	855	1493	338	321								
Volume to Capacity	0.00	0.01	0.36	0.35								
Queue Length 95th (ft)	0	1	39	38								
Control Delay (s)	0.0	0.7	21.5	22.1								
Lane LOS		A	С	С								
Approach Delay (s)	0.0	0.7	21.5	22.1								
Approach LOS			С	С								
Intersection Summary												
Average Delay			10.2									
Intersection Capacity Utilization			28.8%	10	U Level of	Service			А			
Analysis Period (min)			15									
			10									

٦	-+	\mathbf{r}	1	←	۰.	1	Ť	1	1	Ŧ	1
FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
LDL	4	LDIX		1.01					500	001	0.511
24	84	0	0	140	169	0	135	0	30	0	11
24	84	0	0	140	169	0	135	0	30	0	11
	Free	5	-	Free		-	Stop	-		Stop	
	0%			0%			0%			0%	
0.92	0.92	0.92	0.92	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92
26	91	0	0	144	174	0	147	0	33	0	12
										192	
										12.0	
										4.0	
										16	
	None			None							
				640							
510			91			386	653	91	640	566	423
510			91			386	653	91	640	566	423
4.1			4.1			7.1	6.5	6.2	7.5	6.5	6.2
2.2			2.2			3.5	4.0	3.3	3.9	4.0	3.3
97			100			100	54	100	79	100	98
895			1517			483	317	972	159	356	534
EB 1	WB 1	NB 1	SB 1								
117	318	147	45								
26	0	0	33								
0	174	0	12								
895	1700	317	195								
0.03	0.19	0.46	0.23								
2	0	58	21								
2.2	0.0	25.7	28.8								
A		D	D								
2.2	0.0	25.7	28.8								
		D	D								
		8.5									
1		Err%	IC	CU Level of S	Service			Н			
		15									
	EBL 24 24 24 26 510 510 4.1 22 97 895 5 6 0 0 32 2 2 2 2 A 22 2 3	EBL EBT 24 84 24 84 4 84 510 91 510 1 510 4.1 2.2 97 895 EBI EBI WB1 117 318 26 0 0 174 895 1700 0.03 0.19 2 0 2.2 0.0 A 2.2 0.0 A 2.2 0.0	EBL EBT EBR 24 84 0 24 84 0 24 84 0 24 84 0 97 0.92 0.92 26 91 0 26 91 0 510	EBL EBT EBR WBL 24 84 0 0 24 84 0 0 Free 0% 0 0 0.92 0.92 0.92 0.92 26 91 0 0 510 91 0 0 510 91 4.1 4.1 2.2 2.2 2.2 97 97 100 895 1517 EB1 WB1 NB1 SB1 117 318 147 45 26 0 0 33 0 174 0 12 20 58 21 22 2.2 0.0 25.7 28.8 A D D 2.2 0.22 0.0 25.7 28.8 D D 2.57 28.8 0 D 0 10 15	EBL EBT EBR WBL WBT 24 84 0 0 140 24 84 0 0 140 24 84 0 0 140 24 84 0 0 140 24 84 0 0 140 24 84 0 0 140 24 84 0 0 140 26 91 0 0 144 0 10 0 144 1 10 91 0 0 144 117 318 147 45 640 510 91 4.1 4.1 4.1 2.2 2.2 2.2 97 100 895 1517 EB 117 318 147 45 26 0 0 33 0 174 0 12 20	EBL EBT EBR WBL WBT WBR 24 84 0 0 140 169 24 84 0 0 140 169 24 84 0 0 140 169 24 84 0 0 140 169 24 84 0 0 140 169 26 91 0 0 144 174 26 91 0 0 144 174 7 0 0 144 174 640 510 91 - - 510 91 - - - 510 91 - - - 510 91 - - - 510 91 - - - 511 10 91 - - 511 117 318 147 <t< td=""><td>EBL EBT EBR WBL WBT WBR NBL 24 84 0 0 140 169 0 24 84 0 0 140 169 0 24 84 0 0 140 169 0 24 84 0 0 140 169 0 Free Free Free 0% 0% 0.92 0.97 0.97 0.97 0.97 <</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 24 84 0 0 140 169 0 135 0 30 24 84 0 0 140 169 0 135 0 30 24 84 0 0 140 169 0 135 0 30 26 91 0 0 141 174 0 147 0 33 26 91 0 0 144 174 0 147 0 33 510 91 386 653 91 640 510 91 386 653 91 640 510 91 386 653 91 640 510 91 100 54 100 79 895 1517 483 317 972 159</td><td>EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 24 84 0 0 140 169 0 135 0 30 0 24 84 0 0 140 169 0 135 0 30 0 24 84 0 0 140 169 0 135 0 30 0 0 Free Free Stop Stop Stop 0%</td></t<>	EBL EBT EBR WBL WBT WBR NBL 24 84 0 0 140 169 0 24 84 0 0 140 169 0 24 84 0 0 140 169 0 24 84 0 0 140 169 0 Free Free Free 0% 0% 0.92 0.97 0.97 0.97 0.97 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 24 84 0 0 140 169 0 135 0 30 24 84 0 0 140 169 0 135 0 30 24 84 0 0 140 169 0 135 0 30 26 91 0 0 141 174 0 147 0 33 26 91 0 0 144 174 0 147 0 33 510 91 386 653 91 640 510 91 386 653 91 640 510 91 386 653 91 640 510 91 100 54 100 79 895 1517 483 317 972 159	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 24 84 0 0 140 169 0 135 0 30 0 24 84 0 0 140 169 0 135 0 30 0 24 84 0 0 140 169 0 135 0 30 0 0 Free Free Stop Stop Stop 0%

	۶	-	\mathbf{F}	1	+	۰.	•	Ť	1	1	Ŧ	∢
Movement	EBL	EBT	EBR	WBI	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	2011		<u></u>					002	4	0011
Traffic Volume (veh/h)	1	104	8	12	295	40	8	0	20	1	0	5
Future Volume (Veh/h)	1	104	8	12	275	40	8	0	20	1	0	5
Sign Control		Free	0	12	Eree	40	0	Stop	20		Ston	5
Sign Control		00/			00/			SiUp			Siup 00/	
Dook Hour Factor	0.02	0.02	0.02	0.02	0.06	0.06	0.02	0.02	0.02	0.50	0.02	0.50
Hourty flow rate (upb)	0.92	112	0.92	0.92	207	0.90	0.92	0.92	0.92	0.50	0.92	0.50
Dedestrians		41	7	15	307	42	7	U	22	2	124	10
Peuesinans		12.0			40						134	
Lane Wight (II)		12.0			12.0						12.0	
waiking Speed (ivs)		4.0			4.0						4.0	
Percent Blockage		C			4						11	
Kigni turn liare (Ven)		Mana			Nega							
Median type		ivone			ivone							
iviedian storage Ven)					270							
upstream signal (II)					278							
px, platoon unblocked	402			100			544	(20	1(2	(74	(10	500
vc, conflicting volume	483			122			544	628	162	6/4	612	523
vC1, stage 1 cont vol												
VC2, stage 2 cont voi	100			400			544	(00	4/0	(74	(40	500
VCU, UNDIOCKED VOI	483			122			544	028	102	0/4	012	523
tC, Single (S)	4.1			4.1			7.1	C.0	0.2	7.1	C.0	0.2
IC, Z stage (s)	2.0			2.0			2.5	4.0	2.2	2.5	4.0	2.2
IF (S)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue rree %	100			99			98	100	97	99	100	98
civi capacity (veh/h)	968			14/8			382	354	854	280	361	470
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	123	362	31	12								
Volume Left	1	13	9	2								
Volume Right	9	42	22	10								
cSH	968	1478	628	423								
Volume to Capacity	0.00	0.01	0.05	0.03								
Queue Length 95th (ft)	0	1	4	2								
Control Delay (s)	0.1	0.3	11.0	13.8								
Lane LOS	Α	A	В	В								
Approach Delay (s)	0.1	0.3	11.0	13.8								
Approach LOS			В	В								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			44.9%	IC	CU Level of	Service			A			
Analysis Period (min)			15									
			10									

	5	→	\rightarrow	⊾	1	-	1	1
Movement	FBU	FBT	FBR	WBU	WBI	WBT	NBI	NBR
Lane Configurations		A 1-				41		
Traffic Volume (veh/h)	2	898	78	1	24	420	0	0
Future Volume (Veh/h)	2	898	78	1	24	420	0	0
Sign Control	2	Eree	70		24	Free	Ston	0
Grade		0%				0%	0%	
Peak Hour Factor	0.04	0.04	0.04	0.02	0.02	0.02	0.02	0.02
Hourly flow rate (vph)	0.74	0.74	83	0.72	26	457	0.72	0.72
Dedestrians	0	755	05	0	20	437	142	0
Lapo Width (ft)							143	
Walking Speed (#/s)							4.0	
Dorcont Plockago							4.0	
Dight turn flore (uch)							0	
Right turn hare (ven)		News				News		
Median type		None				None		
Unstream signal (ft)		E01				272		
upsitediti sigital (II)	0.00	391		0.00	0.00	372	0.00	0.00
px, platoon unblocked	0.00			0.00	0.90		0.90	0.90
vc, conflicting volume	0			0	1181		1420	002
VC1, stage 1 cont vol								
vcz, stage z coni voi	0			0	070		4000	000
VCu, unblocked vol	0			0	972		1238	393
tC, single (s)	0.0			0.0	4.4		6.8	6.9
tC, 2 stage (s)								
tF (s)	0.0			0.0	2.3		3.5	3.3
pu queue free %	0			0	95		100	100
cM capacity (veh/h)	0			0	570		146	548
Direction, Lane #	EB 1	EB 2	WB 1	WB 2				
Volume Total	637	401	178	305				
Volume Left	0	0	26	0				
Volume Right	0	83	0	0				
cSH	1700	1700	570	1700				
Volume to Capacity	0.37	0.24	0.05	0.18				
Queue Length 95th (ft)	0	0	4	0				
Control Delay (s)	0.0	0.0	2.2	0.0				
Lane LOS			Α					
Approach Delay (s)	0.0		0.8					
Approach LOS								
Intersection Summary								
Average Delay			0.3					
Intersection Canacity Utilization			33.7%	10		of Sorvico		
Analysis Pariod (min)			15	IC.	- Level L	A DEIVICE		
Analysis renou (IIIII)			10					

	۶	-+	\mathbf{r}	1	←	۰.	1	Ť	1	5	Ŧ	1
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Lane Configurations	LDL	4	LDIX					4		ODL	4	0.511
Traffic Volume (veh/h)	71	426	0	12	379	153	2	0	2	102	0	47
Future Volume (Veh/h)	71	420	0	12	379	153	2	0	2	102	0	47
Sign Control	/1	420 Free	0	12	577 Free	155	2	Stop	2	102	Ston	47
Crado		0%			0%			3i0p			3i0p	
Gidue Dook Llour Foster	0.07	0.07	0.07	0.00	0.00	0.00	1 00	1.00	1 00	0.04	0.04	0.04
Hourty flow rate (uph)	0.97	420	0.97	0.90	207	154	1.00	1.00	1.00	100	0.74	0.74
Dedestrians	15	439	0	12	307	100	2	U	2	109	720	UC
Pedestrians											12.0	
Lane width (It)											12.0	
waiking Speed (tt/s)											4.0	
Percent Blockage											61	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		789			496							
pX, platoon unblocked	0.84			0.83			0.91	0.91	0.83	0.91	0.91	0.84
vC, conflicting volume	1281			439			1124	1890	439	1814	1812	1203
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1238			215			679	1523	215	1440	1437	1145
tC, single (s)	4.2			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	59			99			95	100	100	0	100	37
cM capacity (veh/h)	177			1129			44	24	685	14	27	79
Direction Lane #	FR 1	WB 1	NR 1	SB 1								
Volume Total	512	555		159								
Volume Left	73	12	2	100								
Volumo Dight	/3	154	2	50								
	177	1120	02	50 10								
Volume to Conseitu	0.41	0.01	0.05	0.44								
Volume to Capacity	0.41	0.01	0.05	8.46								
Queue Lengin 95in (II)	40	0.0	4	EIT								
Control Delay (s)	24.2	0.3	50.7	Err								
Lane LOS	С	A	F	F								
Approach Delay (s)	24.2	0.3	50.7	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			1302.9									
Intersection Capacity Utilization			79.5%	IC	U Level of	Service			D			
Analysis Period (min)			15									
	≯	-	⋤	-	•	1	-					
-----------------------------------	------	-------	-------	------	------------	---------	-----------					
Movement	FBI	FBT	WBU	WBT	WBR	SBI	SBR					
Lane Configurations		4		1.		W						
Traffic Volume (veh/h)	41	490	3	520	104	27	24					
Future Volume (Veh/h)	41	490	3	520	104	27	24					
Sign Control		Free	0	Free	101	Stop	2.					
Grade		0%		0%		0%						
Peak Hour Factor	0.97	0.97	0.92	0.92	0.92	0.92	0.92					
Hourly flow rate (vnh)	42	505	0.72	565	113	29	26					
Pedestrians	72	505	0	505	115	485	20					
Lane Width (ft)						12.0						
Walking Speed (ft/s)						4.0						
Percent Blockage						4.0						
Pight turn flare (yeh)						40						
Median type		None		None								
Median storage yeb)		NOLIG		NOUG								
Unstroom signal (ft)		1004		101								
nX platoon unblocked	0.80	1074	0.00	171		0.85	0.80					
vC conflicting volume	1162		0.00			1606	1106					
vC1_stage 1_confive	1103		U			1070	1100					
vC1, stage 1 confivel												
VCz, stage z com voi	1074		0			1447	100E					
tC single (s)	10/0		0.0			1447	6.2					
tC, single (s)	4.Z		0.0			0.4	0.2					
tE (c)	2.2		0.0			2 5	2.2					
n (s)	2.3		0.0			5.0	3.3 01					
po quede nee %	201		0				127					
civi capacity (ven/n)	291		U			62	13/					
Direction, Lane #	EB 1	WB 1	SB 1									
Volume Total	547	678	55									
Volume Left	42	0	29									
Volume Right	0	113	26									
cSH	291	1700	84									
Volume to Capacity	0.14	0.40	0.66									
Queue Length 95th (ft)	12	0	77									
Control Delay (s)	5.2	0.0	107.5									
Lane LOS	А		F									
Approach Delay (s)	5.2	0.0	107.5									
Approach LOS			F									
Intersection Summary												
Average Delay			6.8									
Intersection Capacity Utilization			65.7%	IC	U Level of	Service						
Analysis Period (min)			15									

	٦		\rightarrow	1	←	•	1	Ť	1	1	Ŧ	∢
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	1	ę	7		4	0	301	\$	2/	0	4	25
Traffic Volume (vph) Future Volume (vph)	1	5	279	4	6	0	201	34 34	26 26	0	124	25 25
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Util. Factor Ped Bike Factor	1.00	0.95	0.97	1.00	0.99	1.00	1.00	0.88	1.00	1.00	1.00	1.00
Frt		0.70	0.850		0.77			0.935			0.977	
Fit Protected Satd, Flow (prot)	0	0.992	1615	0	0.982	0	0.950	1557	0	0	1856	0
Flt Permitted	0	0.939	1013	0	0.877	U	0.950	1337	0	0	1050	0
Satd. Flow (perm)	0	1696	1571	0	1657	0	1787	1557	0	0	1856	0
Satd. Flow (RTOR)			291			res		28	res		8	res
ink Speed (mph)		30			30			30			30	
LINK Distance (ft) Travel Time (s)		278			143 3.3			338			266	
Confl. Peds. (#/hr)	93		8	8		93			84	84		
Peak Hour Factor	0.96	0.96	0.96	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	5	291	4	7	0/8	218	37	28	0 /0	135	27
Shared Lane Traffic (%)	2	,	004	0		0	010	15	0	0	4/0	0
ane Group Flow (vph)	0 Perm	6 NA	291 pm+ov	0 Perm	11 NA	0	218 Prot	65 NA	0	0	162 NA	0
Protected Phases		5	1		5		1	14			4	
Permitted Phases	5	F	5	5	5		1	1.4		4	4	
Switch Phase	5	3		3	5		1	14		4	4	
Vinimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0			8.0	8.0	
vinimum Split (s) Fotal Split (s)	22.0	22.0	23.0 63.0	22.0	22.0		23.0			23.0	23.0 25.0	
Fotal Split (%)	20.0%	20.0%	57.3%	20.0%	20.0%		57.3%			22.7%	22.7%	
Maximum Green (s)	17.0	17.0	58.0	17.0	17.0		58.0			20.0	20.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0			2.0	2.0	
ost Time Adjust (s)		0.0	0.0		0.0		0.0				0.0	
Lead/Lag	Lag	5.0 Lao	5.0	Lag	5.0 Lag		5.0			Lead	5.0 Lead	
_ead-Lag Optimize?	3											
/ehicle Extension (s) Recall Mode	2.0 None	2.0 None	2.0 C-Max	2.0 None	2.0 None		2.0 C-Max			2.0 None	2.0 None	
Valk Time (s)	7.0	7.0	7.0	7.0	7.0		7.0			7.0	7.0	
Flash Dont Walk (s)	10.0	10.0	10.0	10.0	10.0		10.0			10.0	10.0	
 euestrian Cails (#/hr) Act Effct Green (s) 	0	0.8.0	0 84.5	0	0.8		0 81.3	102.8		0	13.5	
Actuated g/C Ratio		0.07	0.77		0.07		0.74	0.93			0.12	
//c Ratio		0.05	0.22		0.09		0.17	0.04			0.69	
Queue Delay		0.0	0.0		49.0		4.9	0.0			0.0	
Total Delay		50.2	0.8		49.6		5.5	1.3			58.8	
LOS Approach Delav		D	A		49.6		A	4.5			58.8	
Approach LOS		A			D			A			E	
Stops (vph)		7	9		11		64	6			133	
CO Emissions (g/hr)		8	49		12		76	14			3 198	
NOx Emissions (g/hr)		2	10		2		15	3			38	
VOC Emissions (g/hr) Dilemma Vehicles (#)		2	11		3		18	3			46	
Queue Length 50th (ft)		4	1		7		21	0			106	
Queue Length 95th (ft)		18	18		26		m93	m11			168	
Furn Bay Length (ft)		149			03			200			190	
Base Capacity (vph)		262	1307		256		1321	1472			344	
Starvation Cap Reductn		0	0		0		768	0			0	
Storage Cap Reductn		0	0		0		0	0			0	
Reduced v/c Ratio		0.02	0.22		0.04		0.39	0.04			0.47	
ntersection Summary	Other											
Area Type: Cycle Length: 110	Other											
Actuated Cycle Length: 110												
Offset: 50 (45%), Referenced	to phase 1:	NBTL, St	art of Gree	en								
vatural Cycle: 70 Control Type: Actuated-Coord	dinated											
Maximum v/c Ratio: 0.69												
ntersection Signal Delay: 15.	8 on 52 5%			In	itersection	LOS: B	\ \					
Analysis Period (min) 15	011 JZ.370			IC	JU LEVELOI	Jei VILE F	٠					
n Volume for 95th percentil	le queue is r	metered b	y upstrea	m signal.								
Solits and Phases 6. North	nern Avenue	& Pier 4	Boulevar	1								
		IUI 4	Doalorall									
₩ Ø1 (R)												

	٦	-	\mathbf{r}	1	-	•	1	Ť	1	5	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ŧ₽			ŧ₽			4			ę	1
Traffic Volume (vph)	73	882	101	0	1161	47	157	21	73	184	67	256
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	12	12	12	12	11	12	12	11	11
Storage Length (ft) Storage Lanes	0		125	125		0	0		0	0		100
Taper Length (ft)	25		0	25		0	25		U	25		0
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.94			0.98			0.94			0.96	0.92
Fit Protected	0.950	0.705			0.774			0.970			0.965	0.000
Satd. Flow (prot)	1593	2860	0	0	3100	0	0	1336	0	0	1595	1405
Fit Permitted	0.085	20/0	0	0	2100	0	0	0.492	0	0	0.647	100/
Said. Flow (perm) Right Turn on Red	143	2860	Yes	0	3100	Yes	0	000	Yes	0	1022	Yes
Satd. Flow (RTOR)		16			5			22				69
Link Speed (mph)		30			30			30			30	
Travel Time (s)		23.4			308			346			339	
Confl. Peds. (#/hr)	118	20.1	171	171	7.0	118	55		87	87		55
Confl. Bikes (#/hr)			30			22			4			3
Peak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96
Parking (#/hr)	270	270	070	070	270	0	070	0/0	0/0	070	070	070
Adj. Flow (vph)	75	909	104	0	1262	51	171	23	79	192	70	267
Shared Lane Traffic (%)	75	1012	0	0	1010	0	0	272	0	0	242	247
Turn Type	D.P+P	NA	0	0	NA	0	D.P+P	273 NA	0	Perm	202 NA	207 pm+ov
Protected Phases	6	16			1		5	45			4	6
Permitted Phases	1	14			1		4	4 5		4	4	4
Switch Phase	0	10					5	4 0		4	4	0
Minimum Initial (s)	4.0				10.0		4.0			8.0	8.0	4.0
Minimum Split (s)	9.0				23.0		9.0			30.0	30.0	9.0
Total Split (%)	9.1%				45.5%		9.1%			40.0	40.0	9.1%
Maximum Green (s)	5.0				45.0		5.0			35.0	35.0	5.0
Yellow Lime (s) All-Red Time (s)	3.0				3.0		3.0			3.0	3.0	3.0
Lost Time Adjust (s)	-2.0				-2.0		2.0			2.0	-2.0	-2.0
Total Lost Time (s)	3.0				3.0						3.0	3.0
Lead/Lag							Lag			Lead	Lead	
Vehicle Extension (s)	2.0				2.0		2.0			2.0	2.0	2.0
Recall Mode	None				C-Max		Min			None	None	None
Walk Time (s)					7.0					7.0	7.0	
Flash Dont Walk (s) Pedestrian Calls (#/hr)					5.0					18.0	18.0	
Act Effct Green (s)	55.6	58.6			47.0			42.4		0	35.4	44.0
Actuated g/C Ratio	0.51	0.53			0.43			0.39			0.32	0.40
v/c Ratio	0.41	0.66			0.99			0.88			0.80	0.47
Queue Delay	0.0	0.1			0.1			0.0			0.0	0.0
Total Delay	25.3	12.6			35.9			58.3			52.6	13.3
LOS Approach Dolou	С	12 E			D 25.0			E			D	В
Approach Delay Approach LOS		13.5 B			35.9 D			58.3 F			32.8 C	
Stops (vph)	48	331			341			207			209	113
Fuel Used(gal)	1	12			14			6			5	2
NOv Emissions (g/nr)	86	855			949			404			316	139
VOC Emissions (g/hr)	20	198			220			94			73	32
Dilemma Vehicles (#)	0	0			0			0			0	0
Queue Length 50th (ft)	17 m22	127 m120			100			154			162 #200	63
Internal Link Dist (ft)	IIIZƏ	949			228			266			259	117
Turn Bay Length (ft)												100
Base Capacity (vph)	185	1531			1327			314			343	565
Starvation Cap Reductn Spillback Can Reductn	0	39			0			0			0	0
Storage Cap Reductn	0	0			0			0			0	0
Reduced v/c Ratio	0.41	0.68			0.99			0.87			0.76	0.47
Intersection Summary												
Area Type:	CBD											
Cycle Length: 110 Actuated Cycle Length: 110												
Offset: 0 (0%), Referenced t	to phase 1:EB	WB, Start	of Green									
Natural Cycle: 90												
Control Type: Actuated-Coo Maximum v/c Patie: 0.00	rdinated											
Intersection Signal Delay: 29	9.7			In	tersection	LOS: C						
Intersection Capacity Utilizat	tion 90.1%			IC	U Level of	f Service E						
Analysis Period (min) 15		_14										
 youn percentile volume e Oueue shown is maximum 	m after two co	uiy, queue /cles.	e may be l	unger.								
m Volume for 95th percent	tile queue is n	netered by	upstream	n signal.								
Splits and Dhoses 7. Class	opor Street *	Coopert P	ouloverd									
opins and Phases: 7: Slee	sper Sifeet &	эеарон В	ouevald							lat≜		
01 (R) 50 s										♥ Ø4		

	-	\mathbf{r}	F	1	-	1	۲
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	†1 >	304	24	249	*	170	142
Future Volume (vph)	884	306	24	248	951	179	162
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft) Storage Length (ft)	11	11	12	12 100	11	12	12 100
Storage Lanes		0		1		1	1
Taper Length (ft)	0.05	0.05	0.05	25	0.05	25	1.00
Ped Bike Factor	0.95	0.95	0.95	1.00	0.95	0.90	0.88
Frt	0.961						0.850
Fit Protected Satd. Elow (prot)	2/07	0	0	0.950	3040	0.950	1454
Flt Permitted	2497	U	U	0.116	3047	0.950	1404
Satd. Flow (perm)	2497	0	0	198	3049	1441	1278
Satd, Flow (RTOR)	65	Yes					Yes 23
Link Speed (mph)	30				30	30	20
Link Distance (ft)	139				274	912	
Confl. Peds. (#/hr)	3.2	262	84	262	0.2	20.7	84
Confl. Bikes (#/hr)	a	22					c * -
Peak Hour Factor Heavy Vehicles (%)	0.96	0.96	0.92	0.92	0.92	0.93	0.93
Adj. Flow (vph)	921	319	26	270	1034	192	174
Shared Lane Traffic (%)	1040	0	0	207	1034	100	174
Lane Group Flow (vpn) Turn Type	1240 NA	U	U D.P+P	296 D.P+P	NA	Prot	1/4 custom
Protected Phases	1		5	5	15	4	4
Permitted Phases	1		1	1	1 6	4	5
Switch Phase	1		5	5	10	4	4
Minimum Initial (s)	10.0		4.0	4.0		8.0	8.0
Minimum Split (s)	24.0		9.0 10.0	9.0		30.0	30.0
Total Split (%)	54.5%		9.1%	9.1%		36.4%	36.4%
Maximum Green (s)	55.0		5.0	5.0		35.0	35.0
All-Red Time (s)	3.0		3.0	3.0		3.0	3.0
Lost Time Adjust (s)	-2.0		2.0	-1.0		-1.0	0.0
Total Lost Time (s)	3.0			4.0		4.0	5.0
Lead-Lag Optimize?							
Vehicle Extension (s)	2.0		2.0	2.0		2.0	2.0
Recall Mode Walk Time (s)	C-Max		None	None		None 7.0	None 7.0
Flash Dont Walk (s)	8.0					18.0	18.0
Pedestrian Calls (#/hr)	0			70.0	0.1.0	0	0
Act Littet Green (s) Actuated g/C Ratio	57.0 0.52			/9.3	84.3	18.7	40.0
v/c Ratio	0.94			0.67	0.44	0.71	0.34
Control Delay	21.5			40.7	4.5	55.3	26.3
Oueue Delay Total Delay	9.5 31.0			0.0 40.7	0.3	0.0	0.0 26.3
LOS	C			D	A	E	C
Approach Delay	31.0				12.7	41.5	
Approach LOS Stops (vph)	704			200	В 193	172	115
Fuel Used(gal)	10			4	4	4	3
CO Emissions (g/hr)	725			275	277	296	186
VOC Emissions (g/hr)	168			64	64	69	43
Dilemma Vehicles (#)	0			0	0	0	0
Queue Length 50th (ft) Queue Length 95th (ft)	82 #591			149 #289	80 103	137 m201	88 m148
Internal Link Dist (ft)	59			# ZU 7	194	832	
Turn Bay Length (ft)	1005			100	0007	504	100
Base Capacity (vph) Starvation Can Reductn	1325 88			445	2337	526 0	592
Spillback Cap Reductn	0			0	281	7	0
Storage Cap Reductn	0			0	0	0	0
Reduced V/C Ratio	1.00			0.67	0.59	0.37	0.29
Intersection Summary	CBD						
Cycle Length: 110	CDD						
Actuated Cycle Length: 110							
Offset: 0 (0%), Referenced to Natural Cycle: 00	phase 1:EB	WB, Star	t of Green	1			
Control Type: Actuated-Coor	dinated						
Maximum v/c Ratio: 0.94							
Intersection Signal Delay: 24	.0			In	tersection	LOS: C	
Analysis Period (min) 15	1011 00.3%			IC	O Level 0	Service	-
# 95th percentile volume e	xceeds capad	city, queu	e may be	longer.			
Queue shown is maximur m. Volume for 95th percent	n after two cy	cles.	Vunctroor	m signal			
volume for your percent	queue is li	ISTOREU D	Jupsiledi	siynal.			
Splits and Phases: 8: Bost	ton Wharf Ro	ad (WSR) & Seapo	ort Bouleva	rd		
Ø1 (R)							

	≤	۶	-	\mathbf{r}	1	-	•	1	t	1	1	ŧ	1
ane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14	10	1005	0	0	↑ }	110	171	€1	220	11	0	100
Future Volume (vph)	16	49 49	1005	0	0	841 841	118	1/1	93 93	330 330	214 214	0	193 193
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	12	12	11	0	0	11	0	0	12	125	0	12	0
Storage Lanes		1		0	0		0	0		1	2		0
Laper Length (ft)	0.95	25 1.00	0.95	1.00	25 1.00	0.95	0.95	25	0.95	1.00	25	1.00	1.00
Ped Bike Factor	0.73	1.00	0.75	1.00	1.00	0.96	0.73	0.73	0.97	0.94	0.95	0.53	1.00
Frt Elt Protected		0.050				0.982			0.040	0.850	0.050	0.850	
Satd. Flow (prot)	0	1624	2925	0	0	2917	0	0	3148	1391	3090	0	0
Flt Permitted		0.154	00.05			0017	-	_	0.969	40	0.950	-	_
Satd. Flow (perm) Right Turn on Red	0	263	2925	0 Yes	0	2917	0 Yes	0	3068	1313 Yes	2932	0	0 Yes
Satd. Flow (RTOR)				.05		17	.05			69		169	103
Link Speed (mph)			30			30			30			30	
Travel Time (s)			243 5.5			8.5			18.5			ىدە 7.7	
Confl. Peds. (#/hr)	35	132		180	180		132	35		30	30		35
Contil. Bikes (#/hr) Peak Hour Factor	0.92	0.92	0.92	0.92	0.98	0.98	33 0.98	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehicles (%)	0%	0%	2%	0%	0%	2%	0%	0%	0%	1%	2%	0%	1%
Parking (#/hr) Adi Elow (vph)	17	E2	0	0	0	020	120	100	00	247	220	0	205
Shared Lane Traffic (%)	17	53	1092	0	0	629	120	180	98	347	228	0	205
Lane Group Flow (vph)	0	70	1092	0	0	978	0	0	278	347	228	205	0
Turn Type Protected Phases	D.P+P	D.P+P	NA 1.6			NA 1		Split	NA	custom	Prot		
Permitted Phases	1	1	10			1		4	4	4	3		
Detector Phase	6	6	16			1		4	4	4	5		
Switch Phase Minimum Initial (s)	8.0	8.0				10.0		10.0	10.0	10.0	8.0		
Minimum Split (s)	13.0	13.0				20.0		27.0	27.0	27.0	13.0		
Total Split (s) Total Split (%)	15.0	15.0 13.6%				50.0 45.5%		30.0	30.0	30.0	15.0 13.6%		
Maximum Green (s)	10.0%	10.0%				45.0%		27.3%	21.3%	27.3%	10.0%		
Yellow Time (s)	3.0	3.0				3.0		3.0	3.0	3.0	3.0		
All-Red Time (s) Lost Time Adjust (s)	2.0	2.0				-2.0		2.0	2.0	-2.0	2.0		
Total Lost Time (s)		5.0				3.0			5.0	3.0	5.0		
Lead/Lag								Lead	Lead	Lead	Lag		
Vehicle Extension (s)	2.0	2.0				2.0		2.0	2.0	2.0	2.0		
Recall Mode	None	None				C-Max		None	None	None	None		
vvaik Time (s) Flash Dont Walk (s)						7.0 8.0		7.0 15.0	7.0 15.0	7.0 15.0			
Pedestrian Calls (#/hr)						0		0	0	0			
Act Effct Green (s)		60.0	67.0			48.0			18.9	36.9	11.1	0.0	
v/c Ratio		0.55	0.61			0.44			0.51	0.54	0.74	1.21	
Control Delay		16.1	16.3			34.9			49.3	20.0	66.3	0.0	
Queue Delay Total Delay		0.0	0.6			4.6			0.0 49 3	0.2 20.1	0.0	0.0	
LOS		B	B			D			D	C	E	A	
Approach Delay			16.9			39.5			33.1			34.9	
Approach LOS Stops (vph)		28	а 431			1316			211	205	196	114	
Fuel Used(gal)		0	8			17			5	5	5	1	
CO Emissions (g/hr) NOx Emissions (g/hr)		34	533			1181			384	319	317	80	
VOC Emissions (g/hr)		8	124			230			89	74	73	18	
Dilemma Vehicles (#)		0	0			0			0	0	0	0	
Queue Length 50th (ft) Queue Length 95th (ft)		23 49	250			336 271			81 114	89 145	82 #147	0	
Internal Link Dist (ft)			163			296			732			258	
Turn Bay Length (ft) Base Canacity (vph)		150	1782			1282			715	125	315	160	
Starvation Cap Reductn		0	327			233			0	0	0	0	
Spillback Cap Reductn		0	36			0			0	16	0	0	
Storage Cap Reductn Reduced v/c Ratio		0.22	0.75			0.93			0.39	0.62	0.72	1,21	
Intersection Summary		0.22	0.70			5.75			0.07	0.02	0.72		
Area Type: (CBD												
Cycle Length: 110													
Actuated Cycle Length: 110 Offset: 0 (0%), Referenced to	phase 1.FP	SWB. Start	of Green										
Natural Cycle: 80	pridos LEE	, and, order t	or oreen										
Control Type: Actuated-Coord	linated												
iviaximum v/c Ratio: 1.21 Intersection Signal Delay: 29.4	4			Ini	tersection	LOS: C							
Intersection Capacity Utilizatio	on Err%			IC	U Level of	f Service H	ł						
Analysis Period (min) 15 # 95th perceptile volume ov	reeds cana	city guore	maybe	onder									
Queue shown is maximum	after two cv	ycles.	, may be l	ongel.									
Colline and Dian Co		4.0.0											
Spiils and Phases: 9: East S	Service Roa	u & Seapo	DIT BOUIEV	aro									
•Ø1 (R)										7 1 /04			

	-	\mathbf{r}	4	-	٩	۴
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† Þ	<u></u>		4 †	ኘካ	107
Traffic Volume (vph)	1296	266	84	669	292	127
Ideal Flow (vphpl)	1290	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	13	11	12
Storage Length (ft)		0	0		125	125
Taper Length (ff)		U	25		25	U
Lane Util. Factor	0.95	0.95	0.95	0.95	0.97	1.00
Ped Bike Factor	0.94				0.90	
Frt Elt Drotoctod	0.974			0.004	0.050	0.850
Satd. Flow (prot)	2916	0	0	3058	3046	1439
Flt Permitted				0.612	0.950	
Satd. Flow (perm)	2916	0	0	1883	2755	1439
Satd. Flow (RTOR)	32	Yes				NO
Link Speed (mph)	30			30	30	
Link Distance (ft)	392			533	498	
Travel Time (s)	8.9	075	275	12.1	11.3	(2
Confl Rikes (#/hr)		2/5	2/5		40	03
Peak Hour Factor	0.96	0.96	0.96	0.96	0.97	0.97
Heavy Vehicles (%)	3%	0%	1%	4%	0%	1%
Parking (#/hr)	1250	277	00	0	201	101
Shared Lane Traffic (%)	1350	211	88	097	301	131
Lane Group Flow (vph)	1627	0	0	785	301	131
Turn Type	NA		Perm	NA	Prot	Prot
Protected Phases	1		1	1	4	4
Detector Phase	1		1	1	4	4
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	8.0	8.0
ivinimum Split (s) Total Split (s)	28.0		28.0	28.0	28.0 50.0	28.0
Total Split (%)	54.5%		54.5%	54.5%	45.5%	45.5%
Maximum Green (s)	55.0		55.0	55.0	45.0	45.0
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0
Lost Time Adjust (s)	-2.0		2.0	-2.0	2.0	2.0
Total Lost Time (s)	3.0			3.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?	2.0		2.0	2.0	2.0	2.0
Recall Mode	2.0 C-Max		2.0 C-Max	2.0 C-Max	2.0 Min	2.0 Min
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	16.0		16.0	16.0	16.0	16.0
Pedestrian Calls (#/hr) Act Effct Green (s)	0		0	0 86.2	15.7	15.7
Actuated g/C Ratio	00.3			0.78	0.14	0.14
v/c Ratio	0.71			0.53	0.69	0.64
Control Delay	5.1			6.5	50.1	54.6
Lueue Delay Total Delay	0.1			0.4	0.0	0.0
LOS	3.1 A			0.9 A	50.1 D	04.0 D
Approach Delay	5.1			6.9	51.5	
Approach LOS Stops (upb)	A			A	D	100
Stops (vpn) Fuel Used(gal)	608			267	282	123
CO Emissions (g/hr)	681			419	396	181
NOx Emissions (g/hr)	132			82	77	35
VUC Emissions (g/hr) Dilemma Vehicles (#)	158			97	92	42
Queue Length 50th (ft)	55			86	112	95
Queue Length 95th (ft)	90			161	m148	m139
Internal Link Dist (ft)	312			453	418	105
Base Capacity (voh)	2294			1476	125	588
Starvation Cap Reductn	43			0	0	0
Spillback Cap Reductn	0			270	33	0
Storage Cap Reductn	0			0 45	0.25	0
Reduced V/C Ratio	0.72			0.65	0.25	U.22
Intersection Summary	CPD					
Area Type: Cycle Length: 110	CRD					
Actuated Cycle Length: 110						
Offset: 0 (0%), Referenced to	phase 1:EB	WB, Star	t of Green	1		
Natural Cycle: 75 Control Type: Actuated Coord	dinated					
Maximum v/c Ratio: 0.71	unlated					
Intersection Signal Delay: 12	.6			In	tersection	LOS: B
Intersection Capacity Utilizati	on 102.7%			IC	U Level o	f Service
Analysis Period (min) 15 m. Volume for 95th percent	le queue is e	neterod b	VUnstraar	m signal		
m volume for your percent	ne queue is li	notoreu D	J upstredi	n siyildi.		
Splits and Phases: 10: B S	Street & Seap	ort Boule	vard			
₩ Ø1(R)						
60 - C - C - C - C - C - C - C - C - C -						

Synchro 9 Report Lanes, Volumes, Timings

	•	-	\mathbf{r}	1	-	•	1	Ť	1	>	Ŧ	-					
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2				
Lane Configurations	24	41÷	747	71	4î»	24	1	0	1	15	4	21					
Future Volume (vph)	24	451	747	71	554	24	221	0	28	15	27	31					
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900					
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00					
Frd Bike Factor		0.91			0.99		0.96		0.850		0.91						
Flt Protected		0.999			0.995		0.950		0.050		0.990						
Satd. Flow (prot)	0	2952	0	0	3439	0	1787	0	1615	0	1680	0					
Fit Permitted Satd_Elow (perm)	0	0.932	0	0	0.648	0	0.950	0	1615	0	0.990	0					
Right Turn on Red	0	2100	Yes	0	2230	Yes	1700	0	Yes	0	1010	Yes					
Satd. Flow (RTOR)		505			5				109		28						
Link Speed (mph)		30			30			30			30						
Travel Time (s)		8.5			7.4			8.5			8.3						
Confl. Peds. (#/hr)	52		181	181		52	23		41	41		23					
Confl. Bikes (#/hr)	0.05	0.05	16	0.07	0.07	31	0.05	0.05	0.05	0.04	0.04	0.04					
Heavy Vehicles (%)	0.95	4%	0.95	0.97	4%	0.97	1%	0.95	0.95	0.94	0.94	0.94					
Adj. Flow (vph)	25	475	786	73	571	25	233	0	29	16	29	33					
Shared Lane Traffic (%)	0	1204	0	0	440	0	122	0	20	0	70	0					
Turn Type	Perm	NA	0	Perm	NA	0	Prot	U	Prot	Split	NA	0					
Protected Phases		1			1		7		7	8	8		2				
Permitted Phases	1	1		1	1		7		7	0	0						
Switch Phase	1	1		1	1		/		1	8	8						
Minimum Initial (s)	16.0	16.0		16.0	16.0		6.0		6.0	6.0	6.0		4.0				
Minimum Split (s)	21.0	21.0		21.0	21.0		11.0		11.0	11.0	11.0		21.0				
Total Split (S) Total Split (%)	49.0	49.0		49.0 49.0%	49.0		19.0		19.0	11.0%	11.0%		21.0				
Maximum Green (s)	44.0	44.0		44.0	44.0		14.0		14.0	6.0	6.0		18.0				
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0		3.0				
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0		2.0	2.0	2.0		0.0				
Total Lost Time (s)		5.0			5.0		5.0		5.0		5.0						
Lead/Lag	Lead	Lead		Lead	Lead		Lead		Lead	Lag	Lag		Lag				
Lead-Lag Optimize?	2.0	2.0		2.0	2.0		2.0		2.0	20	2.0		2.0				
Recall Mode	C-Max	C-Max		C-Max	C-Max		None		None	None	None		None				
Walk Time (s)													7.0				
Flash Dont Walk (s) Pedestrian Calls (#/br)													6.0				
Act Effct Green (s)		60.0			60.0		19.1		19.1		8.1		0				
Actuated g/C Ratio		0.60			0.60		0.19		0.19		0.08						
v/c Ratio		0.69			0.50		0.68		0.07		20.5						
Queue Delay		0.0			0.0		0.0		0.4		0.0						
Total Delay		11.4			14.7		48.0		0.4		39.5						
LOS Approach Dolay		B			B		D	12.7	A		20 F						
Approach LOS		В			B			42.7 D			57.5 D						
Stops (vph)		559			371		201		0		46						
Fuel Used(gal)		10			304		273		0		73						
NOx Emissions (g/hr)		129			77		53		1		14						
VOC Emissions (g/hr)		154			91		63		1		17						
Dilemma venicles (#) Queue Length 50th (ft)		174			125		138		0		0 31						
Queue Length 95th (ft)		310			209		211		0		75						
Internal Link Dist (ft)		296			245			292			286						
Lurn Bay Length (ft) Base Capacity (vph)		1854			1344		341		396		162						
Starvation Cap Reductn		0			0		0		0		0						
Spillback Cap Reductn		0			0		0		0		0						
Storage Cap Reductn		0 69 0			0 50		0 68		0 07		0 48						
Intersection Summany		0.07			0.30		0.00		0.01		0.40						
Area Type:	Other																
Cycle Length: 100 Actuated Cycle Length: 100																	
Offset: 47 (47%), Referenced	to phase 1:	EBWB, St	art of Gre	en													
Natural Cycle: 90	dinatad																
Maximum v/c Ratio: 0.69	unidted																
Intersection Signal Delay: 16.	.9			In	tersection	LOS: B											
Intersection Capacity Utilization	on 90.7%			IC	U Level of	Service I											
Analysis Period (Min) 15																	
Splits and Phases: 12: D S	street & Nort	hern Aven	ue														1
₩ø1 (R)											₩ø2			1 07		₽ Ø8	
49 s											21 s			19 s		l1s	

	٠	-	\rightarrow	1	+	•	1	Ť	1	1	Ŧ	1		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	4		142	347	1	10	140	4	205	14	4	0		
Future Volume (vph)	1	450	142	267	420	10	143	47	305	16	82	8		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width (ft)	12	11	11	11	11	12	12	16	12	12	16	12		
Storage Length (II) Storage Lanes	0		100	0		0	0		0	0		0		
Taper Length (ft)	25			25		0	25			25		0		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Ped Bike Factor		1.00	0.67	0.86	0.99			0.77	0.950		0.96			
Fit Protected			0.030	0.950	0.997			0.964	0.050		0.993			
Satd. Flow (prot)	0	3110	1252	1570	1617	0	0	1868	1454	0	1848	0		
Flt Permitted	0	0.954	0.14	0.426	4/47	0	0	0.964	4.15.4	0	0.993	0		
Sata. Flow (perm) Right Turn on Red	0	2966	84 I No	606	1617	Ves	0	1437	1454 Yes	0	1829	Yes		
Satd. Flow (RTOR)			110		1	105			314		3	105		
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		191			478			213			457			
Confl. Peds. (#/hr)	130	4.3	99	99	10.9	130	137	4.8	56	56	10.4	137		
Confl. Bikes (#/hr)	100		15			17	107		00	00		2		
Peak Hour Factor	0.97	0.97	0.97	0.98	0.98	0.98	0.97	0.97	0.97	0.92	0.92	0.92		
Heavy Vehicles (%)	0%	1%	1%	0%	1%	0%	0%	0%	0%	0%	0%	0%		
Parking (#/nr) Adi Flow (vnh)	1	464	146	272	429	10	147	48	314	17	89	9		
Shared Lane Traffic (%)		104	140	212	121	10	.47	0	014		07	,		
Lane Group Flow (vph)	0	465	146	272	439	0	0	195	314	0	115	0		
Turn Type	Perm	NA	Perm	D.P+P	NA		Prot	NA	custom	Split	NA			
Protected Phases	1	1	1	5	15		3		35	4	4			
Detector Phase	1	1	1	5	15		3		35	4	4			
Switch Phase														
Minimum Initial (s)	10.0	10.0	10.0	4.0			8.0			8.0	8.0			
vinimum split (s) Total Split (s)	25.0	25.0 44.0	25.0 44.0	10.0			26.0			26.0 25.0	26.0 25.0			
Total Split (%)	40.0%	40.0%	40.0%	13.6%			23.6%			22.7%	22.7%			
Maximum Green (s)	37.0	37.0	37.0	9.0			21.0			20.0	20.0			
Yellow Time (s)	3.0	3.0	3.0	3.0			3.0			3.0	3.0			
All-Red Time (s) Lost Time Adjust (s)	4.0	4.0	4.0	3.0			2.0			2.0	-1.0			
Total Lost Time (s)		7.0	7.0	6.0							4.0			
Lead/Lag							Lead			Lag	Lag			
Lead-Lag Optimize?	2.0	2.0	2.0	2.0			2.0			2.0	2.0			
Recall Mode	C-Max	C-Max	C-Max	None			Max			Max	Max			
Walk Time (s)	7.0	7.0	7.0				7.0			7.0	7.0			
Flash Dont Walk (s)	11.0	11.0	11.0				14.0			14.0	14.0			
Pedestrian Calls (#/hr)	0	27.0	27.0	47.0	52.0		0	22.0	21.0	0	21.0			
Actuated g/C Ratio		0.34	0.34	0.43	0.47			0.21	0.28		0.19			
//c Ratio		0.47	0.52	0.81	0.57			0.50	0.49		0.32			
Control Delay		25.0	31.1	34.2	14.2			43.6	4.7		41.2			
Dueue Delay Total Delay		25.1	21.1	34.2	14.8			43.6	0.0		41.2			
LOS		C	C	C	B			D	A		D			
Approach Delay		26.5			22.2			19.6			41.2			
Approach LOS Stops (upb)		C 207	104	170	C 102			162	20		D 62			
Fuel Used(gal)		5	2	4	4			3	20		2			
CO Emissions (g/hr)		326	119	265	273			202	67		137			
NOx Emissions (g/hr)		63	23	52	53			39	13		27			
VUC EMISSIONS (g/hr) Dilemma Vehicles (#)		76	27	61	63			47	15		32			
Queue Length 50th (ft)		124	79	71	135			123	0		49			
Queue Length 95th (ft)		127	119	#155	185			195	39		m71			
nternal Link Dist (ft)		111	100		398			133			377			
rum Bay Length (tt) Base Capacity (voh)		997	100	337	764			300	635		355			
Starvation Cap Reductn		0	0	0	97			0	0		0			
Spillback Cap Reductn		57	0	0	0			0	6		0			
Storage Cap Reductn		0 40	0.53	0.01	0			0 50	0 50		0			
Reduced Mc Ratio		0.49	0.52	U.8 I	U.66			0.50	0.50		0.32			
ntersection Summary	CPD													
Area Type: Svole Length: 110	CBD													
Actuated Cycle Length: 110)													
Offset: 105 (95%), Reference	ced to phase	1:EBWB, 3	Start of G	reen										
Vatural Cycle: 90	ardinate d													
Junitor Type: Actuated-Coc Maximum v/c Ratio: 0.81	unated													
ntersection Signal Delay: 2	4.0			In	tersection	LOS: C								
Intersection Capacity Utiliza	ation 73.6%			IC	U Level of	f Service [)							
Analysis Period (min) 15	ovood	aitu	o march	longer										
 voin percentile volume (Oueue shown is maximu 	exceeds capa im after two o	uty, queu voles	e may be	ionger.										
m Volume for 95th percen	ntile queue is	netered b	y upstrea	m signal.										
				-										
Splits and Phases: 15: A	Street/Thoms	ion St & C	ongress S	street				<u> </u>						
(A1 (P)								· ▲	100				↓ № 04	Mar

25 9

15 s

Synchro 9 Report Lanes, Volumes, Timings

	٦	→	\mathbf{r}	4	-	•	٩	Ť	۲	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph)	82	418	351	1 198	†₽ 330	49	5	₽ 47	128	144	4 329	237
Future Volume (vph) Ideal Flow (vphpl)	82 1900	418 1900	351 1900	198 1900	330 1900	49 1900	65 1900	47 1900	128 1900	144 1900	329 1900	237 1900
Lane Width (ft)	12	12	12	12	12	12	16	11	12	12	11	11
Storage Lanes	0		1	150		0	1		0	0		125
Taper Length (ft) Lane Util. Factor	25 1.00	1.00	1.00	25 1.00	0.95	0.95	25 1.00	1.00	1.00	25 1.00	1.00	1.00
Ped Bike Factor Frt		0.97	0.73		0.95		0.84	0.93			0.98	0.68
Flt Protected		0.992	0.000	0.950	0.701		0.950	0.070			0.985	0.000
Satd. Flow (prot) Flt Permitted	0	1682 0.862	1454	1608 0.310	2876	0	1805 0.479	1316	0	0	1595 0.569	1405
Satd. Flow (perm) Right Turn on Red	0	1417	1055 Vos	525	2876	0 Ves	766	1316	0 Ves	0	907	951 Vos
Satd. Flow (RTOR)			244		20	103		111	103			129
Link Speed (mph) Link Distance (ft)		30 478			30 521			30 204			30 912	
Travel Time (s) Confl. Peds. (#/hr)	121	10.9	83	83	11.8	121	82	4.6	38	38	20.7	82
Confl. Bikes (#/hr)	0.07	0.07	10	0.00	0.02	8	0.07	0.07	0.07	0.04	0.04	0.04
Heavy Vehicles (%)	0.97	0.97	0.97	0.93	0.93	0.93	2%	17%	0.97	0.94	0.94 3%	0.94
Parking (#/hr) Adj. Flow (vph)	85	431	362	213	0 355	0 53	67	48	132	153	350	252
Shared Lane Traffic (%)	0	F14	240	212	100	0	47	100		0	E02	252
Turn Type	Perm	NA	Perm	Perm	408 NA	U	Perm	NA	0	D.P+P	NA	252 custom
Protected Phases Permitted Phases	1	1	1	1	1		5	5		4	45	4
Detector Phase	1	1	1	1	1		5	5		4	4 5	4
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		8.0	8.0		8.0		8.0
Minimum Split (s) Total Split (s)	23.0 55.0	23.0 55.0	23.0 55.0	23.0 55.0	23.0 55.0		21.0 25.0	21.0 25.0		13.0 30.0		13.0 30.0
Total Split (%) Maximum Green (s)	50.0%	50.0%	50.0%	50.0%	50.0%		22.7%	22.7%		27.3%		27.3%
Yellow Time (s)	3.0	3.0	30.0	30.0	3.0		3.0	3.0		3.0		25.0
All-Red Time (s) Lost Time Adjust (s)	2.0	2.0 -1.0	2.0 -1.0	2.0 -1.0	2.0 -1.0		2.0 -1.0	2.0 -1.0		2.0		2.0 -1.0
Total Lost Time (s)		4.0	4.0	4.0	4.0		4.0	4.0		Lead		4.0
Lead-Lag Optimize?	0.0	0.0		0.0	~ ~		Lay	Lay		LEdu		Ledu
venicie Extension (s) Recall Mode	2.0 C-Max	2.0 C-Max	2.0 C-Max	2.0 C-Max	2.0 C-Max		2.0 Min	2.0 Min		2.0 Min		2.0 Min
Walk Time (s) Flash Dont Walk (s)	7.0 11.0	7.0 11.0	7.0 11.0	7.0 11.0	7.0 11.0		0.0 16.0	0.0 16.0		7.0 0.0		7.0
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	44.2	0
Actuated g/C Ratio		53.8 0.49	53.8 0.49	53.8 0.49	53.8 0.49		0.17	0.17			44.2 0.40	26.0
v/c Ratio Control Delay		0.75	0.57 5.1	0.83 59.4	0.29		0.53 56.8	0.58			0.95 59.3	0.59
Queue Delay		0.7	0.1	0.0	0.0		0.0	0.0			0.0	0.0
LOS		20.4 C	5.1 A	59.4 E	18.9 B		50.8 E	24.5 C			59.3 E	18.5 B
Approach Delay Approach LOS		14.1 B			32.8 C			33.3 C			45.7 D	
Stops (vph)		342	59	171	420		57	68			512	163
CO Emissions (g/hr)		403	140	290	372		82	107			832	243
NUx Emissions (g/hr) VOC Emissions (g/hr)		78 93	27 32	56 67	72 86		16 19	21 25			162 193	47 56
Dilemma Vehicles (#) Oueue Length 50th (ff)		0 308	0	0 160	0		0 42	0 42			0 365	0 78
Queue Length 95th (ft)		#467	35	#266	123		90	114			m#480	m128
Internal Link Dist (ft) Turn Bay Length (ft)		398		150	441			124			832	125
Base Capacity (vph) Starvation Cap Reducto		692 34	640 10	256	1416		146	341			550	430
Spillback Cap Reductn		0	0	0	0		0	0			0	0
Reduced v/c Ratio		0.78	0.57	0.83	0.29		0.46	0.53			0.91	0.59
Intersection Summary	CRD											
Area Type: Cycle Length: 110	CRD											
Actuated Cycle Length: 110 Offset: 105 (95%) Reference	ed to phase '	I FBWB	Start of Gr	reen								
Natural Cycle: 70				0011								
Control Type: Actuated-Coord Maximum v/c Ratio: 0.95	dinated											
Intersection Signal Delay: 30.	1.2			lr 17	ntersection	LOS: C	F					
Analysis Period (min) 15						JEIVILEI						
 # 95th percentile volume ex Queue shown is maximum 	xceeds capa n after two c	city, queu ycles.	e may be	ionger.								
m Volume for 95th percenti	ile queue is r	netered b	y upstrear	m signal.								
Splits and Phases: 16: Bos	ston Wharf R	oad (WS	R) & Cong	ress Stre	et							
Ø1 (R)										_	\$	Ø4

	الحر	-•	-	•	1	Ť	1	•	•	/
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	NBR	NEL2	NEL	NER
Lane Configurations	۲	† †	≜ †≽			41	1		۲Y	
Traffic Volume (vph)	61	701	452	111	73	135	55	53	160	68
Future Volume (vph)	1000	701	452	111	73	135	55 1000	53 1900	160	68 1900
Lane Width (ft)	1700	12	13	16	12	12	12	12	12	12
Storage Length (ft)	175			50	0		0		0	0
Storage Lanes	1			0	0		1		2	0
Taper Length (ft)	25	0.05	0.05	0.05	25	0.05	1.00	0.05	25	0.05
Ped Bike Factor	0.95	0.75	0.93	0.75	0.75	0.93	1.00	0.75	0.95	0.75
Frt			0.970				0.850		0.964	
Flt Protected	0.950					0.983			0.964	
Satd. Flow (prot)	1624	3249	3128	0	0	3173	1454	0	3022	0
Satd. Flow (perm)	629	3249	3128	0	0	3069	1454	0	2917	0
Right Turn on Red				Yes			Yes			
Satd. Flow (RTOR)			30				69			
Link Speed (mph) Link Distance (ft)		521	30 509			30			200	
Travel Time (s)		11.8	11.6			4.0			4.5	
Confl. Peds. (#/hr)	100			100	20		17	20		17
Confl. Bikes (#/hr)				3						
Peak Hour Factor	0.96	0.96	0.92	0.92	0.92	0.92	0.92	0.95	0.95	0.95
Adi. Flow (vph)	64	730	491	121	79	147	60	56	168	72
Shared Lane Traffic (%)										
Lane Group Flow (vph)	64	730	612	0	0	226	60	0	296	0
Furn Type	Perm	NA	NA		Split	NA	Prot	Prot	Prot	
Protected Phases	1	1	1		2	2	2	3	3	
Detector Phase	1	1	1		2	2	2	3	3	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Total Solit (s)	32.0 40.0	40.0	40.0		35.0	35.0	35.0	30.0	30.0	
Total Split (%)	36.4%	36.4%	36.4%		31.8%	31.8%	31.8%	31.8%	31.8%	
Maximum Green (s)	35.0	35.0	35.0		30.0	30.0	30.0	30.0	30.0	
Yellow Time (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
All-Red Time (S)	-2.0	-2.0	-2.0		2.0	-2.0	-2.0	2.0	-2.0	
Total Lost Time (s)	3.0	3.0	3.0			3.0	3.0		3.0	
Lead/Lag					Lead	Lead	Lead	Lag	Lag	
Lead-Lag Optimize?	2.0	20	2.0		2.0	2.0	2.0	2.0	2.0	
Recall Mode	C-Max	C-Max	C-Max		2.0 Min	2.0 Min	2.0 Min	2.0 Min	2.0 Min	
Walk Time (s)	7.0	7.0	7.0		7.0	7.0	7.0	0.0	0.0	
Flash Dont Walk (s)	15.0	15.0	15.0		0.0	0.0	0.0	24.0	24.0	
Pedestrian Calls (#/hr)	0	0	0		0	0	0	0	17.2	
Actuated o/C Ratio	0.63	09.0	09.0			0.13	0.13		0.16	
v/c Ratio	0.16	0.36	0.31			0.55	0.24		0.63	
Control Delay	12.3	11.1	14.3			49.7	10.6		49.1	
Queue Delay	0.0	0.0	0.0			0.0	0.0		0.0	
LOS	12.3 B	11.1 B	14.3 B			49.7 D	10.6 B		49.1 D	
Approach Delay	5	11.2	14.3			41.5	5		49.1	
Approach LOS		В	В			D			D	
Stops (vph)	24	279	282			189	9		255	
CO Emissions (a/hr)	37	418	5 379			3 240	17		5 326	
NOx Emissions (g/hr)	7	81	74			47	3		63	
VOC Emissions (g/hr)	9	97	88			56	4		75	
Dilemma Vehicles (#)	0	0	0			0	0		0	
Queue Length 50th (ft)	15 m20	104 m170	111 m154			115	22		102	
Internal Link Dist (ft)	11132	441	429			98	32		120	
Turn Bay Length (ft)	175									
Base Capacity (vph)	397	2054	1988			923	471		879	
Starvation Cap Reductn	0	0	0			0	0		0	
Storage Cap Reductin	0	0	0			0	0		0	
Reduced v/c Ratio	0.16	0.36	0.31			0.24	0.13		0.34	
Intersection Summarv										
Area Type:	CBD									
Cycle Length: 110										
Actuated Cycle Length: 110	and to phase	1.EB/M/D	Start of Cr	aan						
Juset: 105 (95%), Reference Natural Cycle: 80	.eu io phase	i.ebwb,	Start of Gr	een						
Control Type: Actuated-Con	ordinated									
Maximum v/c Ratio: 0.63										
ntersection Signal Delay: 2	2.1			In	tersection	LOS: C	D			
mersection Capacity Utiliza Analysis Period (min) 15	11011 39.7%			10	PO FEA6I 0	SELVICE	D			
n Volume for 95th percen	tile queue is	metered b	y upstream	n signal.						
Splits and Phases: 17: Co	ongress Stree	et & East S	Service Ro	ad			- 1			
- (n)							•	J.		

	٦	->	\mathbf{r}	1	-	•	1	Ť	1	1	Ŧ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		4₽	1	<u> </u>	4î þ		ľ	1	1		††	1
Traffic Volume (vph)	134	376	314	485	246	126	247	253	331	25 25	259	69 69
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft)	12	12	12	12	12	12	16	14	12	12	11	11
Storage Length (II) Storage Lanes	0		200	250		0	1		1	0		125
Taper Length (ft)	25			25			25			25		
ane Util. Factor	0.95	0.95	1.00	0.91	0.91	0.95	1.00	1.00	1.00	0.95	0.95	1.00
rt		0.99	0.850	0.90	0.97		0.90		0.850		0.99	0.850
It Protected		0.987		0.950	0.981		0.950				0.996	
Satd. Flow (prot)	0	3152	1454	1464	2803	0	1841	1824	1439	0	3100	1405
Satd. Flow (perm)	0	3114	1454	1440	2785	0	685	1824	1439	0	2801	1405
Right Turn on Red			No		~ /	Yes			Yes			Yes
ink Speed (mnh)		30			26			30	341		30	12
ink Distance (ft)		509			995			220			498	
Fravel Time (s)	71	11.6	21	21	22.6	71		5.0	70	70	11.3	
Confl. Bikes (#/hr)	/1		21	21		/1	23		70	70		23
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.96	0.96	0.96
Heavy Vehicles (%)	1%	2%	0%	1%	6% 2F 4	0%	0%	0%	1%	0%	1%	0%
Shared Lane Traffic (%)	138	აძბ	324	500 50%	254	130	205	201	541	26	270	12
ane Group Flow (vph)	0	526	324	250	634	0	255	261	341	0	296	72
Furn Type Protected Phases	Split	NA	pt+ov	Split	NA		D.P+P	NA 2.4	Prot	Perm	NA	pt+ov
Permitted Phases	2	2	23	1	1		3	34	34	4	4	24
Detector Phase	2	2	23	1	1		3	34	34	4	4	24
Witch Phase	80	8.0		80	8.0		80			8.0	8.0	
Ainimum Split (s)	26.0	26.0		26.0	26.0		30.0			13.0	13.0	
Total Split (s)	30.0	30.0		30.0	30.0		30.0			20.0	20.0	
otal Split (%) Maximum Green (s)	27.3%	27.3%		27.3%	27.3%		27.3%			18.2% 15.0	18.2%	
fellow Time (s)	3.0	3.0		3.0	3.0		3.0			3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0			2.0	2.0	
ost Time Adjust (s) Total Lost Time (s)		-2.0		-2.0	-2.0		-2.0				-2.0	
ead/Lag	Lead	Lead		3.0	3.0		Lag				3.0	
ead-Lag Optimize?	0.0	~ ~		0.0	~ ~		~~~			~ ~	~ ~	
venicle Extension (s) Recall Mode	2.0 Max	2.0 Max		2.0 C-Max	2.0 C-Max		2.0 Max			2.0 None	2.0 None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0			NUTIC	NUTC	
lash Dont Walk (s)	14.0	14.0		14.0	14.0		18.0					
Pedestrian Calls (#/hr)	0	27.0	57.0	28.0	28.0		43.0	46.0	46.0		16.0	43.0
Actuated g/C Ratio		0.25	0.52	0.25	0.25		0.39	0.42	0.42		0.15	0.39
/c Ratio		0.68	0.43	0.67	0.86		0.46	0.34	0.43		0.73	0.12
Jontrol Delay		40.4	15.1	43.5	43.8		24.6	23.1	3.9		48.7	3.3
Total Delay		40.4	15.1	43.5	43.8		24.6	23.1	3.9		48.7	3.3
OS		D	В	D	D		С	C	A		D	А
Approach Delay		30.7 C			43.7 D			15.9 R			39.8 D	
Stops (vph)		462	199	187	449		164	166	26		274	12
uel Used(gal)		9	3	5	13		3	3	1		5	0
VO Emissions (g/hr)		613 119	232	353	890 173		35	35	68 13		380	27
/OC Emissions (g/hr)		142	54	82	206		42	41	16		88	6
Dilemma Vehicles (#)		0	0	0	0		0	0	0		0	0
Jueue Length 50th (ft)		193	149	157 m101	192 m112		117	121	0		109	4 m14
nternal Link Dist (ft)		429	233		915		100	140	55		418	1114
furn Bay Length (ft)			200	250								125
Base Capacity (vph)		773	753	372	733		551	779	810		432	605
Spillback Cap Reductn		0	0	0	0		0	0	0		0	0
Storage Cap Reductn		0	0	0	0		0	0	0		0	0
Reduced v/c Ratio		0.68	0.43	0.67	0.86		0.46	0.34	0.42		0.69	0.12
tersection Summary	CDD											
Area Type: Cycle Length: 110	CBD											
Actuated Cycle Length: 110												
Offset: 75 (68%), Reference	d to phase 1:	WBTL, St	tart of Gre	en								
Vatural Cycle: 95	dinota d											
Jonirol Type: Actuated-Coor Maximum v/c Ratio: 0.86	ruihated											
ntersection Signal Delay: 31	.4			Ir	ntersection	LOS: C						
ntersection Capacity Utilizat	tion 79.6%			10	CU Level of	f Service I	D					
ManySis Period (min) 15 Nolume for 95th percent	tile aueue is i	metered b	v unstrea	m signal								
volume for your percent	and queue is I	netereu D	J upsued	ni siyitat.								
Splits and Phases: 18: B S	Street & Con	gress Stre	eet		1							
₹ø1 (R)												

Synchro 9 Report Lanes, Volumes, Timings

	≤	٦	-+	\mathbf{r}	1	-	•	₹Ĩ	1	Ť	1	L	1	Ŧ	-
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations	2.	110	4 î >	1	145	41	00	,	11	107	40	10	-07	4 î	(1
Future Volume (vph)	24	113	201	326	145	212	80	6	377	197	48 48	10	27	818	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft) Storage Length (ft)	12	12	12	13	12	13	12	12	11	12	12	12	12	14	12
Storage Lanes		0		130	0		0		2		0		0		0
Taper Length (ft)	0.05	25	0.01	0.01	25	0.05	0.05	1.00	25	4.00	1.00	0.05	25	0.05	0.05
Ped Bike Factor	0.95	0.95	0.91	0.91	0.95	0.95	0.95	1.00	0.97	0.98	1.00	0.95	0.95	0.95	0.95
Frt			0.966	0.850		0.973				0.971				0.990	
Fit Protected	0	0	0.985	1227	0	0.984	0	0	0.950	1500	0	0	0	0.998	0
Flt Permitted	0	0	0.985	1327	U	0.984	0	0	0.200	1J0Z	0	U	0	0.998	0
Satd. Flow (perm)	0	0	2650	1327	0	2994	0	0	629	1582	0	0	0	3340	0
Satd. Flow (RTOR)				NO		19	res			10	Yes			6	Yes
Link Speed (mph)			30			30				30				30	
Link Distance (ft) Travel Time (s)			22.6			319				317				3/2	
Confl. Peds. (#/hr)	37	50	22.0	57	57	7.5	50	57	37	1.2	57	50	57	0.5	37
Confl. Bikes (#/hr)	0.05	0.05	0.05	7	0.00	0.00	5	0.00	0.00	0.00	4	0.00	0.00	0.00	8
Heavy Vehicles (%)	0.95	0.95	4%	0.95	0.92	0.92	0.92	0.92	2%	0.92	0.92	0.98	0.98	0.98	0.98
Parking (#/hr)											0				
Adj. Flow (vph)	25	119	212	343	158	230	87	7	410	214	52	10	28	835	62
Lane Group Flow (vph)	0	0	462	237	0	475	0	0	417	266	0	0	0	935	0
Turn Type	Perm	Split	NA	Prot	Split	NA		Perm	Split	NA		Perm	Split	NA	
Protected Phases Permitted Phases	1	1	1	1	4	4		2	2	2		3	3	3	
Detector Phase	1	1	1	1	4	4		2	2	2		3	3	3	
Switch Phase	12.0	12.0	12.0	12.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	17.0	17.0		27.0	27.0	27.0		18.0	8.0 18.0	8.0 18.0	
Total Split (s)	38.0	38.0	38.0	38.0	17.0	17.0		27.0	27.0	27.0		28.0	28.0	28.0	
Total Split (%) Maximum Green (s)	34.5%	34.5%	34.5%	34.5%	15.5%	15.5%		24.5%	24.5%	24.5%		25.5%	25.5%	25.5%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0		4.0	4.0	4.0		3.0	3.0	3.0	
All-Red Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0		5.0	5.0	5.0	
Total Lost Time (s)			-2.0	-2.0		-2.0			-2.0	-2.0				-2.0	
Lead/Lag								Lead	Lead	Lead		Lag	Lag	Lag	
Lead-Lag Optimize?	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0		2.0	2.0	2.0	
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None		Max	Max	Max		Max	Max	Max	
Walk Time (s)	7.0	7.0	7.0	7.0				7.0	7.0	7.0		7.0	7.0	7.0	
Pedestrian Calls (#/hr)	4.0	4.0	4.0	4.0				10.0	10.0	10.0		2.0	2.0	2.0	
Act Effct Green (s)			32.0	32.0		11.0			20.0	20.0				22.0	
Actuated g/C Ratio			0.29	0.29		0.10			0.18	0.18				0.20	
Control Delay			26.2	30.6		258.7			1232.0	70.1				216.3	
Queue Delay			0.2	1.5		0.0			0.0	0.0				0.0	
LOS			26.4 C	32.1 C		258.7 F			1232.0 F	70.1 E				216.3 F	
Approach Delay			28.3			258.7				779.5				216.3	
Approach LOS Stops (upb)			208	200		F 314			288	F				F 705	
Fuel Used(gal)			8	4		26			99	6				47	
CO Emissions (g/hr)			555	301		1806			6910	392				3278	
VOC Emissions (g/nr)			108	59		419			1344	76 91				760	
Dilemma Vehicles (#)			0	0		0			0	0				0	
Queue Length 50th (ft)			174	181		~237 #345			~268	166 #325				~464	
Internal Link Dist (ft)			915	205		239			11372	237				292	
Turn Bay Length (ft)			004	150		0.05				005				(7)	
Base Capacity (vph) Starvation Can Reducto			804	386		325			114	295				676	
Spillback Cap Reductn			50	48		0			0	0				0	
Storage Cap Reductn			0	0		0			0	0				0	
Reduced v/c Ratio			0.61	0.70		1.46			3.66	0.90				1.38	
Intersection Summary Area Type:	CBD														
Cycle Length: 110	CDD														
Actuated Cycle Length: 110)														
Offset: 32 (29%), Reference Natural Cycle: 85	ed to phase 1:	EBIL, Sta	art of Gree	\$N											
Control Type: Actuated-Coo	ordinated														
Maximum v/c Ratio: 3.66						100 5									
Intersection Signal Delay: 3 Intersection Canacity Litiliza	14.2 ation 99.2%			In	itersection	LUS: F	E .								
Analysis Period (min) 15					D LOVOI O	l oornoo i									
 Volume exceeds capacit 	ty, queue is the	heoreticall	y infinite.												
# 95th percentile volume e	exceeds capa	ycies. icitv. aueu	e mav be	longer.											
Queue shown is maximu	im after two c	ycles.		Ű											
Splits and Phases 10- D	Street & Con	aross Stra	ant												
	SUCCL & CUI	ყინაა პ((ნ	-UL				<u>_</u> .							N.	

	≯	-+	\mathbf{r}	1	←	•	٩.	1 t	۲	1	ŧ	<				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ø2			
Lane Configurations	0	4	0		ر		0	†† ĵ>	0	0	††	0				
Traffic Volume (vph)	0	31	0	4	28	1	0	629	0	0	1294	0				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900				
Lane Width (ft)	12	14	12	12	14	12	12	13	12	12	13	12				
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.71	0.71	1.00	0.75	1.00				
Frt					0.996											
Fit Protected Sate Flow (prot)	٥	012	0	٥	0.994	0	٥	1776	0	0	2201	0				
Flt Permitted	U	712	U	0	0.961	U	0	4770	0	U	JZ71	0				
Satd. Flow (perm)	0	912	0	0	940	0	0	4776	0	0	3291	0				
Satd. Flow (RTOR)			Yes		1	Yes			Yes			Yes				
Link Speed (mph)		30			30			30			30					
Link Distance (ft) Travel Time (s)		368			292			293			317					
Confl. Peds. (#/hr)		0.4			0.0			0.7	67		1.2					
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.02	0.00	0.05	0.05	4	0.00	0.00	0.00				
Heavy Vehicles (%)	0.92	100%	0.92	0.92	100%	0.92	0.95	0.95	0.95	0.98	2%	0.98				
Parking (#/hr)									0							
Adj. Flow (vph) Shared Lane Traffic (%)	0	34	0	4	30	1	0	662	0	0	1320	0				
Lane Group Flow (vph)	0	34	0	0	35	0	0	662	0	0	1320	0				
Turn Type		NA		Perm	NA			NA			NA					
Protected Phases Permitted Phases		3		3	3			1			12		2			
Detector Phase		3		3	3			1			12					
Switch Phase		20		0 0	0.0			20.0					4.0			
Minimum Split (s)		15.0		15.0	15.0			20.0					10.0			
Total Split (s)		25.0		25.0	25.0			74.0					11.0			
Total Split (%) Maximum Green (s)		22.7%		22.7%	22.7%			67.3%					10%			
Yellow Time (s)		3.0		3.0	3.0			4.0					4.0			
All-Red Time (s)		3.0		3.0	3.0			1.0					1.0			
Total Lost Time (s)		-1.0			-1.0			-1.0								
Lead/Lag								Lead					Lag			
Lead-Lag Optimize? Vehicle Extension (s)		2.0		2.0	2.0			2.0					2.0			
Recall Mode		None		None	None			C-Max					Max			
Walk Time (s) Elash Dopt Walk (s)								7.0								
Pedestrian Calls (#/hr)								0								
Act Effct Green (s)		10.7			10.7			82.1			93.9					
v/c Ratio		0.10			0.10			0.75			0.65					
Control Delay		58.4			56.6			5.1			6.4					
Queue Delay Total Delay		58.4			56.6			5.3			2.2					
LOS		E			E			A			A					
Approach Delay		58.4			56.6			5.3			8.5					
Stops (vph)		30			30			196			560					
Fuel Used(gal)		1			1			3			8					
NOx Emissions (g/nr)		44			42			43			557 108					
VOC Emissions (g/hr)		10			10			51			129					
Dilemma Vehicles (#) Queue Length 50th (ft)		23			23			0 63			0 91					
Queue Length 95th (ft)		54			55			44			m60					
Internal Link Dist (ft)		288			212			213			237					
Base Capacity (vph)		165			171			3562			2808					
Starvation Cap Reductn		0			0			1828			1296					
Spillback Cap Reductn Storage Cap Reductn		0			0			/2			284					
Reduced v/c Ratio		0.21			0.20			0.38			0.87					
Intersection Summary																
Area Type: CB	D															
Actuated Cycle Length: 110																
Offset: 48 (44%), Referenced to	phase 1:I	VBSB, Sta	rt of Gree	en												
Natural Cycle: 55 Control Type: Actuated-Coordina	ated															
Maximum v/c Ratio: 0.47																
Intersection Signal Delay: 9.1	53 00/			In	tersection	LOS: A										
Analysis Period (min) 15	53.770				O LEVELUI	Jervice A										
m Volume for 95th percentile q	ueue is n	netered by	upstream	n signal.												
Splits and Phases: 20: D Stree	et & Tran	sitwav														
														4 02	4 733	
74 a														¥ 102	√°₩3	

	∕	\mathbf{r}	1	Ť	ŧ	-			
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø2		
Lane Configurations			٦	††	≜ î≽				
Traffic Volume (vph)	0	0	439	629	707	592			
Future Volume (vpn)	1900	1900	439	629 1900	1900	592 1900			
Lane Width (ft)	12	12	13	12	13	12			
Storage Length (ft)	0	0	200			0			
Storage Lanes	0	0	1			0			
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95			
Ped Bike Factor			0.99		0.95				
Frt Fk Desta stard			0.050		0.932				
Fit Protected Satd, Elow (prot)	0	0	0.950	3217	2925	0			
Flt Permitted	0	0	0.950	5217	2725	0			
Satd. Flow (perm)	0	0	1657	3217	2925	0			
Right Turn on Red Satd, Flow (RTOR)		Yes			216	Yes			
Link Speed (mph)	30			30	30				
Link Distance (ft)	346			297	293				
Travel Time (s) Confl. Peds. (#/br)	7.9		/0	6.8	6.7	40			
Confl. Bikes (#/hr)			47			15			
Peak Hour Factor	0.25	0.25	0.96	0.96	0.97	0.97			
Heavy Vehicles (%)	0%	0%	0%	1%	3%	1%			
Auj. Flow (Vph) Shared Lane Traffic (%)	U	0	45/	655	129	610			
Lane Group Flow (vph)	0	0	457	655	1339	0			
Turn Type			Prot	NA	NA		0		
Protected Phases			3	13	1		2		
Detector Phase			3	13	1				
Switch Phase									
Minimum Initial (s)			8.0		15.0		8.0		
Total Split (s)			37.0		45.0		28.0		
Total Split (%)			33.6%		40.9%		25%		
Maximum Green (s)			31.0		39.0		24.0		
All-Red Time (s)			4.0		4.0		4.0		
Lost Time Adjust (s)			-1.0		-1.0		0.0		
Total Lost Time (s)			5.0		5.0				
Lead/Lag Lead.Lag.Ontimize2					Lead		Lag		
Vehicle Extension (s)			2.0		2.0		2.0		
Recall Mode			Max		C-Max		None		
Walk Time (s) Flash Dont Walk (s)							7.0		
Pedestrian Calls (#/hr)							17.0		
Act Effct Green (s)			32.0	103.4	62.4				
Actuated g/C Ratio			0.29	0.94	0.57				
Control Delav			56.9	1.7	17.7				
Queue Delay			34.4	0.0	4.6				
Total Delay			91.3	1.8	22.3				
Approach Delay			F	38.6	22.3				
Approach LOS				D	C				
Stops (vph)			386	55	402				
ruei Used(gal) CO Emissions (g/hr)			575	139	690				
NOx Emissions (g/hr)			112	27	134				
VOC Emissions (g/hr)			133	32	160				
Dilemma Vehicles (#)			320	0	0 134				
Queue Length 95th (ft)			m#463	m93	#648				
Internal Link Dist (ft)	266			217	213				
Turn Bay Length (ft)			200	2024	1750				
Starvation Cap Reductn			488	411	339				
Spillback Cap Reductn			0	0	87				
Storage Cap Reductn			0	0	0				
Reduced V/c Ratio			1.07	0.25	0.95				
Intersection Summary	000								
Area Type: Cycle Length: 110	CRD								
Actuated Cycle Length: 110									
Offset: 94 (85%), Referenced	to phase 1:	VBSB, Sta	art of Gree	en					
Natural Cycle: 110 Control Type: Actuated Coard	linated								
Maximum v/c Ratio: 0.94	midteu								
Intersection Signal Delay: 29.	7			In	tersection	LOS: C			
Intersection Capacity Utilization	on 80.0%			IC	CU Level of	f Service D			
# 95th percentile volume ex	ceeds capa	city, queu	e mav he l	onger					
Queue shown is maximum	after two cy	cles.	s may be l	onger.					
m Volume for 95th percentil	e queue is n	netered by	upstrean	n signal.					
Splits and Phases: 21. D.S.	treet & I-90 I	Ramp							
	u GGL 02 1-70 1	ναπιρ						14	▲ †
VIØ1(R)								.⊼. № 02	N Ø3

	٦	-+		4	-	•	•	t	1	5	Ŧ	-
Lane Group	EBL	EBT	EBI	R WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†) 10	1	1	174	77	*	20	370	41>	120
Future Volume (vph)	270	590 590	J 120) 121	J 29) 29	349 349	4/4	77	326	28	279	298 298	130
Ideal Flow (vphpl)	1900	1900) 190	0 1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft) Storage Length (ft)	11	13	3 12	2 12 D 0	16	16	12	16	12	200	13	12
Storage Lanes	100			0 1		1	130		0	200		0
Taper Length (ft)	25	0.05		25	1.00	1.00	25	0.05	0.05	25	0.01	0.05
Lane Util. Factor Ped Bike Factor	1.00	0.95	o 0.9	s 1.00	1.00	1.00	1.00	0.95 0.99	0.95	0.91	0.91	0.95
Frt	0.70	0.975	5			0.850	0.70	0.988		0.70	0.961	
Fit Protected	0.950			0.950			0.950	a		0.950	0.993	
Satd. Flow (prot)	1555	3032	2 (0 1464	1730	1599	1593	3351	0	1401	2780	0
Satd. Flow (perm)	412	3032	2	0.141	1730	1473	1530	3351	0	1344	2764	0
Right Turn on Red			Ye	s		No			Yes			Yes
Satd. Flow (RTOR)		27	1		20			7			37	
Link Distance (ft)		635	5		580			659			297	
Travel Time (s)		14.4	1		13.2			15.0			6.8	
Confl. Peds. (#/hr)	37		5	4 54		37	51		40	40		51
Peak Hour Factor	0.95	0.95	5 0.9	2 5 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	1%	7%	5 19	6 11%	12%	3%	2%	7%	18%	2%	12%	0%
Parking (#/hr)	204	601	10)	270	F16	0.4	254	0	202	224	1.41
Shared Lane Traffic (%)	284	021	12	J 32	3/9	515	84	354	30	303 26%	324	141
Lane Group Flow (vph)	284	747	7 (0 32	379	515	84	384	0	224	544	0
Turn Type	D.P+P	NA	4	Perm	NA	pm+ov	Split	NA		Split	NA	
Protected Phases	4	14	ł	1	1	2	3	3		2	2	
Detector Phase	4	14	1	1	1	2	3	3		2	2	
Switch Phase												
Minimum Initial (s)	6.0			8.0	30.0	8.0 28.0	8.0	8.0 27.0		8.0	28.0	
Total Split (s)	19.0			35.0	35.0	29.0	27.0	27.0		29.0	29.0	
Total Split (%)	17.3%			31.8%	31.8%	26.4%	24.5%	24.5%		26.4%	26.4%	
Maximum Green (s)	11.0			27.0	27.0	22.0	20.0	20.0		22.0	22.0	
All-Red Time (s)	4.0			4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	7.0			7.0	7.0	6.0	6.0	6.0		6.0	6.0	
Lead-Lag Optimize?						read	Ldg	Ldg		Ledu	Ledu	
Vehicle Extension (s)	2.0			2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Recall Mode	Max			C-Max	C-Max	Ped	Max	Max		Ped	Ped	
Flash Dont Walk (s)				12.0	12.0	7.0 13.0	12.0	12.0		13.0	13.0	
Pedestrian Calls (#/hr)				0	0	0	0	0		0	0	
Act Effct Green (s)	40.4	47.4	1	28.4	28.4	52.0	21.0	21.0		22.6	22.6	
Actuated g/C Ratio	0.37	0.43	5	0.26	0.26	0.47	0.19	0.19		0.21	0.21	
Control Delay	82.5	12.3	3	75.7	54.4	19.6	40.9	44.2		46.0	45.0	
Queue Delay	2.3	0.0)	0.0	0.0	8.6	0.0	0.6		3.2	6.2	
Total Delay	84.8	12.3	3	75.7	54.4	28.2	40.9	44.8		49.2	51.2	
Approach Delav	Г	32.3	3	E	40.6	C	U	44.1		U	50.6	
Approach LOS		С	;		D			D			D	
Stops (vph)	158	446	5	20	235	273	65	311		183	430	
CO Emissions (n/hr)	471	8 542	2	48	471	387	98	469		3 239	8 567	
NOx Emissions (g/hr)	92	105	5		92	75	19	91		46	110	
VOC Emissions (g/hr)	109	126	ò	11	109	90	23	109		55	131	
Dilemma vehicles (#)	~78	78	3	15	182	146	51	128		164	190	
Queue Length 95th (ft)	#293	140)	m#66	#398	246	98	180		m#247	#306	
Internal Link Dist (ft)		555	5		500			579			217	
Turn Bay Length (ft) Base Capacity (rah)	155	1201		E/	A 4 4	707	150	6.45		200	610	
Starvation Cap Reductn	2/0	0)	0c 0	440	0	304	040		292	41	
Spillback Cap Reductn	2	0)	0	0	176	0	66		0	0	
Storage Cap Reductn	0	0)	0	0	0	0	0		0	0	
Reduced v/c Ratio	1.04	0.57	/	0.57	0.85	0.93	0.28	0.66		0.83	0.96	
Intersection Summary	CDD											
Area Type: Cycle Length: 110	CRD											
Actuated Cycle Length: 11	0											
Offset: 109 (99%), Referen	nced to phase 1	1:EBWB, S	8, Start of	Green								
Natural Cycle: 100	ordinated											
Maximum v/c Ratio: 1.03	orainated											
Intersection Signal Delay:	40.8				ntersectior	n LOS: D						
Intersection Capacity Utiliz	zation 91.2%			ŀ	CU Level o	of Service	F					
 Analysis Period (min) 15 Volume exceeds capa 	city, queue is th	neoretically	ally infinite	a.								
Queue shown is maxim	num after two cy	ycles.										
# 95th percentile volume	e exceeds capa	city, queu	eue may b	be longer.								
m Volume for 95th perce	ium aiter two cy entile queue is n	netered by	by unstra	am signal								
• oranic for 75th perce	quode 13 1		- սրշա	.a arginan								
Splits and Phases: 22: [D Street & Sum	mer Stree	eet			- 14						

Splits and Phases: 22: D Street & Summer Street			
≠ø1(R)	₩ ₀₂	★ _{Ø3}	▲ ₀₄
35 s	29 s	27s	19 s

	٨	-	\mathbf{r}	1	-	•	1	†	1	×	Ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	≜ †≱			≜ †≱			4			4		
Traffic Volume (vph)	49	1089	1	0	946	131	9	30	0	158	86	253	
Ideal Flow (vphpl)	49	1900	1900	1900	946 1900	131	1900	30 1900	1900	1900	86 1900	253 1900	
Storage Length (ft)	125		0	0		0	0		0	0		0	
Storage Lanes	1		0	0		0	0		0	0		0	
Laper Length (ft)	25	0.05	0.05	25	0.05	0.05	25	1.00	1.00	25	1.00	1.00	
Frt	1.00	0.75	0.75	1.00	0.982	0.75	1.00	1.00	1.00	1.00	0.931	1.00	
Flt Protected	0.950							0.989			0.984		
Satd. Flow (prot)	1805	3610	0	0	3545	0	0	1879	0	0	1741	0	
Satd. Flow (perm)	169	3610	0	0	3545	0	0	1550	0	0	1578	0	
Right Turn on Red			Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)		20			17			20			53		
Link Speed (mpn) Link Distance (ff)		290			225			430			30		
Travel Time (s)		6.6			5.1			9.8			7.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	53	1184	1	0	1028	142	10	33	0	172	93	275	
Lane Group Flow (vph)	53	1185	0	0	1170	0	0	43	0	0	540	0	
Turn Type	D.P+P	NA		5	NA		Perm	NA		D.P+P	NA	Ū	
Protected Phases	6	16			1		_	5		4	45		
Permitted Phases	1	1.6			1		5	F		5	4.5		
Switch Phase	0	10			1		5	3		4	4 0		
Minimum Initial (s)	4.0				8.0		8.0	8.0		8.0			
Minimum Split (s)	9.0				22.0		20.0	20.0		27.0			
Total Split (s)	10.0				50.0		20.0	20.0		30.0			
Maximum Green (s)	9.1%				40.0% 45.0		10.2%	10.2%		21.5%			
Yellow Time (s)	3.0				3.0		3.0	3.0		3.0			
All-Red Time (s)	2.0				2.0		2.0	2.0		2.0			
Lost Time Adjust (s)	0.0				0.0			0.0					
Lead/Lag	5.0				5.0		Lag	Lan		Lead			
Lead-Lag Optimize?							Lug	Lug		Louu			
Vehicle Extension (s)	2.0				2.0		2.0	2.0		2.0			
Recall Mode Walk Time (s)	None				C-Max		None	None		None			
Flash Dont Walk (s)					8.0		10.0	10.0		15.0			
Pedestrian Calls (#/hr)					0		0	0		0			
Act Effct Green (s)	53.4	58.4			45.0			12.0			36.6		
Actuated g/C Ratio	0.49	0.53			0.41			0.11			0.33		
Control Delay	19.7	12.0			30.2			26.9			47.0		
Queue Delay	0.0	0.1			3.1			0.0			0.0		
Total Delay	19.7	12.1			33.3			26.9			47.0		
Approach Delay	D	12.4			33.3			26.9			47.0		
Approach LOS		В			С			С			D		
Stops (vph)	18	290			700			39			382		
Fuel Used(gal)	0	7			945			1			540		
NOx Emissions (g/hr)	6	92			168			10			111		
VOC Emissions (g/hr)	7	109			200			12			132		
Dilemma Vehicles (#)	0	0			0			0			0		
Queue Length 50th (tt)	12 m35	136			2/1			32 m64			289 #465		
Internal Link Dist (ft)	11133	210			145			350			248		
Turn Bay Length (ft)	125												
Base Capacity (vph)	206	1915			1460			211			644		
Starvation Cap Reducth Spillback Cap Reducth	0	100			194			0			0		
Storage Cap Reductn	0	0			0			0			0		
Reduced v/c Ratio	0.26	0.65			0.92			0.20			0.84		
Intersection Summary													
Area Type:	Other												
Cycle Length: 110)												
Actuated Cycle Length: 110 Offset: 0 (0%). Referenced) to nhase 1.FF	SWR Star	f Green										
Natural Cycle: 90	to phase T.EL	Jub, Juli	or oreen										
Control Type: Actuated-Coo	ordinated												
Maximum v/c Ratio: 0.90	7.4					100.0							
Intersection Signal Delay: 2 Intersection Canacity Litilize	1.1 ation 81.6%			lr Ir	Itersection	LOS: C	D						
Analysis Period (min) 15	1001101.0%			IC	C Level 0	Service	U						
 # 95th percentile volume 	exceeds capa	city, queu	e may be l	longer.									
Queue shown is maximu	um after two c	ycles.	1										
m Volume for 95th percer	ntile queue is r	metered by	y upstream	n signal.									
Splits and Phases: 26: Se	eaport Boulev	ard & Fan	Pier Boul	evard									
± (n)										N .			<u></u>

	→	\mathbf{F}	⋤	1	+	₹I	٩	1
Movement	FBT	FBR	WBU	WBI	WBT	NBU	NBI	NBR
Lane Configurations	î.				1		M	
Traffic Volume (veh/h)	3	12	5	394	9	1	8	80
Future Volume (Veh/h)	3	12	5	30/	0	1	8	80
Sign Control	Free	12	5	374	Free		Stop	00
Crado	0%				00/		00/	
Dook Hour Easter	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00
Feak Hour Faciol	0.92	0.92	0.92	0.93	0.93	0.90	0.90	0.90
nouny now rate (vpn)	3	13	U	424	10	U	8	82
Pedesirians	213						83	
Lane Width (ft)	11.0						11.0	
Walking Speed (ft/s)	4.0						4.0	
Percent Blockage	16						6	
Right turn flare (veh)								
Median type	None				None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked			0.00			0.00		
vC, conflicting volume			0	99		0	1164	92
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol			0	99		0	1164	92
tC. single (s)			0.0	4.1		0.0	6.4	6.2
tC 2 stage (s)			5.0			5.0	5.1	5.2
tF (s)			0.0	2.2		0.0	3.5	3.3
n0 queue free %			0.0	70		0.0	03	91
cM capacity (yeb/b)			0	1/11		0	110	906
	FD 1	WD 1	U ND 1	1411		U	117	700
Direction, Lane #	EBI	WB I	NR I					
Volume Total	16	434	90					
Volume Left	0	424	8					
Volume Right	13	0	82					
cSH	1700	1411	571					
Volume to Capacity	0.01	0.30	0.16					
Queue Length 95th (ft)	0	32	14					
Control Delay (s)	0.0	8.5	12.5					
Lane LOS		А	В					
Approach Delay (s)	0.0	8.5	12.5					
Approach LOS			В					
Intersection Summary								
Average Delay	_		0.0		_			
Intersection Conacity Utilization			0.9	10		Sonice		
Analysis Daried (min)			44.370	IC	- Level O	Service		
Analysis Period (min)			15					

	٠	-	F	+	•	1	~
Movement	FRI	FRT	WBU	WRT	WRR	SBI	SRR
Lane Configurations	LDL	1	1100	1	WDIX	V	350
Traffic Volume (veh/h)	35	54	1	260	24	18	148
Future Volume (Veh/h)	35	54	1	260	24	18	140
Sign Control	55	Free		Eree	24	Ston	140
Crado		0%		0%		0%	
Dook Hour Eactor	0.02	0.02	0.02	0.02	0.02	0.07	0.07
Peak nour racio	0.93	0.93	0.92	0.92	0.92	0.97	0.97
Houriy now rate (vpn)	38	58	0	283	20	19	153
Pedestrians						407	
Lane Width (ft)						11.0	
Walking Speed (ft/s)						4.0	
Percent Blockage						31	
Right turn flare (veh)							
Median type		None		None			
Median storage veh)							
Upstream signal (ft)				1160			
pX, platoon unblocked			0.00				
vC, conflicting volume	716		0			837	703
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu_unblocked vol	716		0			837	703
tC single (s)	4 1		0.0			6.4	6.2
tC 2 stane (s)			0.0			0.1	0.2
tF (c)	2.2		0.0			3.5	2.2
n0 queue free %	2.2		0.0			01	50
cM capacity (yoh/h)			0			210	204
civi capacity (verini)	010		U			219	304
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	96	309	172				
Volume Left	38	0	19				
Volume Right	0	26	153				
cSH	616	1700	292				
Volume to Capacity	0.06	0.18	0.59				
Queue Length 95th (ft)	5	0	87				
Control Delay (s)	4.9	0.0	33.7				
Lane LOS	A		D				
Approach Delay (s)	4.9	0.0	33.7				
Approach LOS			D				
Intersection Summary			_				
Average Delay			10.9	_			
Intersection Canacity Utilization			10.9	10	111 0 101 01	Service	
Analysis Daried (min)			44.270 1E	IC	O LEVEL O	JEIVILE	
Analysis Period (Min)			15				

	≤	۶		\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			4			4.			4			4.	
Traffic Volume (veh/h)	1	0	73	0	32	159	0	0	27	21	47	171	125
Future Volume (Veh/h)	1	0	73	0	32	159	0	0	27	21	47	171	125
Sign Control		0	Free		02	Free		0	Stop	2.		Stop	120
Grade			0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.90
Hourly flow rate (yph)	0.72	0.72	70	0.72	35	173	0.72	0.72	20	23	51	186	130
Podestrians	U	0		0	55	175	0	0	27	25	51	363	137
Lano Width (ft)												12.0	
Walking Speed (#/s)												12.0	
Walking Speed (IVS)												4.0	
Percent Blockage												30	
Right turn flare (veh)													
Median type			None			None							
Median storage veh)													
Upstream signal (ft)						858							
pX, platoon unblocked	0.00												
vC, conflicting volume	0	536			79			554	685	79	722	685	536
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	0	536			79			554	685	79	722	685	536
tC, single (s)	0.0	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC 2 state (s)	2.5												
tF (s)	0.0	2.2			22			3.5	4.0	3.3	3.5	4.0	3.3
n0 queue free %	0.0	100			98			100	-1.0	98	68	27	63
cM capacity (voh/h)	0	707			1522			00	254	007	162	27	276
	50.4	121			1332			07	234	707	102	2J4	370
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	79	208	52	376									
Volume Left	0	35	0	51									
Volume Right	0	0	23	139									
cSH	727	1532	379	265									
Volume to Capacity	0.00	0.02	0.14	1.42									
Queue Length 95th (ft)	0	2	12	516									
Control Delay (s)	0.0	1.4	16.0	244.4									
LaneLOS		A	С	F									
Approach Delay (s)	0.0	1.4	16.0	244.4									
Approach LOS	0.0		C	F									
Intersection Summany			-										
Intersection Summary			400.4										
Average Delay			130.1										
Intersection Capacity Utilization			52.6%	IC	U Level o	f Service			A				
Analysis Period (min)			15										

	₫	۶	-+	\mathbf{r}	1	-	•	1	1	1	1	ŧ	1
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			\$			1.			4		5		
Traffic Volume (veh/h)	3	12	126	0	0	171	25	0	83	0	90	0	13
Future Volume (Veh/h)	3	12	126	0	0	171	25	0	83	0	90	0	13
Sign Control	5	12	Free	0	0	Free	23	0	Ston	0	70	Ston	15
Crado			0%			0%			0%			00/	
Dook Hour Factor	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Feak HOULF delo	0.93	0.93	0.93	0.92	0.92	104	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourry now rate (vpn)	0	13	135	U	U	180	21	U	90	0	98	0	14
Pedestrians						15						285	
Lane Width (ft)						12.0						12.0	
Walking Speed (ft/s)						4.0						4.0	
Percent Blockage						1						24	
Right turn flare (veh)													
Median type			None			None							
Median storage veh)													
Upstream signal (ft)						655							
pX, platoon unblocked	0.00												
vC. conflicting volume	0	498			135			374	659	150	706	646	484
vC1_stage 1 conf vol		170			.00			271	207	.00	. 00	210	.01
vC2_stage 2 conf vol													
vCu, upblockod vol	0	400			125			274	450	150	704	616	101
tC single (s)	0.0	490			133			3/4	009	100	700	040	404
to, single (s)	0.0	4.1			4.1			1.1	0.0	0.2	7.1	0.0	0.2
tC, 2 stage (s)													
tF (s)	0.0	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	0	98			100			100	69	100	41	100	97
cM capacity (veh/h)	0	821			1462			459	290	891	165	295	447
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	148	213	90	112									
Volume Left	13	0	0	98									
Volume Right	0	27	0	14									
cSH	821	1700	290	179									
Volume to Capacity	0.02	0.13	0.31	0.62									
Queue Length 95th (ft)	1	0	32	88									
Control Delay (s)	10	0.0	22.9	53.6									
Lane LOS	Λ	0.0	C	55.5 F									
Approach Dolay (c)	10	0.0	22.0	F2.6									
Approach LOS	1.0	0.0	22.9	J3.0									
Approach LOS			C	F									
Intersection Summary													
Average Delay			14.6										
Intersection Capacity Utilization			Err%	IC	U Level o	f Service			Н				
Analysis Period (min)			15										
(1111)													

	≤	۶	-+	\mathbf{r}	F	4	-	•	•	Ť	1	1	Ŧ	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			4				4			4			4	
Traffic Volume (veh/h)	1	11	190	21	14	34	163	31	22	0	30	51	0	10
Future Volume (Veh/h)	1	11	190	21	14	34	163	31	22	0	30	51	0	10
Sign Control			Free				Free			Stop			Stop	
Grade			0%				0%			0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.92	0.95
Hourly flow rate (vph)	0	11	194	23	0	37	177	34	24	0	33	54	0	11
Pedestrians			70				45						140	
Lane Width (ft)			12.0				12.0						12.0	
Walking Speed (ft/s)			4.0				4.0						4.0	
Percent Blockage			6				4						12	
Right turn flare (veh)														
Median type			None				None							
Median storage veh)														
Upstream signal (ft)							278							
pX, platoon unblocked	0.00				0.00									
vC, conflicting volume	0	351			0	217			576	652	250	714	647	404
vC1, stage 1 conf vol														
vC2, stage 2 conf vol														
vCu, unblocked vol	0	351			0	217			576	652	250	714	647	404
tC, single (s)	0.0	4.1			0.0	4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)														
tF (s)	0.0	2.2			0.0	2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	0	99			0	97			93	100	96	79	100	98
cM capacity (veh/h)	0	1077			0	1365			352	331	763	251	334	541
Direction, Lane #	EB 1	WB 1	NB 1	SB 1										
Volume Total	228	248	57	65										
Volume Left	11	37	24	54										
Volume Right	23	34	33	11										
cSH	1077	1365	512	277										
Volume to Capacity	0.01	0.03	0.11	0.24										
Queue Length 95th (ft)	1	2	9	22										
Control Delay (s)	0.5	1.4	12.9	22.0										
Lane LOS	Δ	A	B	C										
Approach Delay (s)	0.5	1.4	12.9	22.0										
Approach LOS	0.0		В	C										
Intersection Summary														
Average Delay			4.4											
Intersection Capacity Utilization			48.7%	IC	U Level of	f Service			A					
Analysis Period (min)			15											

	≤	-	\rightarrow	F	1	-	1	1
Movement	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations		41				41		
Traffic Volume (veh/h)	5	1219	199	2	56	747	0	0
Future Volume (Veh/h)	5	1210	100	2	56	747	0	0
Sign Control	5	Free	177	2	50	Free	Stop	0
Crado		00/				00/	00/	
Dook Llour Fostor	0.05	0.05	0.05	0.07	0.07	0.07	0.25	0.25
	0.95	0.90	0.95	0.97	0.97	0.97	0.25	0.25
Houriy llow rate (vpn)	0	1283	209	0	58	110	0	U
Pedestrians							191	
Lane Width (ft)							0.0	
Walking Speed (ft/s)							4.0	
Percent Blockage							0	
Right turn flare (veh)								
Median type		None				None		
Median storage veh)								
Upstream signal (ft)		600				376		
pX, platoon unblocked	0.00			0.00	0.77		0.81	0.77
vC, conflicting volume	0			0	1683		2080	937
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu_unblocked vol	0			0	1298		1425	334
tC single (s)	0.0			0.0	4.1		6.8	6.9
tC_2 stane (s)	0.0			0.0			0.0	0.7
tE (c)	0.0			0.0	2.2		2.5	2.2
n (s)	0.0			0.0	2.2		100	100
po quede nee 76	0			0	410		00	F17
civi capacity (venini)	0			0	410		90	517
Direction, Lane #	EB 1	EB 2	WB 1	WB 2				
Volume Total	855	637	315	513				
Volume Left	0	0	58	0				
Volume Right	0	209	0	0				
cSH	1700	1700	418	1700				
Volume to Capacity	0.50	0.37	0.14	0.30				
Queue Length 95th (ft)	0	0	12	0				
Control Delay (s)	0.0	0.0	4.8	0.0				
Lane LOS	5.0	0.0	4.0	0.0				
Annroach Delay (s)	0.0		18					
Approach LOS	0.0		1.0					
Approach EOS								
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Utilization			68.2%	IC	CU Level o	of Service		
Analysis Period (min)			15					
, , ,								

	۶	-	\mathbf{r}	1	←	•	1	Ť	1	1	Ŧ	1
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Lane Configurations	LDL	4	2011					4		ODL	4	0011
Traffic Volume (veh/h)	78	445	0	6	413	157	4	0	5	85	0	12
Future Volume (Veh/h)	78	445	0	6	413	157	4	0	5	85	0	12
Sign Control	70	Free	0	0	Free	.57	4	Stop	5	05	Stop	12
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.97	0.97	0.97	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	82	468	0	6	426	162	4	0	5	92	0	13
Pedestrians											547	
Lane Width (ft)											12.0	
Walking Speed (ft/s)											4.0	
Percent Blockage											46	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		789			496							
pX, platoon unblocked	0.80			0.81			0.90	0.90	0.81	0.90	0.90	0.80
vC, conflicting volume	1135			468			1164	1779	468	1703	1698	1054
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1045			225			648	1333	225	1249	1243	944
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	72			99			98	100	99	0	100	91
cM capacity (veh/h)	294			1097			161	54	663	38	62	140
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	550	594	9	105								
Volume Left	82	6	4	92								
Volume Right	0	162	5	13								
cSH	294	1097	279	41								
Volume to Capacity	0.28	0.01	0.03	2.53								
Queue Length 95th (ft)	28	0	2	285								
Control Delay (s)	10.4	0.2	18.4	903.8								
Lane LOS	В	А	С	F								
Approach Delay (s)	10.4	0.2	18.4	903.8								
Approach LOS			С	F								
Intersection Summary												
Average Delay			80.2									
Intersection Capacity Utilization			81.9%	IC	U Level of	Service			D			
Analysis Period (min)			15									
narjois i choa (min)			13									

	٠	-	+	•	1	-
Movement	FBI	FBT	WBT	WBR	SBI	SBR
Lane Configurations	LDL	4	1	mon	¥	OBIC
Traffic Volume (veh/h)	14	521	528	43	71	48
Future Volume (Veh/h)	14	521	528	43	71	48
Sign Control	14	Free	Free	45	Ston	40
Grade		0%	0%		0%	
Peak Hour Factor	0.98	0.98	0.97	0.97	0.96	0.96
Hourdy flow rate (uph)	1/	532	544	11	74	50
Dedestrians	14	332	344	44	202	50
l ane Width (ff)					12.0	
Malking Speed (ft/s)					12.0	
Dereent Bleekege					4.0	
Dight turn flore (uch)					33	
Right turn hare (ven)		Marris	News			
weating type		None	None			
ivieuian storage ven)		1007	101			
upstream signal (ft)	0.70	1094	191		0.05	0.70
px, platoon unblocked	0.79				0.85	0.79
vc, conflicting volume	981				1519	959
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	841				1214	813
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	97				34	75
cM capacity (veh/h)	425				111	199
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	546	588	124			
Volume Left	14	0	74			
Volume Right	0	44	50			
cSH	425	1700	135			
Volume to Capacity	0.03	0.35	0.92			
Queue Length 95th (ft)	3	0	154			
Control Delay (s)	1.0	0.0	119.0			
Lane LOS	A		F			
Approach Delay (s)	1.0	0.0	119.0			
Approach LOS			F			
Intersection Summary						
Average Delay		_	12.2	_		
Intersection Canacity Litilization			52.2%	IC	111 evel of	f Service
Analysis Period (min)			15	10		Scivice
Analysis Feriou (IIIII)			10			

Appendix B

Wind

BPDA	Criteria		Ме	an Wind Spe	ed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
1	А	Spring	10		Sitting	16		Acceptable
		Summer	0 10		Sitting	15		Acceptable
		Fall Wintor	10		Sitting	10		Acceptable
		Annual	10		Sitting	15		Acceptable
	5	0	10	. 0.00/		07		A
	D	Spring	10	+60%	Standing	27	+09%	Acceptable
		Summer	14	+75%		20	+54%	Acceptable
			16	+60%	waiking	24	+60%	Acceptable
		winter	20	+100%		29	+81%	Acceptable
		Annual	18	+80%	vvalking	26	+73%	Acceptable
2	А	Spring	11		Sitting	17		Acceptable
		Summer	8		Sitting	13		Acceptable
		Fall	10		Sitting	16		Acceptable
		Winter	11		Sitting	17		Acceptable
		Annual	10		Sitting	16		Acceptable
	В	Spring	14	+27%	Standing	22	+29%	Acceptable
		Summer	10	+25%	Sitting	17	+31%	Acceptable
		Fall	12	+20%	Sitting	20	+25%	Acceptable
		Winter	15	+36%	Standing	24	+41%	Acceptable
		Annual	13	+30%	Standing	22	+38%	Acceptable
3	А	Spring	13		Standing	20		Acceptable
		Summer	10		Sitting	15		Acceptable
		Fall	12		Sitting	19		Acceptable
		Winter	12		Sitting	20		Acceptable
		Annual	12		Sitting	19		Acceptable
	в	Spring	13		Standing	20		Acceptable
	5	Summer	10		Sitting	15		Acceptable
		Fall	12		Sitting	18		Acceptable
		Winter	14	+17%	Standing	22		Acceptable
		Annual	13	11770	Standing	20		Acceptable
А	Δ	Spring	15		Standing	22		Accentable
4	~	Summor	10		Sitting	16		Acceptable
		Summer	14		Standing	10		Acceptable
		Fall Winter	14		Standing	21		Acceptable
		Appuel	14		Standing	22		Acceptable
		Annuai	14		Standing	21		Acceptable
	В	Spring	20	+33%	Uncomfortable	28	+27%	Acceptable
		Summer	15	+36%	Standing	21	+31%	Acceptable
		Fall	18	+29%	Walking	25	+19%	Acceptable
		Winter	21	+50%	Uncomfortable	31	+41%	Acceptable
		Annual	19	+36%	Walking	28	+33%	Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	eed		Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING
5	А	Spring	18		Walking		25		Acceptable
		Summer	12		Sitting		18		Acceptable
		Fall	16		Walking		23		Acceptable
		Winter	17		Walking		25		Acceptable
		Annual	16		Walking		23		Acceptable
	В	Spring	12	-33%	Sitting		20	-20%	Acceptable
		Summer	9	-25%	Sitting		15	-17%	Acceptable
		Fall	11	-31%	Sitting		19	-17%	Acceptable
		Winter	13	-24%	Standing		23		Acceptable
		Annual	12	-25%	Sitting		20	-13%	Acceptable
6	А	Spring	19		Walking		27		Acceptable
		Summer	16		Walking		23		Acceptable
		Fall	18		Walking		25		Acceptable
		Winter	19		Walking		27		Acceptable
		Annual	18		Walking		26		Acceptable
	В	Spring	16	-16%	Walking		23	-15%	Acceptable
		Summer	12	-25%	Sitting		18	-22%	Acceptable
		Fall	14	-22%	Standing		21	-16%	Acceptable
		Winter	17	-11%	VValking Standing		25	4.00/	Acceptable
		Annual	15	-17%	Standing		23	-12%	Acceptable
7	А	Spring	14		Standing		23		Acceptable
		Summer	12		Sitting		19		Acceptable
		Fall	13		Standing		21		Acceptable
		vvinter	14		Standing		23		Acceptable
		Annual	14		Standing		22		Acceptable
	В	Spring	15		Standing		21		Acceptable
		Summer	12		Sitting		16	-16%	Acceptable
		Fall	14	.040/	Standing		20		Acceptable
		winter	17	+21%	Walking		24		Acceptable
		Annual	15		Standing		21		Acceptable
8	А	Spring	16		Walking		24		Acceptable
		Summer	12		Sitting		19		Acceptable
		Fall	15		Standing		23		Acceptable
		Winter	16		Walking		25		Acceptable
		Annual	15		Standing		23		Acceptable
	В	Spring	15		Standing		22		Acceptable
		Summer	12		Sitting		17	-11%	Acceptable
		Fall	14		Standing		20	-13%	Acceptable
		Winter	17		Walking		24		Acceptable
		Annual	15		Standing		22		Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed		Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING
9	A	Spring	13		Standing		22		Acceptable
		Summer	10		Sitting		17		Acceptable
		Fall	13		Standing		21		Acceptable
		Winter	14		Standing		23		Acceptable
		Annual	13		Standing		21		Acceptable
	В	Spring	13		Standing		19	-14%	Acceptable
		Summer	10		Sitting		15	-12%	Acceptable
		Fall	12		Sitting		18	-14%	Acceptable
		Winter	14		Standing		21		Acceptable
		Annual	13		Standing		19		Acceptable
10	А	Spring	12		Sitting		19		Acceptable
		Summer	9		Sitting		15		Acceptable
		Fall	11		Sitting		18		Acceptable
		Winter	12		Sitting		20		Acceptable
		Annual	11		Sitting		18		Acceptable
	В	Spring	10	-17%	Sitting		15	-21%	Acceptable
		Summer	1	-22%	Sitting		11	-27%	Acceptable
		Fall	9	-18%	Sitting		14	-22%	Acceptable
		Winter	10	-17%	Sitting		16	-20%	Acceptable
		Annual	9	-18%	Sitting		15	-17%	Acceptable
11	А	Spring	10		Sitting		17		Acceptable
		Summer	8		Sitting		14		Acceptable
		Fall	9		Sitting		16		Acceptable
		Winter	11		Sitting		18		Acceptable
		Annual	10		Sitting		17		Acceptable
	В	Spring	14	+40%	Standing		22	+29%	Acceptable
		Summer	10	+25%	Sitting		17	+21%	Acceptable
		Fall	12	+33%	Sitting		20	+25%	Acceptable
		vvinter	15	+36%	Standing		25	+39%	Acceptable
		Annual	14	+40%	Standing		22	+29%	Acceptable
12	А	Spring	10		Sitting		17		Acceptable
		Summer	8		Sitting		13		Acceptable
		Fall	10		Sitting		16		Acceptable
		Winter	11		Sitting		18		Acceptable
		Annual	10		Sitting		17		Acceptable
	В	Spring	8	-20%	Sitting		13	-24%	Acceptable
		Summer	6	-25%	Sitting		10	-23%	Acceptable
		Fall	7	-30%	Sitting		12	-25%	Acceptable
		Winter	9	-18%	Sitting		15	-17%	Acceptable
		Annual	8	-20%	Sitting	I	13	-24%	Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criter	<u>ria</u>
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mpComfortable for Walking:> 15 and \leq 19 mpUncomfortable for Walking:> 19 and \leq 27 mplDangerous Conditions:> 27 mph	Acceptable: ≤ h Unacceptable: > h h	31 mph 31 mph

BPDA	Criteria		Ме	an Wind Spe	ed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
13	A	Spring Summer Fall Winter Annual	9 8 9 10 9		Sitting Sitting Sitting Sitting Sitting	15 12 15 17 15		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	8 6 8 9 8	-11% -25% -11% -11%	Sitting Sitting Sitting Sitting Sitting	13 10 12 14 13	-13% -17% -20% -18% -13%	Acceptable Acceptable Acceptable Acceptable Acceptable
14	A	Spring Summer Fall Winter Annual	9 8 9 10 9		Sitting Sitting Sitting Sitting Sitting	15 12 14 16 15		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 12 14 17 15	+67% +50% +56% +70% +67%	Standing Sitting Standing Walking Standing	23 17 21 25 23	+53% +42% +50% +56% +53%	Acceptable Acceptable Acceptable Acceptable Acceptable
15	A	Spring Summer Fall Winter Annual	10 8 9 10 9		Sitting Sitting Sitting Sitting Sitting	16 13 15 17 15		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	24 18 22 27 24	+140% +125% +144% +170% +167%	Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	33 25 30 37 33	+106% +92% +100% +118% +120%	Unacceptable Acceptable Acceptable Unacceptable Unacceptable
16	A	Spring Summer Fall Winter Annual	10 8 10 11 10		Sitting Sitting Sitting Sitting Sitting	16 13 15 17 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	21 16 20 24 21	+110% +100% +100% +118% +110%	Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	29 22 27 33 29	+81% +69% +80% +94% +81%	Acceptable Acceptable Acceptable Unacceptable Acceptable

Notes: 1)

Wind speeds are for a 1% probability of exceedance; and, % Change is based on comparison with Configuration A and only those that are greater than 10% are listed. 2)

Configurations	Mean Wind Speed Criteria	L	Effective Gust C	Criteria
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph y: > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
17	А	Spring	12		Sitting	19		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	11		Sitting	18		Acceptable
		Winter	12		Sitting	19		Acceptable
		Annual	11		Sitting	18		Acceptable
	В	Spring	25	+108%	Uncomfortable	33	+74%	Unacceptable
		Summer	19	+111%	Walking	25	+79%	Acceptable
		Fall	23	+109%	Uncomfortable	30	+67%	Acceptable
		Winter	28	+133%	Dangerous	37	+95%	Unacceptable
		Annual	25	+127%	Uncomfortable	33	+83%	Unacceptable
18	А	Spring	10		Sitting	16		Acceptable
		Summer	8		Sitting	13		Acceptable
		Fall	10		Sitting	15		Acceptable
		Winter	11		Sitting	18		Acceptable
		Annual	10		Sitting	16		Acceptable
	В	Spring	8	-20%	Sitting	11	-31%	Acceptable
		Summer	6	-25%	Sitting	8	-38%	Acceptable
		Fall	7	-30%	Sitting	10	-33%	Acceptable
		Winter	9	-18%	Sitting	12	-33%	Acceptable
		Annual	8	-20%	Sitting	11	-31%	Acceptable
19	А	Spring	11		Sitting	17		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	10		Sitting	16		Acceptable
		Winter	11		Sitting	18		Acceptable
		Annual	10		Sitting	16		Acceptable
	В	Spring	15	+36%	Standing	21	+24%	Acceptable
		Summer	11	+22%	Sitting	16	+14%	Acceptable
		Fall	13	+30%	Standing	19	+19%	Acceptable
		Winter	16	+45%	Walking	24	+33%	Acceptable
		Annual	14	+40%	Standing	21	+31%	Acceptable
20	А	Spring	11		Sitting	17		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	10		Sitting	16		Acceptable
		Winter	11		Sitting	18		Acceptable
		Annual	11		Sitting	17		Acceptable
	В	Spring	9	-18%	Sitting	14	-18%	Acceptable
		Summer	7	-22%	Sitting	11	-21%	Acceptable
		Fall	8	-20%	Sitting	13	-19%	Acceptable
		Winter	10		Sitting	16	-11%	Acceptable
		Annual	9	-18%	Sitting	I 14	-18%	Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effectiv	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
21	A	Spring Summer Fall Winter Annual	12 10 11 12 11		Sitting Sitting Sitting Sitting Sitting	18 15 17 19 17		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 11 14 16 15	+25% +27% +33% +36%	Standing Sitting Standing Walking Standing	22 17 21 25 22	+22% +13% +24% +32% +29%	Acceptable Acceptable Acceptable Acceptable Acceptable
22	A	Spring Summer Fall Winter Annual	11 9 10 12 11		Sitting Sitting Sitting Sitting Sitting	17 14 16 18 17		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 10 12 11		Sitting Sitting Sitting Sitting Sitting	18 13 16 19 17		Acceptable Acceptable Acceptable Acceptable Acceptable
23	A	Spring Summer Fall Winter Annual	11 9 10 11 11		Sitting Sitting Sitting Sitting Sitting	18 14 17 19 17		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	9 7 8 9 8	-18% -22% -20% -18% -27%	Sitting Sitting Sitting Sitting Sitting	14 11 13 15 14	-22% -21% -24% -21% -18%	Acceptable Acceptable Acceptable Acceptable Acceptable
24	A	Spring Summer Fall Winter Annual	11 9 10 11 11		Sitting Sitting Sitting Sitting Sitting	18 14 16 19 17		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	9 7 8 10 9	-18% -22% -20% -18%	Sitting Sitting Sitting Sitting Sitting	13 10 12 15 13	-28% -29% -25% -21% -24%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking: Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed		Effectiv	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING
25	А	Spring	12		Sitting		20		Acceptable
		Summer	9		Sitting		15		Acceptable
		Fall	10		Silling		10		Acceptable
		Annual	13		Sitting		20		Acceptable
	В	Spring	8	-33%	Sitting		14	-30%	Acceptable
		Summer	6	-33%	Sitting		11	-27%	Acceptable
		Fall	8	-27%	Sitting		13	-28%	Acceptable
		Winter	9	-31%	Sitting		15	-29%	Acceptable
		Annual	8	-33%	Sitting		14	-30%	Acceptable
26	А	Spring	14		Standing		23		Acceptable
		Summer	11		Sitting		18		Acceptable
		Fall	13		Standing		21		Acceptable
		Winter	16		Walking		26		Acceptable
		Annual	14		Standing		23		Acceptable
	В	Spring	7	-50%	Sitting		12	-48%	Acceptable
		Summer	5	-55%	Sitting		9	-50%	Acceptable
		Fall	6	-54%	Sitting		11	-48%	Acceptable
		Winter	7	-56%	Sitting		12	-54%	Acceptable
		Annual	7	-50%	Sitting		11	-52%	Acceptable
27	А	Spring	14		Standing		22		Acceptable
		Summer	11		Sitting		17		Acceptable
		Fall	13		Standing		21		Acceptable
		Winter	15		Standing		25		Acceptable
		Annual	14		Standing		22		Acceptable
	В	Spring	10	-29%	Sitting		16	-27%	Acceptable
		Summer	7	-36%	Sitting		12	-29%	Acceptable
		Fall	9	-31%	Sitting		15	-29%	Acceptable
		vvinter	10	-33%	Sitting		17	-32%	Acceptable
		Annual	9	-36%	Sitting		16	-27%	Acceptable
28	A	Spring	12		Sitting		20		Acceptable
		Summer	9		Sitting		16		Acceptable
		Fall	11		Sitting		18		Acceptable
		Winter	12		Sitting		21		Acceptable
		Annual	11		Sitting		19		Acceptable
	В	Spring	12		Sitting		18		Acceptable
		Summer	9		Sitting		14	-12%	Acceptable
		Fall	11		Sitting		17		Acceptable
		Winter	13		Standing		20		Acceptable
		Annual	12		Sitting	I	18		Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Mean Wind Speed			Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING	
29	A	Spring Summer Fall Winter Annual	14 11 13 15 14		Standing Sitting Standing Standing Standing	23 18 21 25 22		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	13 10 12 14 13		Standing Sitting Sitting Standing Standing	18 14 17 20 18	-22% -22% -19% -20% -18%	Acceptable Acceptable Acceptable Acceptable Acceptable	
30	A	Spring Summer Fall Winter Annual	21 16 19 23 20		Uncomfortable Walking Walking Uncomfortable Uncomfortable	31 23 28 34 30		Acceptable Acceptable Acceptable Unacceptable Acceptable	
	В	Spring Summer Fall Winter Annual	11 8 10 12 11	-48% -50% -47% -48% -45%	Sitting Sitting Sitting Sitting Sitting	16 12 15 17 16	-48% -48% -46% -50% -47%	Acceptable Acceptable Acceptable Acceptable Acceptable	
31	A	Spring Summer Fall Winter Annual	19 14 17 20 18		Walking Standing Walking Uncomfortable Walking	28 22 26 31 28		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	10 8 9 10 9	-47% -43% -47% -50% -50%	Sitting Sitting Sitting Sitting Sitting	14 12 13 14 13	-50% -45% -50% -55% -54%	Acceptable Acceptable Acceptable Acceptable Acceptable	
32	A	Spring Summer Fall Winter Annual	15 11 13 16 14		Standing Sitting Standing Walking Standing	24 18 21 26 23		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	7 6 7 7 7	-53% -45% -46% -56% -50%	Sitting Sitting Sitting Sitting Sitting	11 9 10 11 10	-54% -50% -52% -58% -57%	Acceptable Acceptable Acceptable Acceptable Acceptable	

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Mean Wind Speed					Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING	
33	А	Spring	15		Standing		24		Acceptable	
		Summer	11		Sitting		18		Acceptable	
		Fall	13		Standing		21		Acceptable	
		Winter	16		Walking		26		Acceptable	
		Annual	14		Standing		23		Acceptable	
	В	Spring	9	-40%	Sitting		15	-38%	Acceptable	
		Summer	8	-27%	Sitting		12	-33%	Acceptable	
		Fall	9	-31%	Sitting		14	-33%	Acceptable	
		Winter	10	-38%	Sitting		16	-38%	Acceptable	
		Annual	9	-36%	Sitting		14	-39%	Acceptable	
34	А	Spring	14		Standing		23		Acceptable	
		Summer	11		Sitting		18		Acceptable	
		Fall	13		Standing		21		Acceptable	
		Winter	16		Walking		26		Acceptable	
		Annual	14		Standing		23		Acceptable	
	В	Spring	10	-29%	Sitting		16	-30%	Acceptable	
		Summer	/	-36%	Sitting		12	-33%	Acceptable	
		Fall	9	-31%	Sitting		14	-33%	Acceptable	
		Winter	10	-38%	Sitting		17	-35%	Acceptable	
		Annual	9	-36%	Sitting		15	-35%	Acceptable	
35	А	Spring	15		Standing		24		Acceptable	
		Summer	12		Sitting		19		Acceptable	
		Fall	13		Standing		22		Acceptable	
		Winter	16		Walking		26		Acceptable	
		Annual	14		Standing		23		Acceptable	
	В	Spring	13	-13%	Standing		20	-17%	Acceptable	
		Summer	11		Sitting		16	-16%	Acceptable	
		Fall	13	4.00/	Standing		19	-14%	Acceptable	
		Winter	14	-12%	Standing		21	-19%	Acceptable	
		Annual	13		Standing		20	-13%	Acceptable	
36	А	Spring	13		Standing		21		Acceptable	
		Summer	11		Sitting		17		Acceptable	
		Fall	12		Sitting		19		Acceptable	
		Winter	14		Standing		22		Acceptable	
		Annual	13		Standing		20		Acceptable	
	В	Spring	16	+23%	Walking		22		Acceptable	
		Summer	12		Sitting		17		Acceptable	
		Fall	15	+25%	Standing		21	+11%	Acceptable	
		Winter	18	+29%	Walking		25	+14%	Acceptable	
		Annual	16	+23%	Walking	I	22		Acceptable	

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Mean Wind Speed				Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING	
37	A	Spring Summer Fall Winter Annual	13 11 12 12 12		Standing Sitting Sitting Sitting Sitting	19 16 17 19 18		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	19 15 18 21 19	+46% +36% +50% +75% +58%	Walking Standing Walking Uncomfortable Walking	27 21 25 30 27	+42% +31% +47% +58% +50%	Acceptable Acceptable Acceptable Acceptable Acceptable	
38	A	Spring Summer Fall Winter Annual	11 10 11 11 11		Sitting Sitting Sitting Sitting Sitting	17 14 16 18 17		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	9 7 9 10 9	-18% -30% -18% -18%	Sitting Sitting Sitting Sitting Sitting	16 12 14 17 15	-14% -12% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable	
39	A	Spring Summer Fall Winter Annual	11 9 11 11 11		Sitting Sitting Sitting Sitting Sitting	17 14 16 18 17		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	11 9 10 12 11		Sitting Sitting Sitting Sitting Sitting	18 14 16 20 18	+11%	Acceptable Acceptable Acceptable Acceptable Acceptable	
40	A	Spring Summer Fall Winter Annual	11 9 10 12 11		Sitting Sitting Sitting Sitting Sitting	17 13 16 18 17		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	15 12 14 17 15	+36% +33% +40% +42% +36%	Standing Sitting Standing Walking Standing	23 17 21 25 23	+35% +31% +31% +39% +35%	Acceptable Acceptable Acceptable Acceptable Acceptable	

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Mean Wind Speed				Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING	
41	A	Spring Summer Fall Winter Annual	10 8 9 10 9		Sitting Sitting Sitting Sitting Sitting	15 12 14 15 14		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	9 7 8 10 9	-12% -11%	Sitting Sitting Sitting Sitting Sitting	14 11 13 16 14		Acceptable Acceptable Acceptable Acceptable Acceptable	
42	A	Spring Summer Fall Winter Annual	9 8 9 9 9		Sitting Sitting Sitting Sitting Sitting	14 12 13 14 13		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	10 8 9 11 10	+11% +22% +11%	Sitting Sitting Sitting Sitting Sitting	16 12 14 17 15	+14% +21% +15%	Acceptable Acceptable Acceptable Acceptable Acceptable	
43	A	Spring Summer Fall Winter Annual	13 11 12 14 13		Standing Sitting Sitting Standing Standing	21 17 20 23 21		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	19 16 18 20 19	+46% +45% +50% +43% +46%	Walking Walking Walking Uncomfortable Walking	27 21 25 28 26	+29% +24% +25% +22% +24%	Acceptable Acceptable Acceptable Acceptable Acceptable	
44	A	Spring Summer Fall Winter Annual	14 12 13 13 13		Standing Sitting Standing Standing Standing	19 16 18 19 18		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	16 13 15 17 15	+14% +15% +31% +15%	Walking Standing Standing Walking Standing	22 18 20 23 21	+16% +12% +11% +21% +17%	Acceptable Acceptable Acceptable Acceptable Acceptable	

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust C	riteria
A – No Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable:	≤ 31 mph
B – Full Build		Unacceptable:	> 31 mph

BPDA Criteria			Ме	ean Wind Spe	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
45	А	Spring Summer	15 12		Standing Sitting	22 18		Acceptable Acceptable
		Fall	14		Standing	21		Acceptable
		Winter	16		Walking	24		Acceptable
		Annual	15		Standing	22		Acceptable
	В	Spring	14		Standing	21		Acceptable
		Summer	12		Sitting	17		Acceptable
		Fall	13		Standing	20		Acceptable
		Winter	15		Standing	24		Acceptable
		Annual	14		Standing	21		Acceptable
46	А	Spring	16		Walking	23		Acceptable
		Summer	12		Sitting	18		Acceptable
		Fall	14		Standing	21		Acceptable
			17		Standing	20		Acceptable
		Annual	15		Standing	22		Acceptable
	В	Spring	12	-25%	Sitting	19	-17%	Acceptable
		Summer	10	-17%	Sitting	16	-11%	Acceptable
		Fall	11	-21%	Sitting	18	-14%	Acceptable
		Winter	13	-24%	Standing	21	-16%	Acceptable
		Annual	12	-20%	Sitting	19	-14%	Acceptable
47	А	Spring	18		Walking	27		Acceptable
		Summer	15		Standing	22		Acceptable
		Fall	17		Walking	26		Acceptable
		Winter	19		Walking	29		Acceptable
		Annual	18		vvaiking	27		Acceptable
	В	Spring	13	-28%	Standing	18	-33%	Acceptable
		Summer	11	-27%	Sitting	15	-32%	Acceptable
		Fall	12	-29%	Sitting	17	-35%	Acceptable
		Appuel	10	-32%	Standing	19	-34%	Acceptable
		Annual	13	-28%	Standing	18	-33%	Acceptable
48	Α	Spring	15		Standing	24		Acceptable
		Summer	12		Sitting	19		Acceptable
		Fall	14		Standing	22		Acceptable
		Winter	16		Walking	26		Acceptable
		Annual	15		Standing	24		Acceptable
	В	Spring	20	+33%	Uncomfortable	25	4.4.07	Acceptable
		Summer	1/	+42%	vvalking	21	+11%	Acceptable
		Fall	18	+29%	vvalking	23		Acceptable
		vvinter	18	+12%	vvaiking	24		Acceptable
		Annual	18	+20%	vvaiking	. 24		Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	ean Wind Spe	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
49	A	Spring Summer Fall Winter Annual	13 11 12 14 13		Standing Sitting Sitting Standing Standing	20 16 19 22 20		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	6 5 6 7 6	-54% -55% -50% -50% -54%	Sitting Sitting Sitting Sitting Sitting	10 8 10 11 10	-50% -50% -47% -50% -50%	Acceptable Acceptable Acceptable Acceptable Acceptable
50	A	Spring Summer Fall Winter Annual	13 11 12 13 12		Standing Sitting Sitting Standing Sitting	19 15 18 19 18		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 13 14 15 14	+15% +18% +17% +15% +17%	Standing Standing Standing Standing Standing	23 19 21 23 22	+21% +27% +17% +21% +22%	Acceptable Acceptable Acceptable Acceptable Acceptable
51	A	Spring Summer Fall Winter Annual	15 13 13 14 14		Standing Standing Standing Standing Standing	21 17 19 20 19		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	21 17 19 21 20	+40% +31% +46% +50% +43%	Uncomfortable Walking Walking Uncomfortable Uncomfortable	29 24 26 30 28	+38% +41% +37% +50% +47%	Acceptable Acceptable Acceptable Acceptable Acceptable
52	A	Spring Summer Fall Winter Annual	15 12 13 14 13		Standing Sitting Standing Standing Standing	20 17 18 19 19		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	18 15 17 17 17	+20% +25% +31% +21% +31%	Walking Standing Walking Walking Walking	25 21 23 25 23	+25% +24% +28% +32% +21%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	ean Wind Spe	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
53	А	Spring	13		Standing	19		Acceptable
		Summer	11		Sitting	15		Acceptable
		Fall	12		Sitting	18		Acceptable
		Winter	13		Standing	19		Acceptable
		Annual	12		Sitting	18		Acceptable
	В	Spring	16	+23%	Walking	23	+21%	Acceptable
		Summer	14	+27%	Standing	20	+33%	Acceptable
		Fall	15	+25%	Standing	21	+17%	Acceptable
		Winter	15	+15%	Standing	22	+16%	Acceptable
		Annual	15	+25%	Standing	21	+17%	Acceptable
54	А	Spring	12		Sitting	17		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	11		Sitting	16		Acceptable
		vvinter	11		Sitting	17		Acceptable
		Annual	11		Sitting	16		Acceptable
	В	Spring	14	+17%	Standing	21	+24%	Acceptable
		Summer	10	+11%	Sitting	16	+14%	Acceptable
		Fall	12		Sitting	19	+19%	Acceptable
		Winter	15	+36%	Standing	24	+41%	Acceptable
		Annual	13	+18%	Standing	21	+31%	Acceptable
55	А	Spring	15		Standing	21		Acceptable
		Summer	12		Sitting	18		Acceptable
		Fall	14		Standing	20		Acceptable
		Winter	15		Standing	22		Acceptable
		Annual	14		Standing	20		Acceptable
	В	Spring	14		Standing	20		Acceptable
		Summer	12		Sitting	1/		Acceptable
		Fall	13		Standing	19		Acceptable
		winter	14		Standing	21		Acceptable
		Annual	13		Standing	20		Acceptable
56	А	Spring	16		Walking	22		Acceptable
		Summer	13		Standing	19		Acceptable
		Fall	15		Standing	21		Acceptable
		Winter	15		Standing	22		Acceptable
		Annual	15		Standing	21		Acceptable
	В	Spring	20	+25%	Uncomfortable	27	+23%	Acceptable
		Summer	16	+23%	Walking	21	+11%	Acceptable
		Fall	18	+20%	Walking	24	+14%	Acceptable
		Winter	21	+40%	Uncomfortable	28	+27%	Acceptable
		Annual	19	+27%	Walking	26	+24%	Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	eed	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
57	A	Spring Summer Fall Winter Annual	14 12 13 14 13		Standing Sitting Standing Standing Standing	20 17 19 21 20		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 12 13 14 13		Standing Sitting Standing Standing Standing	21 17 20 21 20		Acceptable Acceptable Acceptable Acceptable Acceptable
58	A	Spring Summer Fall Winter Annual	12 11 11 13 12		Sitting Sitting Sitting Standing Sitting	19 16 18 20 18		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 13 12	-18%	Sitting Sitting Sitting Standing Sitting	19 15 18 20 18		Acceptable Acceptable Acceptable Acceptable Acceptable
59	A	Spring Summer Fall Winter Annual	13 12 13 14 13		Standing Sitting Standing Standing Standing	20 17 20 22 20		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 11 13 15 13		Standing Sitting Standing Standing Standing	21 17 20 23 21		Acceptable Acceptable Acceptable Acceptable Acceptable
60	A	Spring Summer Fall Winter Annual	18 13 16 17 16		Walking Standing Walking Walking Walking	22 17 20 23 21		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 12 13 16 14	-17% -19% -12%	Standing Sitting Standing Walking Standing	23 18 21 25 22		Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria		Ме	an Wind Spe	ed	Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
61	A	Spring Summer Fall Winter Annual	20 16 18 22 20		Uncomfortable Walking Walking Uncomfortable Uncomfortable	28 22 25 30 27		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 12 14 16 15	-25% -25% -22% -27% -25%	Standing Sitting Standing Walking Standing	22 17 21 25 22	-21% -23% -16% -17% -19%	Acceptable Acceptable Acceptable Acceptable Acceptable
62	A	Spring Summer Fall Winter Annual	16 13 14 16 15		Walking Standing Standing Walking Standing	23 19 21 25 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 9 10 10	-38% -38% -36% -38% -33%	Sitting Sitting Sitting Sitting Sitting	17 13 16 17 16	-26% -32% -24% -32% -27%	Acceptable Acceptable Acceptable Acceptable Acceptable
63	A	Spring Summer Fall Winter Annual	24 18 22 27 24		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	34 26 31 37 33		Unacceptable Acceptable Acceptable Unacceptable Unacceptable
	В	Spring Summer Fall Winter Annual	19 15 18 21 19	-21% -17% -18% -22% -21%	Walking Standing Walking Uncomfortable Walking	26 20 25 29 26	-24% -23% -19% -22% -21%	Acceptable Acceptable Acceptable Acceptable Acceptable
64	A	Spring Summer Fall Winter Annual	15 12 14 16 14		Standing Sitting Standing Walking Standing	24 20 22 26 24		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	11 9 11 12 11	-27% -25% -21% -25% -21%	Sitting Sitting Sitting Sitting Sitting	17 13 16 17 16	-29% -35% -27% -35% -33%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	an Wind Spe	ed	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
65	A	Spring Summer Fall Winter Annual	12 10 12 13 12		Sitting Sitting Sitting Standing Sitting	20 16 19 22 20		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 12 11		Sitting Sitting Sitting Sitting Sitting	18 14 17 18 17	-12% -11% -18% -15%	Acceptable Acceptable Acceptable Acceptable Acceptable
66	A	Spring Summer Fall Winter Annual	22 16 20 21 20		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	30 22 27 29 27		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	21 15 19 20 19		Uncomfortable Standing Walking Uncomfortable Walking	29 21 26 28 26		Acceptable Acceptable Acceptable Acceptable Acceptable
67	A	Spring Summer Fall Winter Annual	21 18 19 19 20		Uncomfortable Walking Walking Walking Uncomfortable	31 27 28 28 29		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	19 16 17 18 17	-11% -11% -15%	Walking Walking Walking Walking Walking	27 24 25 26 26	-13% -11% -11% -10%	Acceptable Acceptable Acceptable Acceptable Acceptable
68	A	Spring Summer Fall Winter Annual	27 20 25 30 27		Uncomfortable Uncomfortable Uncomfortable Dangerous Uncomfortable	35 27 32 39 35		Unacceptable Acceptable Unacceptable Unacceptable Unacceptable
	В	Spring Summer Fall Winter Annual	20 15 19 22 20	-26% -25% -24% -27% -26%	Uncomfortable Standing Walking Uncomfortable Uncomfortable	28 21 26 29 27	-20% -22% -19% -26% -23%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	ed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
69	A	Spring Summer Fall Winter Annual	23 17 21 26 23		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	31 24 28 35 31		Acceptable Acceptable Acceptable Unacceptable Acceptable
	В	Spring Summer Fall Winter Annual	17 13 15 19 17	-26% -24% -29% -27% -26%	Walking Standing Standing Walking Walking	24 18 22 27 24	-23% -25% -21% -23% -23%	Acceptable Acceptable Acceptable Acceptable Acceptable
70	A	Spring Summer Fall Winter Annual	17 13 16 19 17		Walking Standing Walking Walking Walking	25 19 23 28 25		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 12 14 17 15	-12% -12% -11% -12%	Standing Sitting Standing Walking Standing	23 17 20 25 22	-11% -13% -11% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable
71	A	Spring Summer Fall Winter Annual	11 10 10 11 11		Sitting Sitting Sitting Sitting Sitting	17 15 17 19 17		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	13 10 12 15 13	+18% +20% +36% +18%	Standing Sitting Sitting Standing Standing	20 16 18 22 20	+18% +16% +18%	Acceptable Acceptable Acceptable Acceptable Acceptable
72	A	Spring Summer Fall Winter Annual	19 18 19 20 19		Walking Walking Walking Uncomfortable Walking	28 26 27 29 28		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 13 14 15 14	-21% -28% -26% -25% -26%	Standing Standing Standing Standing Standing	23 20 22 23 22	-18% -23% -19% -21% -21%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1)

Wind speeds are for a 1% probability of exceedance; and, % Change is based on comparison with Configuration A and only those that are greater than 10% are listed. 2)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
73	A	Spring Summer Fall Winter Annual	14 10 12 15 13		Standing Sitting Sitting Standing Standing	23 17 21 24 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	11 8 10 12 11	-21% -20% -17% -20% -15%	Sitting Sitting Sitting Sitting Sitting	17 13 15 18 16	-26% -24% -29% -25% -27%	Acceptable Acceptable Acceptable Acceptable Acceptable
74	A	Spring Summer Fall Winter Annual	12 9 11 13 11		Sitting Sitting Sitting Standing Sitting	20 16 18 22 20		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	8 6 7 8 7	-33% -33% -36% -38% -36%	Sitting Sitting Sitting Sitting Sitting	12 10 11 13 12	-40% -38% -39% -41% -40%	Acceptable Acceptable Acceptable Acceptable Acceptable
75	A	Spring Summer Fall Winter Annual	16 13 15 16 15		Walking Standing Standing Walking Standing	23 20 22 23 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	13 10 12 14 13	-19% -23% -20% -12% -13%	Standing Sitting Sitting Standing Standing	19 15 18 21 19	-17% -25% -18% -14%	Acceptable Acceptable Acceptable Acceptable Acceptable
76	A	Spring Summer Fall Winter Annual	22 19 21 24 22		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	30 25 28 33 30		Acceptable Acceptable Acceptable Unacceptable Acceptable
	В	Spring Summer Fall Winter Annual	13 10 12 15 13	-41% -47% -43% -38% -41%	Standing Sitting Sitting Standing Standing	18 14 17 20 18	-40% -44% -39% -39% -40%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
77	A	Spring Summer Fall Winter Annual	17 14 16 18 16		Walking Standing Walking Walking Walking	24 20 23 26 24		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 12 12 14 13	-18% -14% -25% -22% -19%	Standing Sitting Sitting Standing Standing	22 17 18 22 20	-15% -22% -15% -17%	Acceptable Acceptable Acceptable Acceptable Acceptable
78	A	Spring Summer Fall Winter Annual	21 17 17 21 19		Uncomfortable Walking Walking Uncomfortable Walking	29 23 24 29 26		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	17 15 15 17 16	-19% -12% -12% -19% -16%	Walking Standing Standing Walking Walking	26 21 21 26 23	-10% -12% -10% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable
79	A	Spring Summer Fall Winter Annual	17 13 14 17 15		Walking Standing Standing Walking Standing	25 20 22 25 23		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 11 12 14 13	-18% -15% -14% -18% -13%	Standing Sitting Sitting Standing Standing	21 17 18 21 20	-16% -15% -18% -16% -13%	Acceptable Acceptable Acceptable Acceptable Acceptable
80	A	Spring Summer Fall Winter Annual	13 10 12 14 12		Standing Sitting Sitting Standing Sitting	20 15 18 20 19		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	11 8 10 11 10	-15% -20% -17% -21% -17%	Sitting Sitting Sitting Sitting Sitting	18 13 16 18 16	-13% -11% -16%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
81	А	Spring	21		Uncomfortable	27		Acceptable
		Summer	15		Standing	20		Acceptable
		Fall	19		Walking	24		Acceptable
		Winter	20		Uncomfortable	27		Acceptable
		Annual	19		Walking	25		Acceptable
	в	Spring	17	-19%	Walking	22	-19%	Acceptable
		Summer	12	-20%	Sitting	16	-20%	Acceptable
		Fall	16	-16%	Walking	20	-17%	Acceptable
		Winter	17	-15%	Walking	21	-22%	Acceptable
		Annual	16	-16%	Walking	20	-20%	Acceptable
82	А	Spring	24		Uncomfortable	32		Unacceptable
		Summer	18		Walking	23		Acceptable
		Fall	22		Uncomfortable	29		Acceptable
		Winter	23		Uncomfortable	32		Unacceptable
		Annual	22		Uncomfortable	30		Acceptable
	В	Spring	24		Uncomfortable	32		Unacceptable
		Summer	17		Walking	23		Acceptable
		Fall	22		Uncomfortable	29		Acceptable
		Winter	23		Uncomfortable	31		Acceptable
		Annual	22		Uncomfortable	29		Acceptable
83	А	Spring	23		Uncomfortable	32		Unacceptable
		Summer	19		Walking	25		Acceptable
		Fall	21		Uncomfortable	29		Acceptable
		Winter	24		Uncomfortable	34		Unacceptable
		Annual	22		Uncomfortable	31		Acceptable
	В	Spring	22		Uncomfortable	30		Acceptable
		Summer	17	-11%	Walking	23		Acceptable
		Fall	20		Uncomfortable	27		Acceptable
		Winter	22		Uncomfortable	30	-12%	Acceptable
		Annual	21		Uncomfortable	28		Acceptable
84	А	Spring	24		Uncomfortable	31		Acceptable
		Summer	19		Walking	24		Acceptable
		Fall	22		Uncomfortable	29		Acceptable
		Winter	24		Uncomfortable	31		Acceptable
		Annual	22		Uncomfortable	29		Acceptable
	В	Spring	16	-33%	Walking	21	-32%	Acceptable
		Summer	13	-32%	Standing	17	-29%	Acceptable
		Fall	15	-32%	Standing	20	-31%	Acceptable
		Winter	16	-33%	Walking	21	-32%	Acceptable
		Annual	15	-32%	Standing	20	-31%	Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
85	А	Spring	14		Standing	22		Acceptable
		Summer	12		Sitting	19		Acceptable
		Fall	13		Standing	21		Acceptable
		Winter	15		Standing	23		Acceptable
		Annual	14		Standing	21		Acceptable
	В	Spring	12	-14%	Sitting	20		Acceptable
		Summer	11		Sitting	18		Acceptable
		Fall	12		Sitting	19		Acceptable
		Winter	13	-13%	Standing	21		Acceptable
		Annual	12	-14%	Sitting	20		Acceptable
86	А	Spring	25		Uncomfortable	35		Unacceptable
		Summer	19		Walking	27		Acceptable
		Fall	23		Uncomfortable	32		Unacceptable
		Winter	28		Dangerous	38		Unacceptable
		Annual	25		Uncomfortable	34		Unacceptable
	В	Spring	19	-24%	Walking	28	-20%	Acceptable
		Summer	15	-21%	Standing	22	-19%	Acceptable
		Fall	17	-26%	Walking	25	-22%	Acceptable
		Winter	20	-29%	Uncomfortable	30	-21%	Acceptable
		Annual	18	-28%	Walking	27	-21%	Acceptable
87	А	Spring	17		Walking	26		Acceptable
		Summer	13		Standing	20		Acceptable
		Fall	16		Walking	24		Acceptable
		Winter	18		Walking	28		Acceptable
		Annual	16		Walking	25		Acceptable
	В	Spring	15	-12%	Standing	23	-12%	Acceptable
		Summer	11	-15%	Sitting	18		Acceptable
		Fall	14	-12%	Standing	21	-12%	Acceptable
		Winter	14	-22%	Standing	23	-18%	Acceptable
		Annual	14	-12%	Standing	22	-12%	Acceptable
88	А	Spring	28		Dangerous	37		Unacceptable
		Summer	23		Uncomfortable	30		Acceptable
		Fall	26		Uncomfortable	34		Unacceptable
		Winter	28		Dangerous	38		Unacceptable
		Annual	27		Uncomfortable	35		Unacceptable
	В	Spring	27		Uncomfortable	36		Unacceptable
		Summer	21		Uncomfortable	28		Acceptable
		Fall	25		Uncomfortable	33		Unacceptable
		Winter	26		Uncomfortable	35		Unacceptable
		Annual	25		Uncomfortable	33		Unacceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
89	A	Spring Summer Fall Winter Annual	24 18 21 25 23		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	31 24 29 33 30		Acceptable Acceptable Acceptable Unacceptable Acceptable
	В	Spring Summer Fall Winter Annual	19 14 18 19 18	-21% -22% -14% -24% -22%	Walking Standing Walking Walking Walking	26 19 24 26 24	-16% -21% -17% -21% -20%	Acceptable Acceptable Acceptable Acceptable Acceptable
90	A	Spring Summer Fall Winter Annual	20 15 18 22 19		Uncomfortable Standing Walking Uncomfortable Walking	26 20 24 29 26		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 10 13 14 13	-30% -33% -28% -36% -32%	Standing Sitting Standing Standing Standing	20 15 19 21 19	-23% -25% -21% -28% -27%	Acceptable Acceptable Acceptable Acceptable Acceptable
91	A	Spring Summer Fall Winter Annual	20 16 19 22 20		Uncomfortable Walking Walking Uncomfortable Uncomfortable	28 24 26 30 28		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 11 13 15 13	-30% -31% -32% -32% -35%	Standing Sitting Standing Standing Standing	20 16 19 22 20	-29% -33% -27% -27% -29%	Acceptable Acceptable Acceptable Acceptable Acceptable
92	A	Spring Summer Fall Winter Annual	21 17 20 23 21		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	29 23 27 31 29		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 13 14 16 14	-29% -24% -30% -30% -33%	Standing Standing Standing Walking Standing	21 17 19 22 20	-28% -26% -30% -29% -31%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	eed	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
93	А	Spring	15		Standing	23		Acceptable
		Summer	11		Sitting	17		Acceptable
		Fall	14		Standing	21		Acceptable
		Winter	16		Walking	25		Acceptable
		Annual	14		Standing	23		Acceptable
	В	Spring	10	-33%	Sitting	15	-35%	Acceptable
		Summer	8	-27%	Sitting	12	-29%	Acceptable
		Fall	9	-36%	Sitting	14	-33%	Acceptable
		Winter	10	-38%	Sitting	16	-36%	Acceptable
		Annual	10	-29%	Sitting	14	-39%	Acceptable
94	А	Spring	22		Uncomfortable	30		Acceptable
		Summer	17		Walking	24		Acceptable
		Fall	20		Uncomfortable	27		Acceptable
		Winter	24		Uncomfortable	33		Unacceptable
		Annual	21		Uncomfortable	30		Acceptable
	В	Spring	11	-50%	Sitting	17	-43%	Acceptable
		Summer	9	-47%	Sitting	14	-42%	Acceptable
		Fall	11	-45%	Sitting	16	-41%	Acceptable
		Winter	12	-50%	Sitting	18	-45%	Acceptable
		Annual	11	-48%	Sitting	17	-43%	Acceptable
95	А	Spring	21		Uncomfortable	29		Acceptable
		Summer	16		Walking	22		Acceptable
		Fall	19		Walking	26		Acceptable
		Winter	22		Uncomfortable	31		Acceptable
		Annual	20		Uncomfortable	28		Acceptable
	В	Spring	13	-38%	Standing	19	-34%	Acceptable
		Summer	10	-38%	Sitting	15	-32%	Acceptable
		Fall	12	-37%	Sitting	18	-31%	Acceptable
		Winter	15	-32%	Standing	21	-32%	Acceptable
		Annual	13	-35%	Standing	19	-32%	Acceptable
96	А	Spring	24		Uncomfortable	32		Unacceptable
		Summer	20		Uncomfortable	27		Acceptable
		Fall	22		Uncomfortable	30		Acceptable
		Winter	25		Uncomfortable	34		Unacceptable
		Annual	23		Uncomfortable	31		Acceptable
	В	Spring	15	-38%	Standing	21	-34%	Acceptable
		Summer	11	-45%	Sitting	16	-41%	Acceptable
		Fall	14	-36%	Standing	19	-37%	Acceptable
		Winter	16	-36%	Walking	23	-32%	Acceptable
		Annual	15	-35%	Standing	20	-35%	Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	ed	Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
97	A	Spring Summer Fall Winter Annual	11 8 10 12 11		Sitting Sitting Sitting Sitting Sitting	19 15 18 21 19		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 12 14 16 15	+36% +50% +40% +33% +36%	Standing Sitting Standing Walking Standing	20 16 19 23 20		Acceptable Acceptable Acceptable Acceptable Acceptable
98	A	Spring Summer Fall Winter Annual	16 13 15 16 15		Walking Standing Standing Walking Standing	24 19 22 25 23		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 12 14 17 15		Standing Sitting Standing Walking Standing	22 18 21 25 22		Acceptable Acceptable Acceptable Acceptable Acceptable
99	A	Spring Summer Fall Winter Annual	19 15 18 21 19		Walking Standing Walking Uncomfortable Walking	28 22 26 30 27		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	21 17 19 23 21	+11% +13% +11%	Uncomfortable Walking Walking Uncomfortable Uncomfortable	28 22 26 31 28		Acceptable Acceptable Acceptable Acceptable Acceptable
100	A	Spring Summer Fall Winter Annual	9 7 8 10 9		Sitting Sitting Sitting Sitting Sitting	16 12 15 18 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	22 17 20 25 22	+144% +143% +150% +150% +144%	Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	29 22 26 32 28	+81% +83% +73% +78% +75%	Acceptable Acceptable Acceptable Unacceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria		Mean Wind Speed			Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
101	A	Spring Summer Fall Winter Annual	20 18 19 20 19		Uncomfortable Walking Walking Uncomfortable Walking	28 24 26 27 26		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	16 12 15 18 16	-20% -33% -21% -16%	Walking Sitting Standing Walking Walking	23 17 21 25 23	-18% -29% -19% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable
102	A	Spring Summer Fall Winter Annual	18 14 17 18 17		Walking Standing Walking Walking Walking	26 20 24 27 25		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	18 14 17 20 18	+11%	Walking Standing Walking Uncomfortable Walking	25 19 23 28 25		Acceptable Acceptable Acceptable Acceptable Acceptable
103	A	Spring Summer Fall Winter Annual	21 17 20 24 21		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	31 24 28 34 30		Acceptable Acceptable Acceptable Unacceptable Acceptable
	В	Spring Summer Fall Winter Annual	21 16 20 24 21		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	29 22 27 32 29		Acceptable Acceptable Acceptable Unacceptable Acceptable
104	A	Spring Summer Fall Winter Annual	11 8 10 11 10		Sitting Sitting Sitting Sitting Sitting	18 13 16 18 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	13 10 11 13 12	+18% +25% +18% +20%	Standing Sitting Sitting Standing Sitting	19 14 17 19 18	+12%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	Effective Gust Wind Speed				
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
105	A	Spring Summer Fall Winter Annual	19 14 17 19 18		Walking Standing Walking Walking Walking	27 20 25 27 25		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	17 12 15 17 16	-11% -14% -12% -11% -11%	Walking Sitting Standing Walking Walking	24 17 22 24 22	-11% -15% -12% -11% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable
106	A	Spring Summer Fall Winter Annual	23 17 21 22 21		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	30 23 27 30 28		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	16 11 14 15 14	-30% -35% -33% -32% -33%	Walking Sitting Standing Standing Standing	22 15 20 21 20	-27% -35% -26% -30% -29%	Acceptable Acceptable Acceptable Acceptable Acceptable
107	A	Spring Summer Fall Winter Annual	12 10 11 12 11		Sitting Sitting Sitting Sitting Sitting	18 15 17 19 18		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 9 10 9	-17% -20% -18% -17% -18%	Sitting Sitting Sitting Sitting Sitting	16 12 15 16 15	-11% -20% -12% -16% -17%	Acceptable Acceptable Acceptable Acceptable Acceptable
108	A	Spring Summer Fall Winter Annual	12 9 11 12 11		Sitting Sitting Sitting Sitting Sitting	20 14 18 20 18		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	14 10 13 14 13	+17% +11% +18% +17% +18%	Standing Sitting Standing Standing Standing	21 15 20 21 20	+11% +11%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Mean Wind Speed					Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING	
109	А	Spring	17		Walking		25		Acceptable	
		Summer	15		Standing		21		Acceptable	
		Fall	16		Walking		24		Acceptable	
		Winter	17		Walking		26		Acceptable	
		Annual	16		Walking		24		Acceptable	
	В	Spring	12	-29%	Sitting		19	-24%	Acceptable	
		Summer	10	-33%	Sitting		15	-29%	Acceptable	
		Fall	11	-31%	Sitting		16	-33%	Acceptable	
		Winter	13	-24%	Standing		19	-27%	Acceptable	
		Annual	12	-25%	Sitting		18	-25%	Acceptable	
110	А	Spring	16		Walking		24		Acceptable	
		Summer	13		Standing		19		Acceptable	
		Fall	15		Standing		22		Acceptable	
		Winter	17		Walking		26		Acceptable	
		Annual	16		Walking		24		Acceptable	
	В	Spring	8	-50%	Sitting		13	-46%	Acceptable	
		Summer	6	-54%	Sitting		10	-47%	Acceptable	
		Fall	8	-47%	Sitting		12	-45%	Acceptable	
		Winter	8	-53%	Sitting		13	-50%	Acceptable	
		Annual	8	-50%	Sitting		12	-50%	Acceptable	
111	А	Spring	11		Sitting		18		Acceptable	
		Summer	9		Sitting		15		Acceptable	
		Fall	10		Sitting		16		Acceptable	
		Winter	12		Sitting		19		Acceptable	
		Annual	11		Sitting		17		Acceptable	
	В	Spring	8	-27%	Sitting		14	-22%	Acceptable	
		Summer	1	-22%	Sitting		11	-21%	Acceptable	
			8	-20%	Sitting		13	-19%	Acceptable	
		vvinter	9	-25%	Sitting		15	-21%	Acceptable	
		Annual	8	-27%	Sitting		14	-18%	Acceptable	
112	А	Spring	14		Standing		22		Acceptable	
		Summer	12		Sitting		18		Acceptable	
		Fall	13		Standing		21		Acceptable	
		Winter	15		Standing		24		Acceptable	
		Annual	14		Standing		22		Acceptable	
	В	Spring	11	-21%	Sitting		18	-18%	Acceptable	
		Summer	9	-25%	Sitting		13	-28%	Acceptable	
		Fall	11	-15%	Sitting		17	-19%	Acceptable	
		Winter	12	-20%	Sitting		19	-21%	Acceptable	
		Annual	11	-21%	Sitting	1	17	-23%	Acceptable	

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	ean Wind Spe	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
113	А	Spring	12		Sitting	20		Acceptable
		Summer	10		Sitting	15		Acceptable
		Fall	11		Sitting	18		Acceptable
		Winter	13		Standing	21		Acceptable
		Annual	12		Sitting	19		Acceptable
	В	Spring	11		Sitting	18		Acceptable
		Summer	9		Sitting	13	-13%	Acceptable
		Fall	11		Sitting	17		Acceptable
		Winter	12		Sitting	19		Acceptable
		Annual	11		Sitting	17	-11%	Acceptable
114	А	Spring	23		Uncomfortable	30		Acceptable
		Summer	17		Walking	23		Acceptable
		Fall	21		Uncomfortable	27		Acceptable
		Winter	23		Uncomfortable	30		Acceptable
		Annual	21		Uncomfortable	28		Acceptable
	В	Spring	14	-39%	Standing	20	-33%	Acceptable
		Summer	11	-35%	Sitting	16	-30%	Acceptable
		Fall	13	-38%	Standing	18	-33%	Acceptable
		Winter	14	-39%	Standing	21	-30%	Acceptable
		Annual	13	-38%	Standing	19	-32%	Acceptable
115	А	Spring	16		Walking	24		Acceptable
		Summer	13		Standing	20		Acceptable
		Fall	14		Standing	22		Acceptable
		Winter	16		Walking	25		Acceptable
		Annual	15		Standing	23		Acceptable
	В	Spring	18	+12%	Walking	24		Acceptable
		Summer	13	4.407	Standing	18		Acceptable
		Fall	16	+14%	Walking	22		Acceptable
		vvinter	18	+12%	vvaiking	24		Acceptable
		Annual	16		Walking	22		Acceptable
116	А	Spring	14		Standing	23		Acceptable
		Summer	11		Sitting	17		Acceptable
		Fall	13		Standing	21		Acceptable
		Winter	15		Standing	24		Acceptable
		Annual	14		Standing	22		Acceptable
	В	Spring	17	+21%	Walking	23		Acceptable
		Summer	13	+18%	Standing	18		Acceptable
		Fall	15	+15%	Standing	20		Acceptable
		Winter	17	+13%	Walking	23		Acceptable
		Annual	16	+14%	Walking	21		Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 nComfortable for Walking:> 15 and \leq 19 nUncomfortable for Walking:> 19 and \leq 27 nDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph nph Unacceptable: > 31 mph nph nph

BPDA Criteria			Mean Wind Speed					Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING	
117	А	Spring	13		Standing		21		Acceptable	
		Summer	10		Sitting		16		Acceptable	
		Fall	12		Sitting		20		Acceptable	
		Winter	14		Standing		22		Acceptable	
		Annual	13		Standing		20		Acceptable	
	В	Spring	10	-23%	Sitting		16	-24%	Acceptable	
		Summer	9		Sitting		13	-19%	Acceptable	
		Fall	10	-17%	Sitting		15	-25%	Acceptable	
		Winter	11	-21%	Sitting		17	-23%	Acceptable	
		Annual	10	-23%	Sitting		16	-20%	Acceptable	
118	А	Spring	12		Sitting		19		Acceptable	
		Summer	10		Sitting		16		Acceptable	
		Fall	11		Sitting		18		Acceptable	
		Winter	12		Sitting		19		Acceptable	
		Annual	11		Sitting		18		Acceptable	
	В	Spring	8	-33%	Sitting		14	-26%	Acceptable	
		Summer	1	-30%	Sitting		11	-31%	Acceptable	
		Fall	8	-27%	Sitting		13	-28%	Acceptable	
		Winter	9	-25%	Sitting		14	-26%	Acceptable	
		Annual	8	-27%	Sitting		13	-28%	Acceptable	
119	А	Spring	16		Walking		24		Acceptable	
		Summer	14		Standing		21		Acceptable	
		Fall	15		Standing		23		Acceptable	
		Winter	16		Walking		24		Acceptable	
		Annual	16		Walking		23		Acceptable	
	В	Spring	12	-25%	Sitting		18	-25%	Acceptable	
		Summer	9	-36%	Sitting		14	-33%	Acceptable	
		Fall	11	-27%	Sitting		1/	-26%	Acceptable	
		Winter	13	-19%	Standing		20	-17%	Acceptable	
		Annual	12	-25%	Sitting		18	-22%	Acceptable	
120	А	Spring	13		Standing		20		Acceptable	
		Summer	10		Sitting		16		Acceptable	
		Fall	12		Sitting		19		Acceptable	
		Winter	13		Standing		21		Acceptable	
		Annual	12		Sitting		19		Acceptable	
	В	Spring	13		Standing		18	400/	Acceptable	
		Summer	10		Sitting		14	-12%	Acceptable	
		Fall	12		Sitting		16	-16%	Acceptable	
		vvinter	13		Standing		18	-14%	Acceptable	
		Annual	12		Sitting		1/	-11%	Acceptable	

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria		
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph		

BPDA Criteria			Mean Wind Speed			E	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(r	mph)	%Change	RATING
121	A	Spring Summer Fall Winter Annual	15 12 13 14 14		Standing Sitting Standing Standing Standing		23 19 21 23 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 13 12	-20% -25% -15% -14%	Sitting Sitting Sitting Standing Sitting		19 15 18 21 19	-17% -21% -14% -14%	Acceptable Acceptable Acceptable Acceptable Acceptable
122	A	Spring Summer Fall Winter Annual	14 11 13 16 14		Standing Sitting Standing Walking Standing		22 17 21 25 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 11 14 17 15		Standing Sitting Standing Walking Standing		22 17 20 24 22		Acceptable Acceptable Acceptable Acceptable Acceptable
123	A	Spring Summer Fall Winter Annual	12 9 11 12 11		Sitting Sitting Sitting Sitting Sitting		18 14 17 19 18		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	17 12 16 18 16	+42% +33% +45% +50% +45%	Walking Sitting Walking Walking Walking		24 18 22 25 23	+33% +29% +29% +32% +28%	Acceptable Acceptable Acceptable Acceptable Acceptable
124	A	Spring Summer Fall Winter Annual	16 11 15 16 15		Walking Sitting Standing Walking Standing		23 17 21 24 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 8 11 12 11	-25% -27% -27% -25% -27%	Sitting Sitting Sitting Sitting Sitting		19 14 17 19 18	-17% -18% -19% -21% -18%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Mean Wind Speed			Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING	
125	A	Spring Summer Fall Winter Annual	21 16 19 24 21		Uncomfortable Walking Walking Uncomfortable Uncomfortable	29 23 27 33 29		Acceptable Acceptable Acceptable Unacceptable Acceptable	
	В	Spring Summer Fall Winter Annual	21 16 19 23 20		Uncomfortable Walking Walking Uncomfortable Uncomfortable	28 22 26 31 28		Acceptable Acceptable Acceptable Acceptable Acceptable	
126	A	Spring Summer Fall Winter Annual	17 13 16 18 17		Walking Standing Walking Walking Walking	25 19 24 28 25		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	18 13 16 18 17		Walking Standing Walking Walking Walking	26 19 24 27 25		Acceptable Acceptable Acceptable Acceptable Acceptable	
127	A	Spring Summer Fall Winter Annual	16 13 14 17 15		Walking Standing Standing Walking Standing	23 19 21 23 22		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	16 13 15 17 15		Walking Standing Standing Walking Standing	23 18 21 24 22		Acceptable Acceptable Acceptable Acceptable Acceptable	
128	A	Spring Summer Fall Winter Annual	15 12 14 16 15		Standing Sitting Standing Walking Standing	24 19 22 25 23		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	15 12 14 17 15		Standing Sitting Standing Walking Standing	23 18 21 25 23		Acceptable Acceptable Acceptable Acceptable Acceptable	

Notes: 1)

Wind speeds are for a 1% probability of exceedance; and, % Change is based on comparison with Configuration A and only those that are greater than 10% are listed. 2)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria		
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph p: > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA Criteria			Mean Wind Speed			Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
129	A	Spring Summer Fall Winter Annual	25 18 23 25 23		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	32 24 29 32 30		Unacceptable Acceptable Acceptable Unacceptable Acceptable
	В	Spring Summer Fall Winter Annual	23 17 21 23 21		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	30 21 27 30 28	-12%	Acceptable Acceptable Acceptable Acceptable Acceptable
130	A	Spring Summer Fall Winter Annual	19 13 17 18 17		Walking Standing Walking Walking Walking	26 19 24 26 24		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	19 13 17 18 17		Walking Standing Walking Walking Walking	26 18 24 25 24		Acceptable Acceptable Acceptable Acceptable Acceptable
131	A	Spring Summer Fall Winter Annual	19 14 17 19 18		Walking Standing Walking Walking Walking	26 20 24 26 24		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	19 14 17 19 17		Walking Standing Walking Walking Walking	26 19 23 26 24		Acceptable Acceptable Acceptable Acceptable Acceptable
132	A	Spring Summer Fall Winter Annual	12 9 11 12 11		Sitting Sitting Sitting Sitting Sitting	18 14 17 18 17		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 12 11		Sitting Sitting Sitting Sitting Sitting	18 13 16 18 17		Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria		
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph		

BPDA Criteria			Mean Wind Speed			Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
133	А	Spring Summer	23 17		Uncomfortable Walking	29 22		Acceptable Acceptable
		Fall Wintor	20		Uncomfortable	25		Acceptable
		Annual	22		Uncomfortable	26		Acceptable
	В	Spring	23		Uncomfortable	30		Acceptable
		Summer	17		VValking	22		Acceptable
		Fall Winter	21		Uncomfortable	21		Acceptable
		Annual	21		Uncomfortable	23		Acceptable
134	А	Spring	18		Walking	24		Acceptable
		Summer	14		Standing	19		Acceptable
		Fall	16		Walking	22		Acceptable
		Winter	18		Walking	24		Acceptable
		Annual	16		Walking	23		Acceptable
	В	Spring	17		Walking	23		Acceptable
		Summer	13		Standing	18		Acceptable
		Fall	15		Standing	21		Acceptable
		Appual	17		Walking	24		Acceptable
		Annual	10		Waiking	22		Acceptable
135	А	Spring	21		Uncomfortable	26		Acceptable
		Summer	16		Walking	21		Acceptable
		Fall	18		Walking	24		Acceptable
		Winter	20		Uncomfortable	27		Acceptable
		Annual	19		waiking	25		Acceptable
	В	Spring	21		Uncomfortable	27		Acceptable
		Summer	16		Walking	21		Acceptable
		Fall	18		VValking	24		Acceptable
		vvinter	21		Uncomfortable	21		Acceptable
		Annual	19		waiking	25		Acceptable
136	А	Spring	17		Walking	24		Acceptable
		Summer	14		Standing	20		Acceptable
		Fall	16		Walking	22		Acceptable
		Winter	17		Walking	25		Acceptable
		Annual	16		Walking	23		Acceptable
	В	Spring	18		Walking	25		Acceptable
		Summer	15		Standing	20		Acceptable
		⊢all Winter	1/	100/	vvaiking	24		Acceptable
		vvinter	19	+12%	waiking	26		Acceptable
		Annual	17		vvaiking	24		Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria		
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph y: > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA Criteria			Ме	an Wind Spe	eed	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING	
137	A	Spring Summer Fall Winter Annual	19 16 18 20 18		Walking Walking Walking Uncomfortable Walking	27 22 25 28 26		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	16 13 15 17 16	-16% -19% -17% -15% -11%	Walking Standing Standing Walking Walking	24 19 22 25 23	-11% -14% -12% -11% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable	
138	A	Spring Summer Fall Winter Annual	25 19 23 26 24		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	32 25 29 33 30		Unacceptable Acceptable Acceptable Unacceptable Acceptable	
	В	Spring Summer Fall Winter Annual	27 21 23 27 25	+11%	Uncomfortable Uncomfortable Uncomfortable Uncomfortable Uncomfortable	33 26 28 33 30		Unacceptable Acceptable Acceptable Unacceptable Acceptable	
139	A	Spring Summer Fall Winter Annual	23 18 20 23 22		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	30 23 27 31 28		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	21 16 18 21 19	-11% -14%	Uncomfortable Walking Walking Uncomfortable Walking	27 21 24 27 25	-11% -13% -11%	Acceptable Acceptable Acceptable Acceptable Acceptable	
140	A	Spring Summer Fall Winter Annual	17 14 15 18 17		Walking Standing Standing Walking Walking	25 20 22 27 24		Acceptable Acceptable Acceptable Acceptable Acceptable	
	В	Spring Summer Fall Winter Annual	23 19 22 25 23	+35% +36% +47% +39% +35%	Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	31 26 29 34 31	+24% +30% +32% +26% +29%	Acceptable Acceptable Acceptable Unacceptable Acceptable	

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust C	Effective Gust Criteria		
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ m}$ Comfortable for Walking:> 15 and $\leq 19 \text{ m}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ m}$ Dangerous Conditions:> 27 mph	Acceptable: ph Unacceptable: ph ph	≤ 31 mph > 31 mph		

BPDA	Criteria		Ме	ean Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
141	А	Spring	16		Walking	24		Acceptable
		Summer	13		Standing	19		Acceptable
		Fall	15		Standing	22		Acceptable
		Winter	18		Walking	27		Acceptable
		Annual	16		Walking	24		Acceptable
	В	Spring	19	+19%	Walking	27	+12%	Acceptable
		Summer	16	+23%	Walking	22	+16%	Acceptable
		Fall	18	+20%	Walking	25	+14%	Acceptable
		Winter	20	+11%	Uncomfortable	28		Acceptable
		Annual	18	+12%	Walking	26		Acceptable
142	А	Spring	24		Uncomfortable	30		Acceptable
		Summer	18		Walking	23		Acceptable
		Fall	21		Uncomfortable	27		Acceptable
		Winter	24		Uncomfortable	30		Acceptable
		Annual	22		Uncomfortable	28		Acceptable
	В	Spring	17	-29%	Walking	23	-23%	Acceptable
		Summer	13	-28%	Standing	1/	-26%	Acceptable
		Fall	16	-24%	Walking	20	-26%	Acceptable
		Winter	1/	-29%	Walking	23	-23%	Acceptable
		Annual	16	-27%	Walking	21	-25%	Acceptable
143	А	Spring	13		Standing	22		Acceptable
		Summer	11		Sitting	19		Acceptable
		Fall	12		Sitting	21		Acceptable
		Winter	14		Standing	23		Acceptable
		Annual	13		Standing	21		Acceptable
	В	Spring	23	+77%	Uncomfortable	29	+32%	Acceptable
		Summer	19	+73%	Walking	24	+26%	Acceptable
		Fall	19	+58%	Walking	25	+19%	Acceptable
		vvinter	22	+57%	Uncomfortable	29	+26%	Acceptable
		Annual	21	+62%	Uncomfortable	27	+29%	Acceptable
144	А	Spring	19		Walking	26		Acceptable
		Summer	15		Standing	21		Acceptable
		Fall	18		Walking	24		Acceptable
		vvinter	20		Uncomfortable	27		Acceptable
		Annual	19		vvaiking	25		Acceptable
	В	Spring	18		Walking	25		Acceptable
		Summer	15		Standing	21		Acceptable
		⊢all	17		vvaiking	24		Acceptable
		vvinter	20			27		Acceptable
		Annuai	18		vvaiking	25		Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: \leq 12 mphComfortable for Standing:> 12 and \leq 15 mphComfortable for Walking:> 15 and \leq 19 mphUncomfortable for Walking:> 19 and \leq 27 mphDangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	an Wind Spe	Effecti	Effective Gust Wind Speed		
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
145	А	Spring	19		Walking	26		Acceptable
		Summer	14		Standing	20		Acceptable
		Fall	17		Walking	24		Acceptable
		Winter	20		Uncomfortable	27		Acceptable
		Annual	18		Walking	25		Acceptable
	В	Spring	15	-21%	Standing	22	-15%	Acceptable
		Summer	11	-21%	Sitting	16	-20%	Acceptable
		Fall	14	-18%	Standing	20	-17%	Acceptable
		Winter	15	-25%	Standing	22	-19%	Acceptable
		Annual	14	-22%	Standing	20	-20%	Acceptable
146	А	Spring	14		Standing	21		Acceptable
		Summer	11		Sitting	16		Acceptable
		Fall	13		Standing	20		Acceptable
		Winter	15		Standing	23		Acceptable
		Annual	14		Standing	21		Acceptable
	В	Spring	10	-29%	Sitting	16	-24%	Acceptable
		Summer	8	-27%	Sitting	13	-19%	Acceptable
		Fall	10	-23%	Sitting	15	-25%	Acceptable
		Winter	11	-27%	Sitting	17	-26%	Acceptable
		Annual	10	-29%	Sitting	15	-29%	Acceptable
147	А	Spring	11		Sitting	18		Acceptable
		Summer	9		Sitting	16		Acceptable
		Fall	10		Sitting	1/		Acceptable
		Winter	12		Sitting	19		Acceptable
		Annual	11		Sitting	18		Acceptable
	В	Spring	16	+45%	Walking	23	+28%	Acceptable
		Summer	13	+44%	Standing	20	+25%	Acceptable
		Fall	15	+50%	Standing	22	+29%	Acceptable
		VVInter	17	+42%	Walking	20	+32%	Acceptable
		Annual	16	+45%	vvaiking	23	+28%	Acceptable
148	A	Spring	10		Sitting	16		Acceptable
		Summer	8		Sitting	12		Acceptable
		Fall	9		Sitting	15		Acceptable
		Winter	11		Sitting	17		Acceptable
		Annual	10		Sitting	16		Acceptable
	В	Spring	10		Sitting	14	-12%	Acceptable
		Summer	7	-12%	Sitting	11		Acceptable
		Fall	9		Sitting	13	-13%	Acceptable
		Winter	10		Sitting	15	-12%	Acceptable
		Annual	9		Sitting	¹ 13	-19%	Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA Criteria			Ме	ean Wind Spe	Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
149	А	Spring	18		Walking	26		Acceptable
		Summer	15		Standing	22		Acceptable
		Fall	17		Walking	24		Acceptable
		Winter	20		Uncomfortable	28		Acceptable
		Annual	18		Walking	26		Acceptable
	В	Spring	19		Walking	25		Acceptable
		Summer	15		Standing	21		Acceptable
		Fall	17		Walking	24		Acceptable
		Winter	21		Uncomfortable	27		Acceptable
		Annual	19		Walking	25		Acceptable
150	А	Spring	19		Walking	27		Acceptable
		Summer	16		Walking	22		Acceptable
		Fall	18		Walking	25		Acceptable
		Winter	21		Uncomfortable	29		Acceptable
		Annual	19		vvalking	26		Acceptable
	В	Spring	12	-37%	Sitting	18	-33%	Acceptable
		Summer	10	-38%	Sitting	16	-27%	Acceptable
		Fall	11	-39%	Sitting	1/	-32%	Acceptable
		Winter	12	-43%	Sitting	19	-34%	Acceptable
		Annual	12	-37%	Sitting	18	-31%	Acceptable
151	А	Spring	19		Walking	28		Acceptable
		Summer	16		Walking	23		Acceptable
		Fall	18		Walking	26		Acceptable
		Winter	20		Uncomfortable	29		Acceptable
		Annual	18		vvalking	27		Acceptable
	В	Spring	14	-26%	Standing	22	-21%	Acceptable
		Summer	11	-31%	Sitting	18	-22%	Acceptable
		Fall	13	-28%	Standing	20	-23%	Acceptable
		vvinter	16	-20%	vvaiking	24	-17%	Acceptable
		Annual	14	-22%	Standing	22	-19%	Acceptable
152	А	Spring	17		Walking	25		Acceptable
		Summer	14		Standing	21		Acceptable
		Fall	16		Walking	23		Acceptable
		Winter	18		Walking	27		Acceptable
		Annual	17		Walking	25		Acceptable
	В	Spring	22	+29%	Uncomfortable	28	+12%	Acceptable
		Summer	17	+21%	Walking	21		Acceptable
		Fall	20	+25%	Uncomfortable	25		Acceptable
		Winter	23	+28%	Uncomfortable	29		Acceptable
		Annual	21	+24%	Uncomfortable	' 27		Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA Criteria			Mean Wind Speed			Effecti	Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING		
153	A	Spring Summer Fall Winter Annual	25 19 22 25 23		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	32 24 28 32 30		Unacceptable Acceptable Acceptable Unacceptable Acceptable		
	В	Spring Summer Fall Winter Annual	27 20 23 26 24		Uncomfortable Uncomfortable Uncomfortable Uncomfortable Uncomfortable	34 25 30 34 31		Unacceptable Acceptable Acceptable Unacceptable Acceptable		
154	A	Spring Summer Fall Winter Annual	14 10 13 14 13		Standing Sitting Standing Standing Standing	22 16 21 22 21		Acceptable Acceptable Acceptable Acceptable Acceptable		
	В	Spring Summer Fall Winter Annual	23 18 20 23 21	+64% +80% +54% +64% +62%	Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	31 23 28 32 29	+41% +44% +33% +45% +38%	Acceptable Acceptable Acceptable Unacceptable Acceptable		
155	A	Spring Summer Fall Winter Annual	14 12 13 15 14		Standing Sitting Standing Standing Standing	22 18 21 23 21		Acceptable Acceptable Acceptable Acceptable Acceptable		
	В	Spring Summer Fall Winter Annual	17 13 16 18 16	+21% +23% +20% +14%	Walking Standing Walking Walking Walking	24 19 22 25 23		Acceptable Acceptable Acceptable Acceptable Acceptable		
156	A	Spring Summer Fall Winter Annual	21 16 19 23 20		Uncomfortable Walking Walking Uncomfortable Uncomfortable	31 23 28 35 31		Acceptable Acceptable Acceptable Unacceptable Acceptable		
	В	Spring Summer Fall Winter Annual	19 15 16 19 18	-16% -17%	Walking Standing Walking Walking Walking	27 20 23 28 25	-13% -13% -18% -20% -19%	Acceptable Acceptable Acceptable Acceptable Acceptable		

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	ed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
157	A	Spring Summer Fall Winter Annual	23 18 21 22 21		Uncomfortable Walking Uncomfortable Uncomfortable Uncomfortable	31 25 28 30 29		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	18 13 16 18 16	-22% -28% -24% -18% -24%	Walking Standing Walking Walking Walking	24 17 22 24 22	-23% -32% -21% -20% -24%	Acceptable Acceptable Acceptable Acceptable Acceptable
158	A	Spring Summer Fall Winter Annual	19 14 17 19 18		Walking Standing Walking Walking Walking	28 21 25 29 27		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	19 14 17 21 18	+11%	Walking Standing Walking Uncomfortable Walking	25 19 23 27 25	-11%	Acceptable Acceptable Acceptable Acceptable Acceptable
159	A	Spring Summer Fall Winter Annual	15 12 14 17 15		Standing Sitting Standing Walking Standing	25 19 23 29 25		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 9 11 10	-33% -33% -36% -35% -33%	Sitting Sitting Sitting Sitting Sitting	18 13 16 20 17	-28% -32% -30% -31% -32%	Acceptable Acceptable Acceptable Acceptable Acceptable
160	A	Spring Summer Fall Winter Annual	14 11 13 16 14		Standing Sitting Standing Walking Standing	21 17 19 23 21		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 9 11 10	-29% -27% -31% -31% -29%	Sitting Sitting Sitting Sitting Sitting	16 12 14 17 15	-24% -29% -26% -26% -29%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
161	A	Spring Summer Fall Winter Annual	14 11 13 16 14		Standing Sitting Standing Walking Standing	21 17 19 23 21		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 9 11 10	-29% -27% -31% -31% -29%	Sitting Sitting Sitting Sitting Sitting	16 12 14 17 15	-24% -29% -26% -26% -29%	Acceptable Acceptable Acceptable Acceptable Acceptable
162	A	Spring Summer Fall Winter Annual	15 12 14 16 14		Standing Sitting Standing Walking Standing	23 18 21 25 22		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 13 12	-20% -25% -21% -19% -14%	Sitting Sitting Sitting Standing Sitting	20 15 18 21 19	-13% -17% -14% -16% -14%	Acceptable Acceptable Acceptable Acceptable Acceptable
163	A	Spring Summer Fall Winter Annual	19 14 17 19 17		Walking Standing Walking Walking Walking	27 21 25 28 26		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	19 14 18 21 19	+11% +12%	Walking Standing Walking Uncomfortable Walking	27 21 25 31 27	+11%	Acceptable Acceptable Acceptable Acceptable Acceptable
164	A	Spring Summer Fall Winter Annual	12 10 11 13 12		Sitting Sitting Sitting Standing Sitting	19 15 18 21 19		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	13 9 11 13 12		Standing Sitting Sitting Standing Sitting	20 15 18 20 19		Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: 1) Wind speeds are for a 1% probability of exceedance; and,

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
165	А	Spring	15		Standing	22		Acceptable
		Summer	13		Standing	18		Acceptable
		Fall	14		Standing	20		Acceptable
		Winter	14		Standing	21		Acceptable
		Annual	14		Standing	21		Acceptable
	В	Spring	13	-13%	Standing	20		Acceptable
		Summer	10	-23%	Sitting	15	-17%	Acceptable
		Fall	12	-14%	Sitting	18	-10%	Acceptable
		Winter	14		Standing	21		Acceptable
		Annual	12	-14%	Sitting	19	-10%	Acceptable
166	А	Spring	12		Sitting	18		Acceptable
		Summer	10		Sitting	15		Acceptable
		Fall	11		Sitting	1/		Acceptable
		Winter	11		Sitting	1/		Acceptable
		Annual	11		Sitting	17		Acceptable
	В	Spring	12		Sitting	19		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	11		Sitting	17		Acceptable
		Winter	13	+18%	Standing	21	+24%	Acceptable
		Annual	12		Sitting	19	+12%	Acceptable
167	А	Spring	8		Sitting	14		Acceptable
		Summer	7		Sitting	12		Acceptable
		Fall	8		Sitting	13		Acceptable
		Winter	8		Sitting	13		Acceptable
		Annual	8		Sitting	13		Acceptable
	В	Spring	19	+138%	Walking	26	+86%	Acceptable
		Summer	14	+100%	Standing	20	+67%	Acceptable
		Fall	17	+112%	Walking	24	+85%	Acceptable
		Winter	21	+162%	Uncomfortable	29	+123%	Acceptable
		Annual	19	+138%	Walking	26	+100%	Acceptable
168	А	Spring	15		Standing	21		Acceptable
		Summer	11		Sitting	16		Acceptable
		Fall	13		Standing	19		Acceptable
		Winter	16		Walking	23		Acceptable
		Annual	15		Standing	21		Acceptable
	В	Spring	11	-27%	Sitting	18	-14%	Acceptable
		Summer	9	-18%	Sitting	13	-19%	Acceptable
		Fall	10	-23%	Sitting	17	-11%	Acceptable
		Winter	12	-25%	Sitting	19	-17%	Acceptable
		Annual	11	-27%	Sitting	· 18	-14%	Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	eed		Effectiv	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Spee	d(mph)	%Change	RATING
169	A	Spring Summer Fall Winter	11 10 10 10		Sitting Sitting Sitting Sitting		17 15 15 16		Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer	7 6	-36% -40%	Sitting Sitting		12 9	-29% -40%	Acceptable Acceptable
		Fall Winter Annual	7 8 7	-30% -20% -30%	Sitting Sitting Sitting		11 13 12	-27% -19% -25%	Acceptable Acceptable Acceptable
170	A	Spring Summer Fall Winter Annual	14 11 13 16 14		Standing Sitting Standing Walking Standing		22 17 20 24 21		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 14 12	-14% -18% -15% -12% -14%	Sitting Sitting Sitting Standing Sitting		19 15 17 21 19	-14% -12% -15% -12%	Acceptable Acceptable Acceptable Acceptable Acceptable
171	A	Spring Summer Fall Winter Annual	10 8 9 11 10		Sitting Sitting Sitting Sitting Sitting		16 12 15 17 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	11 8 10 12 11	+11%	Sitting Sitting Sitting Sitting Sitting		16 12 15 18 16		Acceptable Acceptable Acceptable Acceptable Acceptable
172	A	Spring Summer Fall Winter Annual	11 9 11 11 11		Sitting Sitting Sitting Sitting Sitting		17 14 16 17 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 9 10 9	-11% -18% -18%	Sitting Sitting Sitting Sitting Sitting		15 12 15 16 15	-12% -14%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking: Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed		Effectiv	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed	l(mph)	%Change	RATING
173	A	Spring Summer Fall Winter Annual	10 7 9 10 9		Sitting Sitting Sitting Sitting Sitting		15 12 14 16 15		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	9 7 8 9 9	-11%	Sitting Sitting Sitting Sitting Sitting		14 11 13 15 14		Acceptable Acceptable Acceptable Acceptable Acceptable
174	A	Spring Summer Fall Winter Annual	12 9 11 13 12		Sitting Sitting Sitting Standing Sitting		19 15 17 20 18		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	11 9 10 12 11		Sitting Sitting Sitting Sitting Sitting		18 14 16 19 17		Acceptable Acceptable Acceptable Acceptable Acceptable
175	A	Spring Summer Fall Winter Annual	11 9 10 12 11		Sitting Sitting Sitting Sitting Sitting		17 13 16 18 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	9 7 9 10 9	-18% -22% -17% -18%	Sitting Sitting Sitting Sitting Sitting		15 12 14 16 15	-12% -12% -11%	Acceptable Acceptable Acceptable Acceptable Acceptable
176	A	Spring Summer Fall Winter Annual	12 9 11 13 12		Sitting Sitting Sitting Standing Sitting		16 13 15 18 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	12 9 11 13 11		Sitting Sitting Sitting Standing Sitting		16 13 15 18 16		Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust Criteria
A – No Build B – Full Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable: ≤ 31 mph Unacceptable: > 31 mph

BPDA	Criteria		Ме	ean Wind Spe	eed	Effectiv	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
177	A	Spring Summer Fall Winter Annual	14 11 13 14 13		Standing Sitting Standing Standing Standing	19 16 18 21 19		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	15 11 13 16 15	+14% +15%	Standing Sitting Standing Walking Standing	22 17 20 24 22	+16% +11% +14% +16%	Acceptable Acceptable Acceptable Acceptable Acceptable
178	A	Spring Summer Fall Winter Annual	8 7 8 8 8		Sitting Sitting Sitting Sitting Sitting	13 11 12 13 12		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	13 10 12 14 13	+62% +43% +50% +75% +62%	Standing Sitting Sitting Standing Standing	20 15 18 21 19	+54% +36% +50% +62% +58%	Acceptable Acceptable Acceptable Acceptable Acceptable
179	A	Spring Summer Fall Winter Annual	11 9 11 12 11		Sitting Sitting Sitting Sitting Sitting	16 13 16 17 16		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 8 10 10 10	-11% -17%	Sitting Sitting Sitting Sitting Sitting	15 13 15 16 15		Acceptable Acceptable Acceptable Acceptable Acceptable
180	A	Spring Summer Fall Winter Annual	9 8 9 10 9		Sitting Sitting Sitting Sitting Sitting	14 12 14 15 14		Acceptable Acceptable Acceptable Acceptable Acceptable
	В	Spring Summer Fall Winter Annual	10 9 10 11 10	+11% +12% +11% +11%	Sitting Sitting Sitting Sitting Sitting	16 13 15 17 15	+14% +13%	Acceptable Acceptable Acceptable Acceptable Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	Effective Gust C	<u>Criteria</u>
A – No Build	Comfortable for Sitting: $\leq 12 \text{ mph}$ Comfortable for Standing:> 12 and $\leq 15 \text{ mph}$ Comfortable for Walking:> 15 and $\leq 19 \text{ mph}$ Uncomfortable for Walking:> 19 and $\leq 27 \text{ mph}$ Dangerous Conditions:> 27 mph	Acceptable:	≤ 31 mph
B – Full Build		Unacceptable:	> 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
181	А	Spring	12		Sitting	18		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	11		Sitting	16		Acceptable
		Winter	13		Standing	19		Acceptable
		Annual	12		Sitting	17		Acceptable
	В	Spring	11		Sitting	17		Acceptable
		Summer	9		Sitting	14		Acceptable
		Fall	10		Sitting	16		Acceptable
		Winter	11	-15%	Sitting	17	-11%	Acceptable
		Annual	11		Sitting	16		Acceptable
182	А	Spring	13		Standing	18		Acceptable
		Summer	11		Sitting	15		Acceptable
		Fall	12		Sitting	17		Acceptable
		Winter	12		Sitting	18		Acceptable
		Annual	12		Sitting	17		Acceptable
	В	Spring	12		Sitting	17		Acceptable
		Summer	9	-18%	Sitting	13	-13%	Acceptable
		Fall	11		Sitting	16		Acceptable
		Winter	13		Standing	18		Acceptable
		Annual	12		Sitting	17		Acceptable
183	А	Spring	15		Standing	23		Acceptable
		Summer	12		Sitting	17		Acceptable
		Fall	15		Standing	21		Acceptable
		Winter	16		Walking	23		Acceptable
		Annual	15		Standing	22		Acceptable
	В	Spring	14		Standing	20	-13%	Acceptable
		Summer	10	-17%	Sitting	15	-12%	Acceptable
		Fall	12	-20%	Sitting	19		Acceptable
		Winter	14	-12%	Standing	20	-13%	Acceptable
		Annual	13	-13%	Standing	19	-14%	Acceptable
184	А	Spring	22		Uncomfortable	29		Acceptable
		Summer	19		Walking	25		Acceptable
		Fall	21		Uncomfortable	28		Acceptable
		Winter	22		Uncomfortable	28		Acceptable
		Annual	21		Uncomfortable	28		Acceptable
	В	Spring	18	-18%	Walking	25	-14%	Acceptable
		Summer	15	-21%	Standing	21	-16%	Acceptable
		Fall	16	-24%	Walking	23	-18%	Acceptable
		Winter	18	-18%	Walking	25	-11%	Acceptable
		Annual	17	-19%	Walking	24	-14%	Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria	1	Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph y: > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

BPDA	Criteria		Ме	an Wind Spe	eed	Effecti	ve Gust Win	d Speed
Loc.	Config.	Season	Speed(mph)	%Change	RATING	Speed(mph)	%Change	RATING
185	А	Spring	20		Uncomfortable	29		Acceptable
		Summer	15		Standing	22		Acceptable
		Fall	19		Walking	27		Acceptable
		Winter	20		Uncomfortable	29		Acceptable
		Annual	19		Walking	27		Acceptable
	В	Spring	18		Walking	26	-10%	Acceptable
		Summer	15		Standing	21		Acceptable
		Fall	17	-11%	Walking	25		Acceptable
		Winter	19		Walking	27		Acceptable
		Annual	18		Walking	25		Acceptable
186	А	Spring	13		Standing	21		Acceptable
		Summer	11		Sitting	1/		Acceptable
		Fall	12		Sitting	19		Acceptable
		Winter	13		Standing	21		Acceptable
		Annual	12		Sitting	20		Acceptable
	В	Spring	11	-15%	Sitting	18	-14%	Acceptable
		Summer	9	-18%	Sitting	15	-12%	Acceptable
		Fall	10	-17%	Sitting	1/	-11%	Acceptable
		Winter	12		Sitting	19	4 = 0 /	Acceptable
		Annual	11		Sitting	17	-15%	Acceptable
187	А	Spring	18		Walking	26		Acceptable
		Summer	14		Standing	20		Acceptable
		Fall	1/		Walking	24		Acceptable
		Winter	19		Walking	26		Acceptable
		Annual	17		vvaiking	24		Acceptable
	В	Spring	18		Walking	25		Acceptable
		Summer	13		Standing	19		Acceptable
		Fall	17		Walking	24		Acceptable
		vvinter	19		Walking	21		Acceptable
		Annual	17		vvaiking	25		Acceptable
188	А	Spring	16		Walking	24		Acceptable
		Summer	12		Sitting	18		Acceptable
		Fall	15		Standing	22		Acceptable
		vvinter	1/		vvaiking	25		Acceptable
		Annual	15		Standing	23		Acceptable
	В	Spring	15		Standing	23		Acceptable
		Summer	12		Sitting	18		Acceptable
		Fall	14		Standing	21		Acceptable
		vvinter	16		vvalking	25		Acceptable
		Annual	15		Standing	- 23		Acceptable

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

Table 1: Mean Speed and Effective Gust Categories - Multiple Seasons

BPDA Criteria			Mean Wind Speed				Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING	
189	А	Spring	18		Walking		25		Acceptable	
		Summer	15		Standing		21		Acceptable	
		Fall	17		Walking		23		Acceptable	
		Winter	18		Walking		25		Acceptable	
		Annual	17		Walking		24		Acceptable	
	В	Spring	17		Walking		24		Acceptable	
		Summer	13	-13%	Standing		19		Acceptable	
		Fall	16		Walking		22		Acceptable	
		Winter	18		Walking		25		Acceptable	
		Annual	16		Walking		23		Acceptable	
190	А	Spring	16		Walking		22		Acceptable	
		Summer	13		Standing		19		Acceptable	
		Fall	15		Standing		21		Acceptable	
		Winter	15		Standing		23		Acceptable	
		Annual	15		Standing		21		Acceptable	
	В	Spring	11	-31%	Sitting		18	-18%	Acceptable	
		Summer	9	-31%	Sitting		15	-21%	Acceptable	
		Fall	10	-33%	Sitting		17	-19%	Acceptable	
		vvinter	12	-20%	Sitting		19	-17%	Acceptable	
		Annual	11	-21%	Sitting		17	-19%	Acceptable	
191	А	Spring	16		Walking		22		Acceptable	
		Summer	13		Standing		18		Acceptable	
		Fall	14		Standing		21		Acceptable	
		Winter	15		Standing		22		Acceptable	
		Annual	15		Standing		21		Acceptable	
	В	Spring	13	-19%	Standing		19	-14%	Acceptable	
		Summer	11	-15%	Sitting		16	-11%	Acceptable	
		Fall	12	-14%	Sitting		18	-14%	Acceptable	
		Winter	13	-13%	Standing		20		Acceptable	
		Annual	12	-20%	Sitting		19		Acceptable	
192	А	Spring	16		Walking		23		Acceptable	
		Summer	13		Standing		19		Acceptable	
		Fall	14		Standing		21		Acceptable	
		Winter	15		Standing		23		Acceptable	
		Annual	15		Standing		21		Acceptable	
	В	Spring	15		Standing		21		Acceptable	
		Summer	12		Sitting		17	-11%	Acceptable	
		Fall	14		Standing		20		Acceptable	
		Winter	16		Walking		22		Acceptable	
		Annual	15		Standing	I	21		Acceptable	

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

2) % Change is based on comparison with Configuration A and only those that are greater than 10% are listed.

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

Table 1: Mean Speed and Effective Gust Categories - Multiple Seasons

BPDA Criteria			Mean Wind Speed					Effective Gust Wind Speed			
Loc.	Config.	Season	Speed(mph)	%Change	RATING		Speed(mph)	%Change	RATING		
193	А	Spring	14		Standing		21		Acceptable		
		Summer	12		Sitting		18		Acceptable		
		Fall	14		Standing		20		Acceptable		
		Winter	15		Standing		22		Acceptable		
		Annual	14		Standing		21		Acceptable		
	В	Spring	13		Standing		20		Acceptable		
		Summer	11		Sitting		17		Acceptable		
		Fall	13		Standing		19		Acceptable		
		Winter	13	-13%	Standing		20		Acceptable		
		Annual	13		Standing		19		Acceptable		
194	А	Spring	15		Standing		22		Acceptable		
		Summer	13		Standing		19		Acceptable		
		Fall	14		Standing		21		Acceptable		
		Winter	15		Standing		23		Acceptable		
		Annual	14		Standing		21		Acceptable		
	В	Spring	14		Standing		21		Acceptable		
		Summer	11	-15%	Sitting		17	-11%	Acceptable		
		Fall	13		Standing		20		Acceptable		
		Winter	15		Standing		23		Acceptable		
		Annual	13		Standing		21		Acceptable		
195	А	Spring	15		Standing		23		Acceptable		
		Summer	13		Standing		19		Acceptable		
		Fall	15		Standing		21		Acceptable		
		Winter	16		Walking		23		Acceptable		
		Annual	15		Standing		22		Acceptable		
	В	Spring	15		Standing		22		Acceptable		
		Summer	13		Standing		18		Acceptable		
		Fall	14		Standing		21		Acceptable		
		vvinter	15		Standing		23		Acceptable		
		Annual	14		Standing		21		Acceptable		
196	Α	Spring	15		Standing		22		Acceptable		
		Summer	13		Standing		18		Acceptable		
		Fall	14		Standing		21		Acceptable		
		Winter	15		Standing		23		Acceptable		
		Annual	14		Standing		21		Acceptable		
	В	Spring	15		Standing		21		Acceptable		
		Summer	12		Sitting		17		Acceptable		
		Fall	14		Standing		20		Acceptable		
		Winter	15		Standing		22		Acceptable		
		Annual	14		Standing	I	21		Acceptable		

Notes: Wind speeds are for a 1% probability of exceedance; and, 1)

2) % Change is based on comparison with Configuration A and only those that are greater than 10% are listed.

Configurations	Mean Wind Speed Criteria		Effective Gust C	<u>Criteria</u>
A – No Build B – Full Build	Comfortable for Sitting: Comfortable for Standing: Comfortable for Walking: Uncomfortable for Walking Dangerous Conditions:	≤ 12 mph > 12 and ≤ 15 mph > 15 and ≤ 19 mph : > 19 and ≤ 27 mph > 27 mph	Acceptable: Unacceptable:	≤ 31 mph > 31 mph

APPENDIX A: DRAWING LIST FOR MODEL CONSTRUCTION

The drawings and information listed below were received from WSDEVELOPMENT and were used to construct the scale model of the proposed Seaport Square development in Boston, MA. Should there be any design changes that deviate from this list of drawings, the results may change. Therefore, if changes in the design are made, it is recommended that RWDI be contacted and requested to review their potential effects on wind conditions.

File Name	File Type	Date Received (dd/mm/yyyy)
Public Realm.pptx	PowerPoint	12/12/2016
1063_001.pdf	PDF	23/12/2016
Apple+P_161026.3dm	3dm	31/10/2016
2016.10.26_3DMODEL-BASE-MASSING-NO-ARCH- DETAIL.skp	SketchUp	26/10/2016
161006_STEPPED.skp	SketchUp	25/10/2016

Appendix C

Air Quality

AIR QUALITY APPENDIX

Introduction

This Air Quality Appendix provides modeling assumptions and backup for results presented in Section 4.5 of the report. Included within this documentation is a brief description of the methodology employed along with pertinent calculations and data used in the emissions and dispersion calculations supporting the microscale air quality analysis.

Motor Vehicle Emissions

The EPA MOVES computer program generated motor vehicle emissions used in the garage stationary source analysis along with the mobile source CAL3QHC modeling and mesoscale analysis. The model input parameters were provided by MassDEP. Emission rates were derived for 2016 and 2023 for speed limits of idle, 10, 15, and 30 mph for use in the microscale analyses.

MOVES CO Emission Factor Summary

Carbon Monoxide Only

		2016	2023
Free Flow	30 mph	2.697	1.844
Right Turns	10 mph	4.447	2.956
Left Turns	15 mph	3.823	2.586
Queues	Idle	9.997	4.102

Notes: Winter CO emission factors are higher than Summer and are conservatively used Urban Unrestricted Roadway type used

CAL3QHC

For the intersection studied, the CAL3QHC model was applied to calculate CO concentrations at sensitive receptor locations using emission rates derived in MOVES. The intersection's queue links and free flow links were input to the model along with sensitive receptors at all locations nearby each intersection. The meteorological assumptions input into the model were a 1.0 meter per second wind speed, Pasquill-Gifford Class D stability combined with a mixing height of 1000 meters. For each direction, the full range of wind directions at 10 degree intervals was examined. In addition, a surface roughness (z₀) of 321 cm was used for the intersection. Idle emission rates for queue links were based on 0 mph emission rates derived in MOVES. Emission rates for speeds of 10, 15, and 30 mph were used for right turn, left turn, and free flow links, respectively.

Seaport Square NPC Background Concentrations

POLLUTANT	AVERAGING TIME	Form	2013	2014	2015	Units	ppm/ppb to <i>µg</i> /m³ Conversion Factor	2013-2015 Background Concentration (<i>µg</i> /m ³)	Location
	1-Hour (5)	99th %	14	28	9.4	ppb	2.62	44.9	531A E. 1st St., Boston (7)
SO ⁽¹⁾⁽⁶⁾	3-Hour	H2H	16.3	24.3	8.7	ppb	2.62	63.7	531A E. 1st St., Boston (7)
302	24-Hour	H2H	6.5	8.1	4.3	ppb	2.62	21.2	531A E. 1st St., Boston (7)
	Annual	Н	1.53	1.74	0.8	ppb	2.62	4.6	531A E. 1st St., Boston (7)
PM 10	24-Hour	H2H	34	61	28	µg/m³	1	61	Harrison Ave., Boston
F/W-10	Annual	Н	15.1	13.9	12.4	µg∕m³	1	15.1	Harrison Ave., Boston
DM 2.5	24-Hour (4)	98th %	19.9	14.5	16.8	µg/m³	1	17.1	174 North St, Boston
F/W-2.5	Annual ⁽⁴⁾	Н	8.8	7.1	7.4	µg∕m³	1	7.8	174 North St, Boston
NO ⁽³⁾	1-Hour (5)	98th %	47	62	53	ppb	1.88	101.5	531A E. 1st St., Boston (7)
NO ₂	Annual	Н	12.2	14	15.0	ppb	1.88	28.1	531A E. 1st St., Boston (7)
CO ⁽²⁾	1-Hour	H2H	1.9	1.7	1.4	ppm	1146	2145.3	Harrison Ave., Boston
0	8-Hour	H2H	1.2	1.3	0.9	ppm	1146	1489.8	Harrison Ave., Boston
Ozone ⁽⁴⁾	8-Hour	H4H	0.059	0.054	0.056	ppm	1963	115.8	Harrison Ave., Boston
Lead	Rolling 3-Month	Н	0.006	0.014	0.016	µg/m³	1	0.016	Harrison Ave., Boston

Notes: From 2013-2015 EPA's AirData Website ⁽¹⁾ SO₂ reported ppb. Converted to *µg*/m³ using factor of 1 ppm – 2.62 *µg*/m³. ⁽²⁾ CO reported in ppb. Converted to *µg*/m³ using factor of 1 ppm – 1.184 *µg*/m³. ⁽³⁾ NO₂ reported in ppb. Converted to *µg*/m³ using factor of 1 ppm – 1.88 *µg*/m³. ⁽⁴⁾ O₁ reported in ppb. Converted to *µg*/m³ using factor of 1 ppm – 1.983 *µg*/m³. ⁽⁴⁾ O₁ reported in ppb. Converted to *µg*/m³ using factor of 1 ppm – 1.963 *µg*/m³. ⁽⁶⁾ Background level is the average concentration of the three years. ⁽⁶⁾ The 24-hour and Annual standards were revoked by EPA on June 22, 2010, Federal Register 75-119, p. 35520. ⁽⁷⁾ The E. 1st St. monitor was closed in 2014. Harrison Avenue data used for 2015 SO₂ and NO₂.

Seaport Square NPC	2016 Exist	2016 Existing Weekday PM Peak				
Intersections (Signalized Only)	LOS RANK	COMB. RANK	Traffic Volume RANK	LOS RANK	COMB. RANK	Traffic Volume RANK
6: Northern Avenue & Pier 4 Boulevard	12	26	14	13	27	14
7: Sleeper Street & Seaport Boulevard	1	3	2	2	5	3
8: Boston Wharf Road (WSR) & Seaport Boulevard	12	21	9	8	16	8
9: East Service Road & Seaport Boulevard	3	9	6	4	8	4
10: B Street & Seaport Boulevard	3	13	10	2	8	6
12: D Street & Seaport Boulevard	10	22	12	8	18	10
15: A Street/Thomson St & Congress Street	1	8	7	4	15	11
16: Boston Wharf Road (WSR) & Congress Street	3	8	5	8	15	7
17: Congress Street & East Service Road	3	7	4	8	20	12
18: B Street & Congress Street	3	6	3	4	6	2
19: D Street & Congress Street	3	11	8	1	6	5
20: D Street & Transitway	12	25	13	13	26	13
21: D Street & I-90 Ramp	10	21	11	8	17	9
22: D Street & Summer Street	3	4	1	4	5	1
23: Seaport Boulevard & Fan Pier Boulevard						

Seaport Square NPC	2023 No	2023 No-Build Weekday PM Peak				
Intersections (Signalized Only)	LOS RANK	COMB. RANK	Traffic Volume RANK	LOS RANK	COMB. RANK	Traffic Volume RANK
6: Northern Avenue & Pier 4 Boulevard	9	24	15	10	25	15
7: Sleeper Street & Seaport Boulevard	9	10	1	2	3	1
8: Boston Wharf Road (WSR) & Seaport Boulevard	14	19	5	10	16	6
9: East Service Road & Seaport Boulevard	4	8	4	2	6	4
10: B Street & Seaport Boulevard	9	18	9	10	15	5
12: D Street & Seaport Boulevard	4	17	13	10	21	11
15: A Street/Thomson St & Congress Street	1	11	10	2	14	12
16: Boston Wharf Road (WSR) & Congress Street	4	11	7	2	12	10
17: Congress Street & East Service Road	4	7	3	10	24	14
18: B Street & Congress Street	1	3	2	2	5	3
19: D Street & Congress Street	1	9	8	1	9	8
20: D Street & Transitway	14	28	14	15	28	13
21: D Street & I-90 Ramp	9	20	11	2	11	9
22: D Street & Summer Street	4	15	11	2	4	2
23: Seaport Boulevard & Fan Pier Boulevard	9	15	6	2	9	7

Seaport Square NPC	2023 Bui	2023 Build Weekday PM Peak				
Intersections (Signalized Only)	LOS RANK	COMB. RANK	Traffic Volume RANK	LOS RANK	COMB. RANK	Traffic Volume RANK
6: Northern Avenue & Pier 4 Boulevard	10	25	15	12	27	15
7: Sleeper Street & Seaport Boulevard	10	14	4	3	7	4
8: Boston Wharf Road (WSR) & Seaport Boulevard	14	21	7	3	10	7
9: East Service Road & Seaport Boulevard	2	7	5	3	4	1
10: B Street & Seaport Boulevard	2	12	10	12	17	5
12: D Street & Seaport Boulevard	2	16	14	12	23	11
15: A Street/Thomson St & Congress Street	2	13	11	3	16	13
16: Boston Wharf Road (WSR) & Congress Street	2	10	8	3	13	10
17: Congress Street & East Service Road	2	5	3	3	17	14
18: B Street & Congress Street	2	4	2	3	6	3
19: D Street & Congress Street	1	10	9	1	7	6
20: D Street & Transitway	14	27	13	15	27	12
21: D Street & I-90 Ramp	10	22	12	3	12	9
22: D Street & Summer Street	2	3	1	2	4	2
23: Seaport Boulevard & Fan Pier Boulevard	10	16	6	3	11	8

Seaport Square NPC	All	Modeled C	ases
Intersections (Signalized Only)	Worst 3 By LOS	Worst 3 By Volume	Overall
6: Northern Avenue & Pier 4 Boulevard	66	88	154
7: Sleeper Street & Seaport Boulevard	27	15	42
8: Boston Wharf Road (WSR) & Seaport Boulevard	61	42	103
9: East Service Road & Seaport Boulevard	18	24	42
10: B Street & Seaport Boulevard	38	45	83
12: D Street & Seaport Boulevard	46	71	117
15: A Street/Thomson St & Congress Street	13	64	77
16: Boston Wharf Road (WSR) & Congress Street	22	47	69
17: Congress Street & East Service Road	30	50	80
18: B Street & Congress Street	15	15	30
19: D Street & Congress Street	8	44	52
20: D Street & Transitway	83	78	161
21: D Street & I-90 Ramp	42	61	103
22: D Street & Summer Street	17	18	35
23: Seaport Boulevard & Fan Pier Boulevard	24	27	51

Due to excessive size CAL3QHC, and MOVES input and output files are available on digital media upon request.

Appendix D

Climate Change Preparedness and Resiliency Checklist

Climate Change Preparedness and Resiliency Checklist for New Construction

In November 2013, in conformance with the Mayor's 2011 Climate Action Leadership Committee's recommendations, the Boston Redevelopment Authority adopted policy for all development projects subject to Boston Zoning Article 80 Small and Large Project Review, including all Institutional Master Plan modifications and updates, are to complete the following checklist and provide any necessary responses regarding project resiliency, preparedness, and to mitigate any identified adverse impacts that might arise under future climate conditions.

For more information about the City of Boston's climate policies and practices, and the 2011 update of the climate action plan, *A Climate of Progress*, please see the City's climate action web pages at http://www.cityofboston.gov/climate

In advance we thank you for your time and assistance in advancing best practices in Boston.

Climate Change Analysis and Information Sources:

- 1. Northeast Climate Impacts Assessment (www.climatechoices.org/ne/)
- 2. USGCRP 2009 (<u>http://www.globalchange.gov/publications/reports/scientific-assessments/us-impacts/</u>)
- 3. Army Corps of Engineers guidance on sea level rise (<u>http://planning.usace.army.mil/toolbox/library/ECs/EC11652212Nov2011.pdf</u>)
- Proceeding of the National Academy of Science, "Global sea level rise linked to global temperature", Vermeer and Rahmstorf, 2009 (http://www.pnas.org/content/early/2009/12/04/0907765106.full.pdf)
- "Hotspot of accelerated sea-level rise on the Atlantic coast of North America", Asbury H. Sallenger Jr*, Kara S. Doran and Peter A. Howd, 2012 (<u>http://www.bostonredevelopmentauthority.org/</u> <u>planning/Hotspot of Accelerated Sea-level Rise 2012.pdf</u>)
- "Building Resilience in Boston": Best Practices for Climate Change Adaptation and Resilience for Existing Buildings, Linnean Solutions, The Built Environment Coalition, The Resilient Design Institute, 2103 (<u>http://www.greenribboncommission.org/downloads/Building_Resilience_in_Boston_SML.pdf</u>)

Checklist

Please respond to all of the checklist questions to the fullest extent possible. For projects that respond "Yes" to any of the D.1 – Sea-Level Rise and Storms, Location Description and Classification questions, please respond to all of the remaining Section D questions.

Checklist responses are due at the time of initial project filing or Notice of Project Change and final filings just prior seeking Final BRA Approval. A PDF of your response to the Checklist should be submitted to the Boston Redevelopment Authority via your project manager.

Please Note: When initiating a new project, please visit the BRA web site for the most current <u>Climate</u> <u>Change Preparedness & Resiliency Checklist.</u>

A.1 - Project Information

Project Name:	Seaport Square
Project Address Primary:	Blocks D, F, G, L3, L4, L5, L6, N, P, Q
Project Address Additional:	
Project Contact (name / Title / Company / email / phone):	Yanni Tsipis, WS Development Vice President - Seaport <u>Yanni.Tsipis@wsdevelopment.com</u> 617-646-3180

A.2 - Team Description

Owner / Developer:	WS Development
Architect:	OMA
Engineer (building systems):	Vanderweil
Sustainability / LEED:	WS Development
Permitting:	Epsilon Associates, Inc.
Construction Management:	
Climate Change Expert:	

A.3 - Project Permitting and Phase

At what phase is the project – most recent completed submission at the time of this response? TBD

PNF / Expanded	Draft / Final Project Impact	BRA Board	Notice of Project
PNF Submission	Report Submission	Approved	Change
Planned Development Area	BRA Final Design Approved	Under Construction	Construction just completed:

A.4 - Building Classification and Description

List the principal Building Uses:	Office/Research/Innovation/Residential/Hotel/Civic					
List the First Floor Uses:	Primary Retail/Entertainment/Cultural					
What is the principal Construction Type – select most appropriate type? TBD						
	Wood Frame	Masonry	□ Steel Frame	Concrete		
Describe the building?						
Site Area:	23 acres	Building Area:		3,783,340 SF		
Building Height:	129-260 Ft.	Number of Stories:		19-23 Flrs.		
First Floor Elevation (reference Boston City	Varies	Are there below grade spaces/levels, if yes how many:		Varies/up to 3 levels		

Base):				
A.5 - Green Building		-		
Which LEED Rating System(s) and version has or will	your project use (by a	area for multiple ratin	g systems)?
Select by Primary Use:	New Construction	Core & Shell	Healthcare	Schools
	Retail	Homes Midrise	□ Homes	Ø Other
Select LEED Outcome:	Certified	□ Silver	Gold	D Platinum
Will the project be USGBC R	egistered and / or USGB	C Certified?		
Registered:	Yes		Certified:	

100	Certinou.	
ch building will		
/ be registered		
under the		
propriate LEED		
system at the		
time of design		

A.6 - Building Energy-

What are the base and peak operating energy loads for the building? TBD. This will be addressed on a building-by-building basis as designed.

Electric:	TBD (kW)	Heating:	TBD (MMBtu/hr)
What is the planned building	TBD (kWh/SF)	Cooling:	TBD (Tons/hr)
Energy Use Intensity:			

What are the peak energy demands of your critical systems in the event of a service interruption?

TBD (kW)

Electric:

Ead likely

app rating

Heating:	TBD (MMBtu/hr)
Cooling:	TBD (Tons/hr)

TBD

What is nature and source of your back-up / emergency generators? TBD. This will be addressed on a building-by-building basis as designed.

Electrical Generation:	TBD (kW)		Fuel Source:	
System Type and Number of Units:	Combustion Engine	Gas Turbine	Combine Heat and Power	(Units)

B - Extreme Weather and Heat Events

Climate change will result in more extreme weather events including higher year round average temperatures, higher peak temperatures, and more periods of extended peak temperatures. The section explores how a project responds to higher temperatures and heat waves.

B.1 - Analysis

What is the full expected life of the project?

Select most appropriate. 10 Years 12 25 Years 12 50 Years 12 75 Years	Select most appropriate:	10 Years	25 Years	50 Years	D 75 Years
---	--------------------------	----------	----------	----------	------------

What is the full expected operational life of key building systems (e.g. heating, cooling, ventilation)?				ion)?				
Select most app	ropriate:	10 Years	25 Years	50 Years	□ 75 Years			
What time span of future	Climate C	onditions was cor	sidered?					
Select most app	ropriate:	10 Years	25 Years	☑ 50 Years	D 75 Years			
Analysis Conditions - Wha	t range of	temperatures wil	be used for project p	anning – Low/High?	?			
		8/91 De	eg. Based on ASHRA 0.4% cooling	E Fundamentals 20	13 99.6% heating;			
What Extreme Heat Event	character	istics will be used	I for project planning -	Peak High, Duratio	on, and Frequency?			
		95 De	eg. 5 Dag	ys 6 Events /	/ yr.			
What Drought characteris	tics will be	e used for project	planning – Duration a	nd Frequency?				
		30-90 Da	nys 0.2 Events / y	ır.				
What Extreme Rain Event Frequency of Events per y	character ear?	istics will be used	for project planning -	Seasonal Rain Fall,	, Peak Rain Fall, and			
		45 Inches /	yr. 4 Inche	es 0.5 Events /	/ yr.			
What Extreme Wind Storm Event characteristics will be used for project planning – Peak Wind Speed, Duration of Storm Event, and Frequency of Events per year?					Speed, Duration of			
130 Peak Wind 10 Hours 0.25 Events / yr.								
B.2 - Mitigation Strategies								
What will be the everall or		waaaa baada	n una of the project o	nd how will no form	anaa ha datarminadQ			
What will be the overall er	nergy perf	ormance, based c	on use, of the project a	nd how will perform	ance be determined?			
What will be the overall er Building energy use belo	nergy perfo ow code:	ormance, based c This will calculated duri desi	n use, of the project a be ng gn	nd how will perform	ance be determined?			
What will be the overall er Building energy use belo How is performance dete	nergy perfe ow code: ermined:	ormance, based c This will calculated duri desi	on use, of the project a be ng gn	nd how will perform	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w	nergy perf ow code: ermined: vill the pro	ormance, based o This will calculated duri desi ject employ to reo	on use, of the project a be ng gn Juce building energy c	nd how will perform	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate:	nergy perfectors ow code: ermined: vill the pro	ormance, based o This will calculated duri desi ject employ to rec	on use, of the project a be ng gn duce building energy co Hiøh	nd how will perform onsumption?	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate:	nergy perfo ow code: ermined: vill the pro	prmance, based of This will calculated duri desi ject employ to rec performance envelop	on use, of the project a be ng gn duce building energy c luce building energy c High performance lighting & controls	nd how will performation onsumption?	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate:	ermined: vill the pro building High HVAC eq	prmance, based of This will calculated duri desi ject employ to reo performance envelop performance uipment	on use, of the project a be ng gn duce building energy c High performance lighting & controls Energy recovery ventilation	nd how will performs onsumption? Building day lighting No active cooling	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate: Describe any added measures:	ermined: vill the pro High building HVAC eq These m	prmance, based of This will calculated duri desi ject employ to reo performance envelop performance uipment easures will be de	on use, of the project a be ng gn duce building energy co lighting & controls lighting & controls Energy recovery ventilation etermined as the build	nd how will perform onsumption? Building day lighting No active cooling ings are designed.	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate: Describe any added measures: What are the insulation (F	ermined: vill the pro lill the pro lill the pro High building These m	prmance, based of This will calculated duri desi ject employ to reo performance envelop performance uipment easures will be do pr building envelo	on use, of the project a be ng gn duce building energy co lighting & controls Energy recovery ventilation etermined as the build p elements?	nd how will perform onsumption? Building day lighting No active cooling ings are designed.	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate: Describe any added measures: What are the insulation (F	ermined: vill the pro building High HVAC eq These m	performance, based of This will calculated duri desi ject employ to rec performance envelop performance uipment easures will be de or building envelo Roof:	on use, of the project a be ng gn duce building energy co lighting & controls Energy recovery ventilation etermined as the build p elements? R = TBD	nd how will performs onsumption? Building day lighting No active cooling ings are designed. Walls / Curtain Wall Assembly:	ance be determined?			
What will be the overall er Building energy use belo How is performance dete What specific measures w Select all appropriate: Describe any added measures: What are the insulation (F	ermined: will the pro High building HVAC eq These m	prmance, based of This will calculated duri desi ject employ to rec performance envelop performance uipment easures will be de or building envelo Roof: Foundation:	on use, of the project a be ng gn duce building energy c lighting & controls Energy recovery ventilation etermined as the build p elements? R = TBD R = TBD	nd how will performs onsumption? Building day lighting No active cooling ings are designed. Walls / Curtain Wall Assembly: Basement / Sla	ance be determined? $\square EnergyStar equip. / appliances \square No active heating R = TBD ab: R = TBD$			

What specific measures will the project employ to reduce building energy demands on the utilities and infrastructure?

	On-site clean energy / CHP system(s)	Building-wide power dimming	Thermal energy storage systems	Ground source heat pump		
	□ On-site Solar PV	On-site Solar Thermal	□ Wind power	☑ None		
Describe any added measures:	CHP will be studied	for some of the buildi	ngs during design			
Will the project employ Distributed	Energy / Smart Grid I	nergy / Smart Grid Infrastructure and /or Systems?				
Select all appropriate:	Connected to local distributed electrical	Building will be Smart Grid ready	Connected to distributed steam, hot, chilled water	Distributed thermal energy ready		
Will the building remain operable w	ithout utility power fo	r an extended period?				
	No		If yes, for how long:	Days		
If Yes, is building "Islandable?						
If Yes, describe strategies:	These measures wil	I be determined as th	e buildings are desigr	ied.		
Describe any non-mechanical strategies that will support building functionality and use during an extended interruption(s) of utility services and infrastructure:						
Select all appropriate:	□ Solar oriented - longer south walls	• Prevailing winds oriented	External shading devices	□ Tuned glazing,		
	Building cool zones	Operable windows	Natural ventilation	Building shading		
	Potable water for drinking / food preparation	Potable water for sinks / sanitary systems	□ Waste water storage capacity	 High Performance Building Envelop 		
Describe any added measures:	These measures wil	I be determined as th	e buildings are desigr	ied.		
What measures will the project emp	ploy to reduce urban I	neat-island effect?				
Select all appropriate:	High reflective paving materials	□ Shade trees & shrubs	High reflective roof materials	Vegetated roofs		
Describe other strategies:	These measures wil	I be determined as th	e buildings are desigr	ied.		
What measures will the project emp	ploy to accommodate	rain events and more	e rain fall?			
Select all appropriate:	□ On-site retention systems & ponds	Infiltration galleries & areas	Vegetated wat capture systems	er DVegetated roofs		
Describe other strategies:	The Project anticipa extent practicable.	tes capturing and rec	harge/reuse of one-in	ch of rainfall to the		
What measures will the project emp	ploy to accommodate	extreme storm event	s and high winds?			
Select all appropriate:	 Hardened building structure & elements 	Buried utilities & hardened infrastructure	Hazard removal & protective landscapes	Soft & permeable surfaces (water infiltration)		
Describe other strategies:	These measures wil	These measures will be determined as the buildings are designed.				

C - Sea-Level Rise and Storms

Rising Sea-Levels and more frequent Extreme Storms increase the probability of coastal and river flooding and enlarging the extent of the 100 Year Flood Plain. This section explores if a project is or might be subject to Sea-Level Rise and Storm impacts.

C.1 - Location Description and Classification:

Do you believe the building to susceptible to flooding now or during the full expected life of the building?

	Portions of the site		
Describe site conditions?			
Site Elevation – Low/High Points:	Varies Boston City Base Elev.(Ft.)		
Building Proximity to Water:	Ft.		
Is the site or building located in any	of the following?		
Coastal Zone:	Yes	Velocity Zone:	No
Flood Zone:	Yes	Area Prone to Flooding:	Yes
Will the 2013 Preliminary FEMA Flo Change result in a change of the cla	od Insurance Rate Ma assification of the site	ps or future floodplain delineation updates or building location?	s due to Climate
2013 FEMA Prelim. FIRMs:	Yes	Future floodplain delineation updates:	Yes
What is the project or building proxi	mity to nearest Coast	al, Velocity or Flood Zone or Area Prone to I	Flooding?
	0 Ft.		

If you answered YES to any of the above Location Description and Classification questions, please complete the following questions. Otherwise you have completed the questionnaire; thank you!

C - Sea-Level Rise and Storms

This section explores how a project responds to Sea-Level Rise and / or increase in storm frequency or severity.

C.2 - Analysis

How were impacts from higher sea levels and more frequent and extreme storm events analyzed:

Sea Level Rise:3 Ft.Frequency of storms:0.25 per year

C.3 - Building Flood Proofing

Describe any strategies to limit storm and flood damage and to maintain functionality during an extended periods of disruption.

What will be the Building Flood Proof Elevation and First Floor Elevation:

Flood Proof Elevation:	Boston City Base	First Floor Elevation:	Boston City Base
	Elev.(Ft.)		Elev. (Ft.)

Will the project employ temporary measures to prevent building flooding (e.g. barricades, flood gates):

	Yes / No	If Ye	Boston City Base Elev. (Ft.)	
If Yes, describe:	The buildings will be protected up to the 100-year flood plain elevation. Transformers will be kept up above the first floor and rapidly deployable barrier systems will be available for the first floor entrances in severe storm events.			
What measures will be taken to ensure the integrity of critical building systems during a flood or severe storm event:				
	☐ Systems located above 1 st Floor.	☑ Water tight utility conduits	✓ Waste water back flow prevention	☑ Storm water back flow prevention
Were the differing effects of fresh water and salt water flooding considered:				
	Yes			
Will the project site / building(s) be accessible during periods of inundation or limited access to transportation:				
	No	If yes, to what	at height above 100 Year Floodplain:	Boston City Base Elev. (Ft.)
Will the project employ hard and / or soft landscape elements as velocity barriers to reduce wind or wave impacts?				
	Yes / No			
If Yes, describe:				
Will the building remain occupiable without utility power during an extended period of inundation:				
	No		If Yes, for how long:	days
Describe any additional strategies to addressing sea level rise and or sever storm impacts:				

C.4 - Building Resilience and Adaptability

Select

Describe any strategies that would support rapid recovery after a weather event and accommodate future building changes that respond to climate change:

Will the building be able to withstand severe storm impacts and endure temporary inundation?

appropriate:	Yes	Hardened /	✓ Temporary	Resilient site
		Resilient Ground	shutters and or	design, materials
		Floor Construction	barricades	and construction

Can the site and building be reasonably modified to increase Building Flood Proof Elevation?

Select appropriate:	No	Surrounding site elevation can be raised	Building ground floor can be raised	Construction been engineered
Describe additional strategies:				
Has the building been planned and designed to accommodate future resiliency enhancements?				
Select appropriate:	Yes / No	□ Solar PV	Solar Thermal	Clean Energy /

			CHP System(s)
	Potable water storage	□ Wastewater storage	Back up energy systems & fuel
Describe any specific or additional strategies:			

Thank you for completing the Boston Climate Change Resilience and Preparedness Checklist!

For questions or comments about this checklist or Climate Change Resiliency and Preparedness best practices, please contact: <u>John.Dalzell.BRA@cityofboston.gov</u>